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Abstract

A k-container C(u,v) of G between u and v is a set of k internally
disjoint paths between u and v. A k-container C(u,v) of G is a k*-
container if it contains all nodes of G. A graph G is k"-connected
if there exists a k*-container between any two distinct nodes. The
spanning connectivity of G, *(G), is defined to be the largest integer
k such that G is w*-connected for all 1 < w < k if G is an 1°-
connected graph and undefined if otherwise. A graph G is super
spanning connected if k*(G) = k(G). In this paper, we prove that the
n-dimensional augmented cube AQ,, is super spanning connected.

Keywords: hamiltonian, hamiltonian connected, container, connectiv-
ity.

1 Introduction

For the graph definitions and notations we follow [2]. G = (V, E) is a graph
if V is a finite set and E is a subset of {(u,v) | (u,v) is an unordered pair
of V}. We say that V is the node set and FE is the edge set. A graph H is a
subgraph of graph G if V(H) C V(G) and E(H) C E(G). Two nodes « and
v are adjacent if (u,v) is an edge of G. The set of neighbors of u, Ng(u),
is {v | (u,v) € E}. The degree of a node u of G, degg(u), is the number of
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edges incident with . A graph G is k-regular if dege(u) = k for every node
u in G. A path is a sequence of nodes represented by (v, v1,...,v) with
no repeated nodes and (v;,vi4;) is an edge of G for all 0 <% < k—1 when
k > 1 and (vp) when k = 0. We also write the path P = (vp,v1,...,v%)
as (v, ...,%, Q,vj,...,Vk), where Q is a path from v; to v;. We use P~1
to denote the path (vk,vk—1,...,vp). The length of a path Q, {(Q), is the
number of edges in Q. The distance of nodes u and v of G, dg(u,v), is the
length of the shortest path between v and v. A path is a hamiltonian path
if it contains all nodes of G. A graph G is hamiltonian connected if there
exists a hamiltonian path joining any two distinct nodes of G. A cycle is a
path with at least three nodes such that the first node is the same as the
last one. A hamiltonian cycle of G is a cycle that traverses every node of
G. A graph is hamiltonian if it has a hamiltonian cycle.

A k-container C(u,v) of G between u and v is a set of k internally
disjoint paths between v and v. The concept of container is proposed by
Hsu [4] to evaluate the performance of communication of an interconnection
network. The connectivity of G, x(G), is the minimum number of nodes
whose removal leaves the remaining graph disconnected or trivial. It follows
from Menger’s Theorem [9] that there is a k-container between any two
distinct nodes of G if G is k-connected.

In this paper, we are interested in specified containers. A k-container
C(u,v) of G is a k*-container if it contains all nodes of G. A graph G is k*-
connected if there exists a k*-container between any two distinct nodes. An
1*-connected graph is actually a hamiltonian connected graph. Moreover,
a 2*-connected graph is a hamiltonian graph. Thus, the concept of k*-
connected graph is a hybrid concept of connectivity and hamiltonicity. We
define the spanning connectivity of a graph G, £*(G), to be the largest
integer k such that G is w*-connected for all 1 < w < k if G is an 1*-
connected graph. A graph G is super spanning connected if x*(G) = &(G).
Obviously, the complete graph K, is super spanning connected.

From the application point of view, k*-containers can be used in mul-
tipath communication. Note that graph connectivity and hamiltonicity
are two very interesting topics in graph theory. The concept of spanning
connectivity is interesting as well. From the theoretical point of view, we
should put as much emphasis as we did for hamiltonian graphs. Recently,
several families of interconnection networks are proved to be super span-
ning connected [7,8,10]. In this paper, we prove that the n-dimensional
augmented cube AQ, is super spanning connected.
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2 The augmented cubes

Let n be any positive integer. An n-bit binary string u is a sequence
Uplin-1...u1 With u; € {0,1} foreach 1 < i < n. Let 1 < i < n.
We use (u); to denote u;. Moreover, we use (u)’ to denote the sequence
UnUn_1 ... Uip1Tili—1 ... u] Where T; = 1 — u;. Furthermore, we use (u)*~
to denote the sequence unun—1...uis1%ili-1 ... 4. Obviously, (u)! =
()*~, ((u)f)* = u, and ((u)*~)*~ = u. The graph of the n-dimensional
augmented cube [3], AQn, consists of all n-bit binary strings - its nodes.
Two nodes 1 = unUup—y...u; and Vv = vpV,—1...v; in AQ, are adjacent if
and only if there is i € {1,2,...,n} such that either (u)! = v or (u)i~ = v.

I X

AQ, AQ>

Figure 1: The augmented cubes AQ;, AQ2, and AQ3

The augmented cubes AQ;, AQ2, and AQ; are illustrated in Figure 1.
Some properties are discussed in [3,5,6,11]. It is proved in [3] that AQ,
is node transitive, (2n — 1)-regular, and xK(AQ,) = 2n — 1 if and only if
n # 3 and k(AQs) = 4. For i € {0,1}, let AQ?, denote the subgraph
of AQ, induced by those nodes u with (u), = i. For n > 2, AQ, can
be decomposed into AQ% and AQ] such that each AQ: is isomorphic to
AQn—1. Thus, the augmented cube can be constructed recursively. For
0<i<1land0<j <1, let AQ: denote the subgraph of AQ, induced
by those nodes u with (u), = 7 and (u)n—1 = j. For n > 3, AQ, can be
decomposed into AQ%°, AQ%!, AQLY, and AQL! such that each AQYI is
isomorphic to AQy—2.

