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Abstract

It is the aim of this paper to explore some new properties of the
Padovan sequence using matrix methods. We derive new recurrence
relations and generating matrices for the sums of Padovan numbers
and 4n subscripted Padovan sequences. Also, we define one type
of (0,1) upper Hessenberg matrix whose permanents are Padovan
numbers.

1 Introduction

The Padovan sequence is described by I. Steward, in honour of the
contemporary architect Richard Padovan, for n > 2

Pn=Pn—2+Pn—3

where P, = P = P, = 1 [1]. The Padovan numbers are like the
Fibonacci numbers, but instead of starting with two predetermined terms,
the sequence starts with skipping the previous one and each term afterward
is the sum of the preceding two terms.

The sequence also can be extended to negative parametres [2] using
the recurrence relation P_, = P_p43 — P—pn41. The first few values of the
sequence are given below:

n |01 2 3 45 6 7 8 9 10 11 12 13 14

P,|j1 11 2 2 3 4 5 7 9 12 16 21 28 37
P,j7201001 -110 -1 2 -2 1 1 -3
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Generating matrix {1] of the sequence is as following:

011 " P, n—2 P, n-1 F, n—-3
Qn = 100 =| Po3 Pr_a P,y (1)
010 Pa 4 Paz Prs

The permanent of a matrix is similar to determinant but all of the signs
used in the Laplace expansion of minors are positive. The permanent of an
n-square matrix is defined by

n
perA = Z Ha,-,(‘-)

g€Syi=1
where the summation extends over all permutations ¢ of the symmetric
group S, [3].
Let A = [a;;] be an m X n matrix with row vectors r1,72,...,7m. We

call A is contractible on column k, if column k& contains exactly two non
zero elements. Suppose that A is contractible on colummn k with a;;x #
0,ajx # 0 and % # j. Then the (m — 1) x (n — 1) matrix A;;x obtained
from A replacing row ¢ with ajxr; + air; and deleting row j and column
k is called the contraction of A on column k relative to rows i and j. If A
is contractible on row k with ag; # 0,ar; # 0 and ¢ # j, then the matrix
Apij = [A?;-:k]T is called the contraction of A on row k relative to columns
i and j. We know that if A is a nonnegative matrix and B is a contraction
of A [4], then
perA = perB.

The most important applications of permanents are in the areas of
physics and chemistry. It is well-known that many mathematical
identities can be expressed as special determinants.

It is known that there are a lot of relations between determinants or
permanents of matrices and well-known number sequences. For
example, the authors [4] derive some relations between the Pell and Perrin
sequences and permanents of one type of Hessenberg matrix.

In [5], Lehmer investigate both determinant and permanent of a
general tridiagonal matrix and show that the permanent of the tridiagonal
matrix based on {a;}, {&:}, {c} is equal to the determinant of the matrix
based on {-a;}, {b;}, {c}

Kili¢ [6] investigate the Tribonacci number sequence and derive new
recurrence relations for the sequence. Then, he obtain explicit formulas
and combinatorial representations for the sums of these sequences.

At present paper, we investigate some properties of the Padovan
numbers using matrix methods. We define new matrices which help us
to obtain new results for the Padovan sequence. Further on, we present
type of (0, 1)-Hessenberg matrix whose permanents are Padovan numbers.
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2 Main results

In this section, we give new generating matrix for Padovan numbers and
their sums. Also we investigate some properties of the sequence by matrix
methods. Considering the matrix @, we define the following matrices:

1000 1 0 0 0
|1 011 _ Sn-1 Pnz Pup-1 Pp_3
A=1o0 100|535, Py Py Pus
0 010 Sn—s Pn—4 Pn-3 Pn—5
n—2
where S, = Y P, + 1, n > 2. By definition of Padovan numbers, we can
k=0

write the following matrix equation for n > 2
B, = AB,_;.
Then we have the following lemma.

Lemma 1
A"=B,, n22

Proof. Using the equality B, = AB,_;, by an inductive argument, we can
write B, = A"~ !B;. By definition of Padovan numbers, we obtain A = B;.
Then A™ = B,, which is desired. m

Corollary 2 Ifn > 2, then
Sn = Sn—2 + Sn—3 + 1.