Theorem 1. [5] Let F be any subset of V(AQ,) U E(AQ.). Assume
that n is any positive integer with n > 2 and n # 3. Then AQ, — F is
2*-connected if |F| < 2n — 3 and AQn — F is 1*-connected if |F| < 2n - 4.
Moreover, AQs — F is 2*-connected if |F| < 2 and AQ3 — F is 1*-connected
fIF| <1

Lemma 1. Let u be any two adjacent vertices of AQ, with n > 3. Then
AQn — {u,(u)*} is hamiltonian connected.

Proof. By Theorem 1, this statement holds for n > 4. Since AQj3 is
vertex transitive, we assume that u = 000. By brute force, we can check

163



the graph T in Figure 2 is a subgraph of AQ3 — {u = 000, (u)3~ = 111}.
It is easy to check that T is vertex transitive.

1 4
3H6
Figure 2: The subgraph T of AQ3; — {000,111}
Let = and y be any two distinct vertices of T'. Since T is vertex tran-

sitive, we assume that £ = 1. With the following table, T is hamiltonian
connected.

¥y =12 o 4
y=3 24
y=23
v =
Yy =

, 4
2 8
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Since T is hamiltonian connected and T is a subgraph of AQ3;—{000, 111},
AQ3 — {000,111} is hamiltonian connected. a

Theorem 2. [5] Let n > 4. Assume that {u,v} and {x,y} are two pairs
of four distinct nodes of AQ,. There erist two node disjoint paths P, end
P such that (1) Py joinsu tov, (2) P, joinsx toy, and (3) P,UP, spans
AQ,.

We can generalize Theorem 2 by including the case that x = y. Suppose
that x = y. By Theorem 1, there is a hamiltonian path P between u and
v in AQ, — {x}. Thus, we have the following theorem.

Theorem 3. Let n > 4. Let u, v, and x be three distinct nodes of AQ,
and y be any node of AQn — {u,v}. Then there exist two node disjoint
paths P, and P, such that (1) P, joins u to v, (2) P, joins x to y, and
(8) P, U P, spans AQ,.

Let f be the function on V(AQ),,) defined by f(u) = u if (u),=0 and
f(u) = (u)*~)~ if otherwise. The following statement can be proved
easily.

Theorem 4. The function f is an isomorphism of AQy into itself.

3 The k*-container of AQ,

Lemma 2. Letn > 4 and k < 2n—3. Suppose that AQ,_, is k*-connected.
Let u and v be two distinct nodes of AQ, with (u)n, = (V)n. Then there is
a (k + 2)*-container of AQn between u and v.
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Proof. Without loss of generality, we assume that u € AQY. Hence,

v € AQY. Let {P,,P,,..., P} be a k*-container of AQ% between u and
{i]

v. Since I'IV(AC,{ )1_2] +1 > 3, one path in {P,, P,,..., P}, say P, is of

length at least three.

Case 1. v # (u)»=1~_ Obviously, {(u)*,(v)"~} and {(u)*~, (v)"}
are two pairs of four distinct nodes of AQL. By Theorem 2, there ex-
ist two node disjoint paths @; and Q2 such that (1) Q; joins (u)™ to
(v)™, (2) Q2 joins (u)™ to (v)*, and (3) @ U Q, spans AQL. We set
Pret1 = (u,(u)", @1, (v)*™,v) and Pri2 = (u,(u)",Q, (v)*,v). Obvi-
ously, {P, P, ..., Pxt2} forms a (k + 2)*-container of AQ, between u and
V.

Case 2. v = (u)(®" 1~ Since I(P;) > 3, we can write P as (u,x,y, P,v)
where x and y are the internal nodes of Py. Since v = (u)(®~1~, ((u)",
(v)*) € E(AQ}). Note that (v)* = ((u)*)»~)~, By Lemma 1, there
is a hamiltonian path Q of AQ} — {(u)”,(v)"} joining the nodes (x)"
and (y)*. We set P} as (u,x, (x)*,@Q,(¥)",¥,P,v}, Pey1 as (u,(u)",v),
and Pi4z as (u,(u)®>,v). Then {P,,Ps,...,Pi—1, P{, Pcy1, Pct2} forms
a (k + 2)*-container of AQ, between u and v. a

Lemma 3. Letn > 4 and k < 2n—3. Suppose that AQ,_ is k*-connected.
Let u and v be two adjacent nodes of AQn with (u), # (V)n. Then there
is a (k + 2)*-container of AQ, between u end v.

Proof. Without loss of generality, we assume that u € AQ%. By The-
orem 4, we can assume that v = (u)” € AQ}. Let {P,,P,,...,P} be a
k*-container of AQ? between u and (v)™~. Without loss of generality, we
can assume that {(P)) > I{(P) > --- 2 I(Pk). Now, we write P; as (u =
Qiys iz - - » Diep,y» (V)™) for every 1 <4 < k. Obviously, I(F;) 2 2 for ev-
eryl <i < k—1. Weset P/ as (U =i,, Qiz; - - -, Qirgpyy» (Qigge) )™ -+ (ai,)™,
(qi;,)* =v) forevery 1 <4 < k—1, P{ as (U= Qx,,Qhzs - - Ay » (V)™

v), Ié+1 as (u, ()™, (ch(Pk))"’ R (qkz)": (qx,)" = V), and PI(:+2 as
(u,v). Then {P},P;,..., P, ,} forms a (k+2)*-container of AQ, between
u and v. 0

Lemma 4. Let n > 5 and k be any two positive integers with 3 < k <
2n — 4. Suppose that AQn-1 is k*-connected. Let u and v be any two
nodes of AQn with (u,v) ¢ E(AQy) and (u), # (V)n. Then there is a
(k + 1)*-container of AQ, between u and v.

Proof. Without loss of generality, we assume that u € AQS, v € AQ},
and v ¢ {(u)”,(u)®}. Since AQ? is isomorphic to AQn-1, there is a
k*-container {Q, Q2,...,Qi} of AQ? between u and (v)". Assume that
U@1) < UQ2) < -+ < U(Qy). Note that I(Q1) > 1 if (u,(v)") ¢ E(AQY).
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For every 2 < i < k, we write Q; as (u, H;, x;,(v)") where H; is a path
joining u and x; and I(H;) > 1. We set F = {(x3)", (x4)",...,(xx)"}.
Since |F| = k—2 < 2n—6, by Theorem 1, there is a hamiltonian path R of
AQ} — F joining (u)™ to (x2)". We can write R as ((u)", R, v, Rz, (x2)").
We set

P = (u,Ql,(V)n,V),

P = (u’ Hg,XQ,(XQ)", R;l:v):
P, = (u,H;x;, (x;)" v)forevery3 <i<k, and
Peyr = (u,(u)*,Ry,v).

Then {Py, Ps,..., Pry1} forms a (k+ 1)*-container of AQ,, between u and
v. O

Lemma 5. Let n > 4. Suppose that x and y are two distinct nodes of AQ,
withdag, (x,y) = 2. Then {(x)"~%, (x)*=D~} n {(y)*~!, (y)""~D~} = 0.

Proof. Let x = zp,2p—3...71 and ¥ = ynYn-1...y1 be two distinct
nodes in AQ,. We prove this lemma by contradiction. Assume that
("1 € {(y)*,(¥)™"V~}. Suppose that (x)*! = (y)*~'. Then
x = y. Hence, daq,(x,y) = 0. Suppose that (x)*~! = (y)(®~1)~. Then
(x)*=D~ =y and daq, (x,y) = 1. We get a contradiction. Thus, (x)"~1
¢ {(y)"1, (y)*~D~}. Similarly, (x)*~D~ ¢ {(y)"~?, (y)*~V~}. Thus,
{G)™1, =D} 0 {(y)m1, (v) D~} =0 O

Lemma 6. The AQ, is 3*-connected if n > 2.

Proof. Since AQ; is isomorphic to K4, AQ- is 3*-connected. Thus, we
assume that n > 3. We need to find a 3*-container of AQ,, between any
two nodes u and v of AQ,. Without loss of generality, we assume that
u e AQL.

Case 1. v € AQY. By Theorem 1, there is a 2*-container {P;, P,} of
AQ? between u and v. Again, by Theorem 1, there is a hamiltonian path
H of AQ) joining (u)™ to (v)*. We set P; as (u, (u)*, H, (v)",v). Then
{P1, P, P;} forms a 3*-container of AQ,, between u and v.

Case 2. v € AQL. Obviously, either (u)® # v or (u)™ # v. Without
loss of generality, we assume that (u)® # v. Note that (v)® # u. Since
[V(AQY)| > 4, there exists a node x € V(AQY) — {u, (v)"}. By Theorem
1, there is a hamiltonian path H of AQ? joining x to (v)". Moreover, there
is a hamiltonian path R of AQ) joining (u)® to (x)". Obviously, we can
write H as (x, H,u, H,(v)") and write R as ((u)”, Ry, v, Ry, (x)"). We
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set
Pl = (u,(u)",Rl,v),

P, = (uH{lx,(x)*,R;',v), and
P3 (us H2s (v)n’v).

Then {P,, P, P3} forms a 3*-container of AQ, between u and v.
Thus, the lemma is proved. O
Lemma 7. The AQj3 is super spanning connected.

Proof. By Theorem 1, AQj is i*-connected for 1 € i < 2. By Lemma
6, AQg3 is 3*-connected. Let u and v be any two distinct nodes of AQs3.
Since AQjs is node transitive, we can assume that u = 000. By Theorem
4, we can assume that v € {001,011,100,101}. With the following table,
AQ3 is 4*-connected.

v = 001 {c00, 011,5‘51) v = 011 {000, 011)
{000, 010, 001} {000, 001, 011)
{000, 100, 101, 001) {000, 010, 011)
{000, 111, 110, 001) {000, 100, 101, 110, 111, 011)

v = 100 1000. 100) v = 101 {000, 001, 101}
(000, 601, 101, 100) (000, 100, 101)
{000, 011, 111, 100) {000, 010, 101)
{000, 010, 110, 100) {000,011, 111, 110, 101)

Since k(AQ3) = 4, AQ3 is super spanning connected. O

Lemma 8. The AQ4 is super spanning connected.

Proof. By Theorem 1 and Lemma 6, AQ4 is i*-connected for 1 < < 3.
Let u and v be any two distinct nodes in AQ4. Since AQ, is node transitive,
we assume that u = 0000. We need to find a k*-container of AQ4 between
uand v foreveryd <k < 7.