Proof. It can be seen easily by induction onn. m
As a result of Corollary 2, we also can write the following property (see

(2)):

n—-5

> B=P,-2
k=0

Corollary 3 If n,m > 3, then
Sn+m—l = Sn—l + Pn—2s -1+ Pn—lsm—2 + Pn—3S -3

Proof. By definition of matrix By, we can write B ym = BnBm = BBy
for all n,m > 3. Using matrix multiplication, we obtain the result. m
The characteristic equation of Padovan sequence is

2—z-1=0
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and the roots of the equation are

')"1 = E.’.E
6 w’

T2 = —3- “/—(2—2)
12 w’’

ry = _3_1_1_{(2_3,
12 w 2 '6 w”

where w = (108 + 12v/69)!/3. The characteristic equation of the sequence
has distinct roots and r; is unique real solution which is called as plastic number.
The limit of the ratio of successive Padovan numbers approximate to value

r; = 1.324718 [2].

Lemma 4 The Binet formula for Padovan sequence is
(1‘1 + 1) ,’,n+1 (7‘2 + 1) ,rn-i-l
(ri=m)(r1i—73) ! (ra—m)(ra—rs) 2

(7’3 + 1) wntl
(ra—m3)(ri—rs) *

Pn+1

Proof. Let us define the generating function (see [7]) of the sequence as
9(z) = Py + Piz+ Pox? + P3z® + -+ -+ Poz™ +- -+ and

zg(z) = Piz+Piz’+Pa’+ P+ + Pz +---
z2g(z) = Pox?+ Pz + Poa® + PszP 4o+ Pagz™ + -
23g(z) = Pz +Piz*+Ppa® + Paa® 4 -+ Po_gz™ +---

Then,
g(z) — zg(x) — z39(z) = Po+ Piz+ (P — Bz’ +---
+(Pn — Pp—g — Pp_3)z"
gx)l-2z2-2% = z+1
here
z+1 a b c
(@) = 1-22-23 1-ncz + l—rga:+ 1-r3z
=] o0 oo
= aZr;‘:c" + bngx" + ZT:',‘:B"
0 0 0
= far} +br +orf]
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using polynomial equality, we get

a (ri+1)m

(r1 —r2)(r1 —13)
b = (r2 +1)ro

(ra —r1)(r2 —13)
c = (r3 +1)rs

(re — r3)(r1 — 73)

which is desired. m
The eigenvalues of the matrix A are 1,71,72,73. Define the diagonal
matrix D and the matrix V as below, respectively:

1 0 0 O -1/2 0 0 0

_ 0~n 0 O _ 1/2 r14+1 ro4+1 r3+1
D=1o o 2 0 and V = 1/2 12 T3 3
0 0 0 m 172 n T2 T3

It is easy to see that AV = VD. Since the roots r;, 72,73 are distinct,
detV # 0.

Theorem 5 If n > 2, then Sy—y = Pp—2 4+ Pp—1+ Pp_3— 1.

Proof. Since AV = VD and detV # 0, we can write V"1 AV = D. Namely
the matrix A is similar to the matrix D. Then A™V = VD", By Lemma 1,
we can write

B,V =VD" ()
by the equality of the (2,1)th elements of the equation (2), we obtain the

desired. m
Let us define the matrices given below:

110 -1 Sn Sp—a+1 —Sp2 —=Sp
R=|g 1 0 o |™Ke=| 5 Soi1 oy sy
001 O Sp—3 Sp—7+1 —Sp—s —Sn-4
Theorem 6 Ifn > 2, then R™ = K,,.
Proof. Using the equalities, Spqy1 = Sp + Sp—1 — Sn-3 and

Sn = Sn-2+ Sn—3 + 1, we can write K,, = RK,,_,. By induction, it can be
written K, = R"1K),. From definitions of the matrices R and K,,, we can
write R = K. So the proof is complete. m

The characteristic equation of the matrix R is z¢ — 2% —z2+1 = 0. The
roots of this equation are 1,71,72 and r3.
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Corollary 7 The sequence {Sp} satisfies the following recursion, forn > 1
Sn = n—1+ Sn.—2 - S'n—4-

Define the Vandermonde matrix V; and diagonal matrix D, as following;:

S 3 r3 1 rnm 0 0 O

2 .2 .5
_fri s 3 1 {0 r» 0 O
1/1 - T™T T2 T3 1 and Dl - 0 0 r3 0
1 1 11 0 0 0 1

Let w; be 4 x 1 matrix as w; = [r}~*+, rp~i+4 o8-+ 1T and V(') be a
matrix obtained from Vj by replacing the gth column of V¥ by w;.

det(V;™) ()

Theorem 8 Forn > 1, ki = Fet (Vi)
1

where K, = [ki;].