Case 1. v € AQY. By Lemma 2 and Lemma 7, there is a k*-container of
AQ4 between u and v for 4 < k < 6. The 7*-container of AQ4 between u
and v € {0001,0010,0011, 0100, 0101,0110, 0111} is listed below.

v = 0001 | (0000, 6001}

{0000, 0010, 0001)

(0000, 0011, 0001)

(0000, 0100, 0101, 0001)

(0000, 0111, 0110, 0001}

(0000, 1000, 1010, 1011, 1001, G001}
(0000, 1111, 1101, 1100, 1110, 0001)
v = 0010 | (0000, 0010)

(0000, 0001, 0010)

(0000, 0011, 0010)

(0000, 0100, 0110, 6010)

(0000, 0101, 0111, 0010)

(6000, 1000, 1001, 1011, 1010, 0010)

0000, 1111, 1110, 1100, 1101, 0010)
v = 0011 éo"o'oﬁ. ©O11)

(ooco, 0001, 0011)

(0000, 0010, 0011)

{0000, 0100, CO11)

{6000, 0111, 0011)

{6000, 1000, 1001, 1010, 1011, 0011)

{0000, 1111, 1110, 0110, 0101, 1101, 1100, 0011)
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{6000, 0100
{0000, 0111, 0100)

(6000, 0011, 0100)

{6000, 6010, 0110, 0100)

(0000, 0001, 0101, 0100)

(0000, 10€0, 1001, 1010, 1011, 0100)

(0000, 1111, 1110, 1101, 1100, 0100
6060, 6001, 6101) L 1100.2100)

0000, 0010, 0101)

0000, 0100, 0101)

0000, 0111, 0101)

0000, 1111, 1101, 0101)

6000, 0011, 1100, 1110, 0110, 0101)

0000, 1000, 1001, 1011, 1010, 0101)

0600, 0001, 0110

0000, 0010, 0110)

0000, 0100, 0110)

0000, 0111, 0110)

0000, 1000, 1001, 0110)

0000, 0011, 1011, 1010, 0101, 0110)

0000, 1111, 1101, 1100, 1110, 0110)

6000, 0111)

(0000, 0011, 0111)

(0000, 0100, 0111)

(6000, 1000, 0111)

(0000, 1111, 0111)

(0000, 0011, 1010, 1101, 0101, 0111)

({0000, 0001, 1001, 1011, 1100, 1110, 0110, 0111)

Case 2. v € AQ} and v € {1000,1111}. By Theorem 4, we can assume
that v = 1000. By Lemma 3 and Lemma 7, there is a k*-container of AQ,
between u and v for 4 < k < 6. The 7*-container of AQ4 between u and
v is listed below.

v = 0100

v = 0101

v = 0110

v = 0111

G0G0, 1000)

(0000, 0111, 1600)

(occo, 1111, 1000)

(6000, 0100, 1100, 1600)

({0000, 0011, 1011, 1000)

{0000, 6010, 0110, 1110, 1010, 1600}
{0000, 6001, 0101, 1101, 1001, 1060}

Case 3. v € AQ! and v ¢ {1000,1111}. By Theorem 4, we can assume
that v € {1001,1010,1011}. Since v ¢ {(u)?, (u)*~}, u ¢ {(v)", (v)*~}.
By Theorem 1, there is a hamiltonian path R of AQJ joining (V)" to
(v)™~. Moreover, there is a hamiltonian path H of AQ} joining (u)® to
(u)™. Without loss of generality, we write R = {(v)", Ry, u, Rz, (V)™™)
and H = ((u), Hy,v, Hp, (u)™). We set P, = (u, R}, (v)*,v,), P, =
(u,Rg,(V)™,v), P3 = (u,(u)*,H;,v), and Py = {u,(u)™,H;!, v).
Then {P,, P, P3, P4} forms a 4*-container of AQ, between u and v. The
5*-container, 6*-container, and the 7*-container of AQ4 between u and v
are listed below.

v 5" -contoiner 6" -container
1001 0000, 0010, , 1001) (“00. 0010, 1101, 1001)
{0000, 0100, 1011, 1001} {0co0, 0100, 1011, 1001)
{co00, 0011, 1100, 1000, 1001) {0C00, 0111, 0110, 1001)
{0000, 0001, 0101, 1010, 1001) {0000, 1111, 1110, 1001)
{0000, 0111, 1111, 1110, 0110, 1001) {0000, 0001, 0101, 1010, 1001)
{0000, 0011, 1100, 1000, lOOl!
1010 {0000, 1111, 1101, 1010} {00¢0, 0001, 1001, 1010
{0000, 0111, 0101, 1010} {0000, 0011, 1011, 1010)
{0000, 0100, 1100, 1000, 1010) {0000, 0111, 0101, 1010)
{0000, 0010, 0110, 1110, 1010) {0000, 1111, 1101, 1010)
(6000, 0001, 0011, 1011, 1001, 1010) (0000, 0010, 0110, 1110, 1010)
{0000, 0100, 1100, 1000, 10102
1011 (0000, 1000, 1011) {0000, 0011, 1011
{0000, 0010, 1101, 1100, 1011) {0000, 1000, 1011)
{0000, 0100, 0101, 1010, 1011) {0000, 0001, 1110, 1111, 1011)
{0000, 0111, 0110, 1001, 1011) {cooco, 0010, 1101, 1100, 1011)
{00C0, 0011, 0001, 1110, 1111, 1011) {0000, 0100, 0101, 1010, 1011)
{0000, 0111, 0110, 1001, 1011)
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v 7" -container

1001 10000. 6601, 1001)
{6000, 1000, 1001)
{0000, 0010, 1010, 1001)
{0000, 1111, 1011, 1001}
{0000, 0111, 0110, 1001)
{0000, 0011, 1100, 1110, 1001)
0000, 0100, 0101, 1101, 1001}
1010 {0000, 0010, 1010)
(0000, 1600, 1010)
(0000, 0001, 1001, 1010)
(0000, 0011, 1011, 1010)
{0000, 1111, 1110, 1010)
{0000, 0100, 1100, 1101, 1010}
{0000, 0111, 0110, 0101, 1010)
1011 {0000, 0011, 1011)
{0000, 0100, 1011)
(0000, 1000, 1011)
(0000, 1111, 1011)
(0000, 0001, 0101, 1010, 1011)
{0000, 0010, 1101, 100}, 1011)
(0000, 0111, 0110, 1110, 1100, 1011)

Thus, this lemma is proved. O
Lemma 9. The AQs is super spanning connected.

Proof. By Theorem 1 and Lemma 6, AQs is i*-connected for 1 <¢ < 3.
Let u and v be any two distinct nodes in AQs. We need to find a k*-
container of AQs between u and v for every 4 < k < 9. Since AQs is node
transitive, we assume that u = 00000 € AQ2. We have the following cases.

Case 1. v € AQ?. By Lemma 2 and Lemma 8, there is a k*-container of
AQs between u and v for every 4 < £ < 9.

Case 2. v € AQ!} and v € {10000,11111}. By Lemma 3 and Lemma 8,
there is a k*-container of AQs between u and v for every 4 <k < 9.

Case 3. v € AQ! and v ¢ {10000, 11111}. By Theorem 4, we assume that
v € {10001,10010, 10011,10100,10101,10110,10111}. By Lemma 4 and
Lemma 8, there is a k*-container of AQs between uand v for4 <k < 7.
The 8*-container and the 9*-container of AQs between u and v are listed
below.

v 8~ inor
10001 | (00000, 06001, 10001)

{00000, 10000, 10001}

{60000, 00010, 16010, 10001)

(60000, 00010, 10010, 10001)

{00000, 01111, 01101, 01100, 01110, 10001)

{00000, 11111, 11101, 11100, 11110, 10001)

{00000, 01000, 01001, 01011, 01010, 11010, 11000, 11011, 11001, 10001)
{00000, 00100, 00110, C0101, 00111, 10111, 10101, 10100, 10110, 10001)
10010 00000, 60010, 10010)

{00000, 10000, 10010)

(00000, 60001, 10001, 10010)

{00000, 00011, 10011, 10010}

{0c000, 11111, 11110, 11100, 11101, 10010)

(00000, 01111, 01110, 01100, 01101, 10010)

{00000, 01000, 01010, 01011, 01001, 11001, 11011, 11000, 11010, 10010)

(00000, 60100, 00110, 00111, 00101, 10101, 10111, 10100, 10110, 10010,
10011 (00000, 00011, 10011)

{00000, 10000, 10011)

{00000, 06001, 10001, 10011)

{00000, 00010, 10010, 10011)

(00000, 11111, 11101, 11110, 11100, 10011)

(00000, 01111, 01101, 01110, 01100, 10011)

(00000, 01000, 01001, 01011, 01010, 11010, 11000, 11001, 11011, 10011)

{00000, 00100, 00110, 00111, 0010}, 10101, 10111, 10110, 10100, 10011)
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10101

10100

60000, 10000, 10100, 10101}

(000c0, 0001, 10001, 10101)

(00000, 00010, 10010, 16010, 10101)

(00060, 00011, 10011, 10111, 10101)

(00000, 11111, 11110, 11100, 11101, 10101)
(00000, 01000, 11600, 11001, 11011, 11010, 10101)
(0006C0, 60100, 00101, 60111, 00110, 10110, 10101)

500000. 01111, 01101, 01100, 01110, 01001, 01011, 01010, 10101)
000C0, 10000, 10100)

(00000, 00011, 10011, 10100)
(00000, 00001, 10601, 10101, 10100)

{000C0, 00010, 10010, 10110, 10100)

(00000, 01000, 01010, 01601, 01011, 10100)
(000c0, 01111, 01101, 01110, 01100, 11100, 10100)
(60000, 00160, 00101, 00110, 00111, 10111, 10100)

10110

(00000, 11111, 11101, 11110, 11001, 110¢0, 11010, 11011, 10100)
50000, 60001 10001 10110)

(00000, 10000, 10100, 10110)

(00000, 00011, 10011, 10110)

(00000, 60010, 10010, 10110)

(00600, 11111, 11101, 11100, 11110, 10110)

(00000, 00100, 00110, 00111, 00101, 10101, 10110)

(00000, 01111, 01101, 01100, 01110, 01010, 01001, 10110)
(00000, 01000, 01011, 11011, 11010, 11660, 11001, 10110)

w1

00000, 11111, 10111)

(00000, 01000, 10111)

(00000, 10000, 10111)

(00600, C0111, 10111)

(00000, 00011, 10011, 10111)

(00000, 00001, 00101, 00100, 00110, 10110, 10100, 10111)

{00000, 00010, 01010, 01011, 01001, 11001, 11011, 11010, 11000, 10111)

{08000, 01111, 01101, 01100, 01110, 11110, 11100, 11101, 10010, 10001, 10101, 10111)

v
10001 | (00600, 60001, 10001}

500000. 01000, 01001, 01011, 01010, 11010, 11000, 11011, 11001, 10001)
10010 00000, 10, 1001

9~ .containoer

(00000, 16000, 10001)
(00000, 00011, 10011, 10001)

(060000, 00010, 10010, 10001)

(60000, 00100, 60110, 00101, 10101, 10001)
(06000, 00111, 10111, 10100, 10110, 10001)
(00000, 01111, 01101, 01100, 01110, 10001)
(00000, 11111, 11101, 11100, 11110, 10001)

{00000, 10000, 10010)

(00000, 00001, 10001, 10010)

{00000, 00011, 10011, 10010)

{00000, 00100, 00110, 00101, 10101, 16010}

{00000, 00111, 10111, 10100, 10110, 10010)

(00000, 01111, 01110, 01100, 01101, 16010)

(600060, 11111, 11110, 11100, 11101, 10010)