Proof. It is easy to see that RV = V1 D;. Due to 71, 7o and 73 are distinct,
the Vandermonde matrix V; is invertible. So we can write Vl‘]RVl =

In other words, we can write R*V; = V1. D}. By Theorem 6, K,,V; = V1D}.
Thus we have the following equations system:

r3ki + r2kig + Tikis + kig ,.;a—i+4

r3kia +13kiz + rokis + kg = 3t

Tgku + 'r§kiz +r3kiz+ kg = ,,.g—i+4
kia+kio+ka+ky = 1

where K, = [k;;]. Using Cramer’s rule, the proof is seen. We obtained this
result using similar way in [6, Theorem 4]. m

Corollary 9 Forn > 0;

[rP*3(ra = 1)(r2 — r3)(r3 — 1) + r53*3(ry = 1)(ry — 3)(r3 — 1)
[(r1 = 1)(r1 = r3)(r1 — r2)(r2 — 1)(r2 — r3)(r3 — 1)]
—r33(r1 — 1)(r1 — o) (ra = 1) 4+ r§(r2 — 73) — r3(r1 — 73)
[(r1 = 1)(r1 = r3)(r1 — r2)(r2 — 1)(r2 — 73)(r3 — 1)]
r3(r1 — r2)) -9
T = 1)(r: — r9)(r1 — r2)(r2 — D(rz — 73)(rs — 1]
Proof. Taking i = 1 and j = 1 in Theorem 8, k11 = Sy, computing det(V};)
and det(Vl(l)), we obtain

S, =

Vil = (r1 = 1)(r2 — 1)(r3 — 1)(r1 — r2)(r1 = r3)(r2 — 73)
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and
|Vl(l)| = 717P3(r3 = r2)(rs — 1)(1 — 72) + 73+ (ry — 73)(r1 — 1)(1 — 73)

+'r§'+3(1'2 —r)(re =1)(1—-7m)+ 7'%(1'3 —72) + rg('rl —73)
+r3(r2 — 1)

respectively. So the proof is complete. ®

3 On the Padovan sequence subscripted {4n}

In this section, we consider 4n subscripted Padovan numbers. Initially we
define a new third order recurrence relation for 4n subscripted Padovan
sequence. Then, we give a new generating matrix for these numbers.

Lemma 10 Forn > 1
Py(ni1) = 2Pin + 3Py(n-1) + Py(n—-2)
where Pp=1, P,=2, Pg=1T.

Proof. By mathematical induction principle, proof can be seen easily. m
Let us define the following matrices

1 0 0 0
1 2 31

W=1o100}/"
0010
[ 1 0 0 0

H = Sn Py 3Pye—1) + Pak—2) Par-1)

" Sn—1 Pa-1) 3Pak—2) + Pak-3) FPak—2)
| sn—2  Pyr—2) 3Pyk-3) + Pak—-1) Pak-3)

n—1
where s, = Y Py. Using matrix multiplication property, we can write

k=0
H, = WH,,_,. Then we have the following corollary.

Corollary 11 Forn>1, W® = H,.

It can be seen that the eigenvalues of the matrix W are r{, r3, 7§ and 1.
Define the matrices E and A as below:

~5/16 0 0 0
1/16 r§ r§ % _
1/16 % rd o} and A =

116 1 1 1

E=

O OO
oo o
Oph© ©
ho oo
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Pyp +4Py(5_1) + Pyn—2) — 1
3 i

Proof. Since r1,72 and 73 are distinct, we know that detE # 0. Also we
have the following equality WE = EA. In other words W*E = EA™. By
Corollary 11, H, E = EA™. By matrix equality, the (2,1)th of the equation
gives us s,. So the theorem is proven. m

Let us define the following matrices:

Theorem 12 Forn > 1, sy =

31 -2 -1

1 0 O 0

K=101 0 o

0 0 1 0

and
Sn+1 (3n — 28,1 — 3n—2) _(23n - 3n—l) —38n
Uv.=| * (8n—1—28p—2 — 8p-3) —(29n-1—8n-2) —Sn—1
=

Sn-1 (Sn-2—28p-3—8n—4) —(28n—2—3n-3) —Sn-2
Sp-2 (3n——3 —28p_4 — 3n—5) —(2311—3 - sn-—-4) —8n-3

Theorem 13 Forn >4, K" =U,.

Proof. By mathematical induction principle, it can be seen. ®

The characteristic polynomial of the matrix K is % —3z% — 22 4+ 2z + 1.
The roots of the characteristic equation of the matrix are 1,7, ro and r3.
Define the vandermonde matrix E; and diagonal matrix A; as below:

T 1800
_|m m= mn 1 - 2
Bi=l 4 4 4 |®dh=]4 5 49
1 1 1 1 0 0 0 1
since E; is a Vandermonde matrix, det(E)# 0.
Theorem 14 Forn > 1,
. r‘lin+8 B Tgn+8
" ((rf = D)t = =D [(r§ = 1)(r§ — r5)(r3 — 3)]
,,.4n+8
1 2

(3 -1 -3z -3

Proof. It can be written that KEy = EjA;. Since det(E))# 0, E; is
invertible. Then E[ 1KE, = A,. So K™"E, = E,A%. By Theorem 13, we
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can rewrite U, E; = EjAT. In other words, we have the following linear
equations system:
12 4(n—i)+16
12w + riuig + i + uig 1”1( )
12 4(n—i)+16
3%ua + T + Tiu + Uia ran =9
12 4(n—i)+16
ri%ui + rfup + riu +wie = 1‘3( )

Ui+ Uz +uz+ug = 1
where Uy, = [u;;]. Let v; be a 4 x 1 matrix as below:
vy = i1 pAn=i+16 (=416 )7

and Efg be a matrix obtained by replacing the jth column of EJ by v;.
By Cramer’s rule, the solution of the above system is:

det(E{))
Y = Get(Ey)
since us; = sp,
det(E®)
5 = det(By)
In other words
det(BZ) = r{"™ (s —1)(rf - 1)(rd — rd) = r§HI(rf — ) - 1)(rf - 1)

+o§™ D - 1) - 1) ~ 7f)
and
det(E1) = (r] — 1)(r§ — 1)(r5 — 1)(rT — r3)(r} = r5)(rz — 73).
So the proof is complete. We obtained this result using similar way in [6,
Theorem 7). =
4 Padovan numbers by Hessenberg matrices
In this section, we define one type of (0,1) upper Hessenberg matrix

family and show that the permanent of these type of matrices are Padovan
numbers. Let us define a Hessenberg matrix as below:
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Theorem 15 Let H(n) be an n-square matriz as in (3), then

perH(n) = perH™ A (n) = P,_,

O

where P, is the nth Padovan number.

-

1
1
0

o

@)

Proof. By definition of the matrix H(n), it can be contracted on colunm

1. That is:
[ 1
1
0
HM(n) =
0
0
| 0
H(n) also can be contracted
[ 2
1
0

H®(n) =

oo

-0 N

S O

0
1
1

0
0
1

on first column:

2
0
1

oo

1

1
0

Contracting H®)(n) according to first column:

2
1
0

HO)(n) =

[ I e R o)

3
0
1

(== ]

2
1
0
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Continuing this method, we obtain the rth contraction:

[ Pryy Pry2 P. 0 O 0]
1 0 1 1 0 0
0 1 0 1 1
HO)(n) = )
0 0 1 O 1 1
0 0 1 0 1
0 0 1 0

The (n — 3)th contraction is:
Pp_o Pn—l Pn..3 ]

H)n)y=| 1 0 1
0 1 0

and contracting H(~3)(n) according to first column:

H(n—2)(n) = [ Pn:.l—l P16—2 ]

which is desired. m

Corollary 16 Let M(n) = [mi;laxn be an n-square (0,—1,1) Hessenberg
matric s below:

M 42 = Mig1, =1
M(n)=q Mmiis1=-1
0, otherwise
wherei=1,2,....,n—1and j=1,2,...,n — 2.
det M('n) = Pp_2.
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