{000C0, 01000, 01010, 01011, 01001, 11001, 11011, 11000, 11010, 10010)
10011 60000, 00011, 10011)

{00000, 10000, 10011}

{00000, 00001, 10001, 10011)

{06000, 00010, 20010, 10011}

(60000, 00111, 00101, 10101, 10111, 10011)

{00000, 01111, 01101, 01110, 01100, 10011)

(00000, 11111, 11101, 11110, 11100, 16011}

{00000, 00100, C0110, 10110, 10100, 16011)

{00000, 01000, 01001, 01011, 01010, 11010, 11000, 11001, 11011, 10011)

300000. 01111, 01101, 01100, 01110, 01001, 01011, 01010, 10101)
10100 00000, 16000, 1010

10101 00000, 00100, 00101, 10101)

{00000, 00111, 60110, 10101)

{00000, 10000, 10100, 10101)

{00000, 00001, 10001, 10101)

(00000, 00010, 10010, 10010, 10101)

{00000, 60011, 10011, 10111, 10101)

{00000, 11111, 11110, 11100, 11101, 10101)
{00000, 01000, 11000, 11001, 11011, 11010, 10101)

(60000, 00100, 101C0)

(00000, 00111, 10111, 10100)

(00000, 00011, 10011, 10100)

(00000, 06010, 16010, 10110, 10160)

(00000, 06001, 16001, 10101, 10160)

(00000, 01000, 01010, 01601, 01011, 10100}

(00000, 11111, 11101, 11110, 11001, 11000, 11010, 11011, 10100)
(00000, 01111, 01101, G0101, 00110, 01110, 01100, 11100, 10100}
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10110 | (00000, 60100, 00110, 10110)
(00000, 00011, 10011, 10110)
(00000, 10000, 10100, 10110)
(00000, 00001, 10001, 10110)
({00000, 00010, 10010, 10110)
(00000, 00111, 00101, 10101, 10110)
(00000, 11111, 11101, 11100, 11110, 10110)
({00000, 01111, 01101, 01100, 01110, 01010, 01001, 10110)
(00000, 01000, 01011, 11011, 11010, 11000, 11001, 10110}
10111 | (00000, 11111, 10111)
{00000, 01000, 10111)
(60000, 16000, 10111)
{00000, 00111, 10111}
(00000, 00011, 10011, 10111)
(00000, 00100, 10100, 10111)
{00000, 0G00I, 60101, 00110, 10110, 10111)
(00000, 00010, 01010, 01011, 01001, 11001, 11011, 11010, 11000, 10111)
(00000, 01111, 01101, 01100, 01110, 11110, 11100, 11101, 10010, 10001, 10101, 10111)

Hence, this lemma is proved. 0O
Lemma 10. The AQ., is super spanning connected if n 2> 4.

Proof. We prove this lemma by induction. By Lemma 8 and Lemma 9,
AQ4 and AQs are super spanning connected. Thus, we assume this lemma
holds on AQ; for every 4 <t < n with n > 6.

By Theorem 1 and Lemma 6, AQ,, is k*-connected for 1 < k < 3. Let
u and v be any two distinct nodes in AQn. We need to find a k*-container
for 4 <k <2n—1in AQ, between u and v.

Suppose that (u), = (v)n. By Lemma 2, there is a k*-container of AQn
between u and v for every 4 < k < 2n — 1. Suppose that (u), # (V) and
(u,v) € E(AQ,). By Lemma 3, there is a k*-container of AQ, between
u and v for every 4 < k < 2n — 1. Thus, we only need to consider the
case that (u), # (v)n and (u,v) ¢ E(AQ,). Without loss of generality,
we assume that u € AQ%°. By Theorem 4, we can assume that v € AQLP.

Suppose that 4 < k < 2n — 3. By induction hypothesis, AQY and AQ}
are i*-connected for 3 < 7 < 2n — 4. By Lemma 4, there is an (i + 1)*-
container of AQ,, between u and v with (u), # (v), and (u,v) ¢ E(AQ,).
Hence, there is a k*-container of AQ, between u and v with (u), # (V)
and (u,v) € E(AQy) for4 <k <2n-3.

Suppose that 2n — 2 < k < 2n — 1. We have two cases: (u,(v)*) ¢
E(AQS®) and (u, (v)*) € E(AQRY).

Case 1. (u,(v)*) ¢ E(AQ%%). By induction hypothesis, there is a
(2n — 5)*-container, {Q1,Q@2,..., @2n—s}, of AQY? between u and (v)™.
Since AQ%? is (2n — 5)-regular, we can rearrange the indices so that Q;
can be written as (u,U;, w;, (v)") for 1 < ¢ < 2n — 5 with {wy,we} =
{(()™)% ((v)")®} and wy = ((v)*)*. Obviously, d,g00(Wi, w;) = 2 and
dagro((wi)™, (w;)") 2 2 for 1 < i #j <3 Let F = {(w;)" | 4 <
j £ 2n — 5}. Obviously, |F| = 2n — 8. By Theorem 1, there is a hamil-
tonian path H of AQL? — F between (u)® and (ws3)". Since the neigh-
bors of v in AQL? — (F U {(w3)"}) are (w;)" and (w2)™, either H =
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((0)*, Ry, X, Ra,y, v, (wW3)®) or H = ((u)™, $1,X,V,y, S2,(W3)") where {x,
vy} = {(w1)"*, (w2)"}. Without loss of generality, we set x = (w;)* and
¥y = (w2)*. We set

P = (uUp,w,(v)",v)and

P, = (u,U;,w;, (w;)",v)forevery2<i<2n-5.

Suppose that H = ((u)®, Ry, (w1)", Ry, (w2)",v, (w3)"). Let j be the
length of Ry. We can write R; as (ro = (w1)",ry,...,r; = (w2)"). Since
dyqro((W1)™,(W2)*) > 2, j > 2. Since the neighbors of v in AQL® —
F are (w1)", (w2)", and (w3)", d oro( rj-1, v) = 2. By Lemma 5,
{rj=1)* L, (rj=1)* D~} 0 {(V)*L, (V)(*~D~} = §. Thus, there exists
a node q in {(rj—1)""?, (r;=1)®"V~}= {(u)*~,(v)""?, (v)*=D~}. By
Theorem 1, there exists a hamiltonian path T of AQl! between q and
(v)*~1. Since r; # v, (r))™ # (vV)™. Weset g3 = (u)"! and gp =
()™=~ if (r))™ = (u)»~)~, and we set g; = (u)(*~V~ and g, =
(u)™=! if otherwise. Thus, (v)™~, g1, and g are three distinct nodes of
AQ%! and (r))™" is a node of AQ%! — {(v)"~,g1}. By Theorem 3, there
exist two node disjoint paths X; and X, of AQ%! such that (1) X; joins
g1 to (V)™ (2) X joins g2 to (r;)"™~, and (3) X; U X, spans AQ%1. We
set

P2n-4 = (ua (u)n, Rls (Wl)na V),
P2n—3 = (ll, g1, le (v)nm,v)’ and
P2n-2 = (u7g29X2’(rl)n~,rl:---’rj—llana (v)n—l’v).

Then {P1, Ps,..., Pan—2} forms a (2n — 2)*-container of AQ,, between
uand v.

Obviously, {q,(v)*~!} and {(u)™,(v)®~1~} are two pairs of four
distinct nodes of AQL!. By Theorem 2, there exist two node disjoint paths
Ty and T of AQL?! such that (1) T} joins q to (v)*~?, (2) T3 joins (u)™
to (v)(®=1~, and (3) T} UT> spans AQL!. We set

P2’n—2 = (ll, g2’X2! (rl)n~1 T1..3Ti-1,4, Tl)(v)n—l)v) and
Pén-l = (u, ()", T3, (v)(n_l)’v’ v).
Therefore, { Py, P,, ..., Pon—3, P4y _o, Pj,_,} forms a (2n—1)*-container

of AQ,, between u and v. See Figure 2 for an illustration.

Suppose that H = ((u)”, S1,(w1)?, v, (W2)", S2,(W3)™). Let j be the
length of S;. We can write Sz as (so = (W2)",8),...,8; = (w3)").
Since d qoro{(w2)", (ws)") = 2, j > 2. Since the neighbors of v in

172



("
1
7 f F, o n
\_.-, 4 _\(w,)

A f?(w')"
\\\ F

A 1 v
4g;° /A" ]

|
{
!

7
gy L
/ AQn . I‘(‘&)n-l
/ . . (v

(¥) // . - (‘g‘,,,,,_

.e_;_ el o
(u)(n 1) i q (

-t

)

Figure 3: Illustration for Lemma 10, Case 1

AQLO—F are (w)", (w2)™, and (W3)", do1.0( sj—1,V) = 2. By Lemma 5,
{(s—1)"1, (8-1)™~ D~} N {(v)*~1, (v)*~1~} = 0. Thus, there exists a
node q in {(sj_1)""2, (8j-1)™~V~}= {()*, (v)*~!, (v)*~1~}. By The-
orem 1, there exists a hamiltonian path T of AQL! between q and (v)*~1.
Since 51 # v, (51)™ # (v)™~. We set g1 = (u)""! and go = ()"~
if (s1)™ = (u)™=D~, and we set g1 = (u)®~~ and gz = (w)"~! if
otherwise. Thus, (v)™, g1, and g2 are three distinct nodes of AQ%! and
(s1)™ is a node of AQ%! — {(v)*~,g1}. By Theorem 3, there exist two
node disjoint paths X; and X of AQ%? such that (1) X, joins g; to (v)"~,
(2) X joins ga to (s1)™, and (3) X1 U X2 spans AQ%!. Now, we set

Py = (u,(u)*, S, (w1)",v),
Py—z = {(u,g1,X1,(v)"~,v), and

Pz = (u,g2,X2,(51)",81,..,85-1,4 T, (v)*}

, V).
Then {Py, Ps,. .., Pan—2} forms a (2n — 2)*-container of AQn between
u and v.

Obviously, {q,(v)""1} and {(u)™~,(v)("~1)~} are two pairs of four
distinct nodes of AQL!. By Theorem 2, there exist two node disjoint paths
T, and Ty of AQL! such that (1) T} joins q to (v)*~1, (2) T2 joins (u)™~
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to (v)(*~1~ and (3) T} UT: spans AQL!. We set

PZIn—Z = (u’ g2, Xza (sl)nN, 81,...,8j-1,9, Tl» (v)n—l’v) and

2,11-1 = (u,(u)n~aT2»(v)(n-l)~sv)'

Therefore, { P\, Py, ..., Pon—3, P3n_o, Pjp_1} forms a (2n—1)*-container
of AQ, between u and v.

Case 2. (u,(v)") € E(AQ%?). By induction hypothesis, there is a (2n —
5)*-container, {Q1,Q2,--., Q2n—s}, of AQ%? between u and (v)*. Let wo
and ws be two nodes in {((v)™)2,((v)®)3, ((v)*)*} — {u}. Since AQ%°
is (2n — 5)-regular, we can rearrange the indices so that @Q; = {u, (v)")
and @Q; can be written as (u, U;, w;, (v)*) for 2 < i < 2n — 5. Obviously,
dygeo(we,w3) > 2 and dygi0((w2)", (W3)*) 2 2. Let F = {(w;)" |
4 < j £ 2n — 5}. Obviously, |F| = 2n — 8. By Theorem 1, there is a
hamiltonian path H of AQL° — F between (u)" and (w3)®. Since the
neighbors of v in AQL? — (F U {(w3)"}) are (u)" and (w3)", either H =
((u)*, v, (w2)", R, (w3)") or H = ((u)?, S, (W)™, v, (w3)"). We set

P = (u: (v)n’v),
P;
P2n—4

(u,U;, wi, (w3)", v) forevery 2 < i < 2n -5, and

(u, (u)", v).

Suppose that H = ((u)®, v, (w2)", R, (w3)"). Let j be the length of
R. We can write R as (ro = (w2)",...,r; = (w3)"). Since |V (AQ}?) —
{()", (w2)",...,(Wan_5)"}| = 2 when n > 6, j > 3. Since the neigh-
bors of v in AQLO(v) — F are (u)?, (w2)", and (W3)", d4o10(rj-1,V) =
2. By Lemma 5, {(rj-1)""}, (rj=1)®™~1~} n {(v)*~1, (v)*-D~} = 0.
Thus, there exists a node q in {(rj—1)"", (rj—1)®"D~}={(w)™, (v)""},
(v)(»=1~}. By Theorem 1, there exists a hamiltonian path T of AQL!
between q and (v)™~1. Since ry # v, (r;)™ # (v)*~. We set g; = (u)*~!
and gz = (W)=~ if (r;)™ = (0)*~V~, and we set g; = (u)(®~1~ and
g2 = (u)*! if otherwise. Thus, (v)™~, g1, and g, are three distinct nodes
of AQ%! and (r1)™" is a node of AQ%! — {(v)*~, g1}. By Theorem 3, there
exist two node disjoint paths X; and X5 of AQ%! such that (1) X; joins
g to (v)™~, (2) X joins gz to (r1)™~, and (3) X; U X, spans AQ%1. We
set

PZn—3 = (u: glela (V)n~»v) and
P2n-2 = (ua g2, X21 (rl)n~1 ry,...,rj-1,9, Ta (V)n‘lrv)‘

Then {P, P, ..., Pan—2} forms a (2n — 2)*-container of AQ, between
u and v.
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Obviously, {q,(v)*~1} and {(u)"~,(v)*~D~} are two pairs of four
distinct nodes of AQX!. By Theorem 2, there exist two node disjoint paths
T) and T> of AQL? such that (1) Ty joins q to (v)*~1, (2) T2 joins (u)™~
to (v)®=1~, and (3) T} U T, spans AQL!. We set

Py o = {(u,g2, X2, ()", r1,..., 71,9, T2, (V)""1,v) and
Therefore, {P1, Py, ..., Pon—3, P, _s, P3,_,} forms a (2n—1)*-container

of AQ,, between u and v. See Figure 3 for an illustration.

NOS

7420 | BN VAN

o [ | 4o i Xac i
y Agy! . /é)n-f

(0]e;

[
)"

- i "
(“)(n 1) 1

(u)n-l

Figure 4: Illustration for Lemma 10, Case 2

Suppose that H = ((u)®, S, (w2)*,v,(w3)"?). Let j be the length of
S. We can write S as (so = (0)”,...,s; = (w2)"). Since |V (4Q}°) —
{()*, (w2)™,...,(W2n—s)"}| = 2 when n > 6, j > 3. Since the neighbors
of v in AQLO(v) — F are (u)®, (w2)", and (w3)™, dagro(s1,v) = 2. By
Lemma 5, {(s1)*"1, (1)1~} n {(v)"~ !, (v)*~U~} = 0. Thus, there
exists a node q in {(s;)*"?, (1)~ }={(u)*, (v)*~1,(v)(*~1~}. By
Theorem 1, there exists a hamiltonian path T of AQL! between q and
(v)*~1. Since sj_1 # v, (8j—1)™ # (v)*~. We'set g; = (u)"~! and
g2 = ()D~ if (s,_,)™ = (u)»~D~, and we set g; = (u)»~V~ and
g2 = (u)" ! if otherwise. Thus, (v)™", g1, and go are three distinct nodes
of AQ%! and (sj—;)™ is a node of AQ%! — {(v)*~,g1}. By Theorem 3,
there exist two node disjoint paths X; and Xs of AQ%! such that (1) X;
joins g to (v)™~, (2) X2 joins g2 to (sj—1)™~, and (3) X, U X2 spans
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AQ%Y. We set

P2'n-3 = (u’ ghxl’(v)n~’v) and
Pz,._z = (ll, £2, Xz, (Sj—l)nNa 8j-1,...,81,9Q, T’ (v)n—l’ V)'

Then {Py, P,,..., Pay_3} forms a (2n — 2)*-container of AQ, between
u and v.

Obviously, {q,(v)*!} and {(u)*~,(v)("~1)~} are two pairs of four
distinct nodes of AQL!. By Theorem 2, there exist two node disjoint paths
T, and T3 of AQL! such that (1) T} joins q to (v)*~!, (2) T2 joins (u)™™
to (v)(®~1~ and (3) T} UT, spans AQL!. We set

P2In—2 = (u1g2)X2’ (Sj_l)n~,5j_1,. '-ssliquli(v)n_liv) and
P"‘,"n-l (u: (u)n~$T21 (v)(n—l)~, V)-

Therefore, { P, P2, ..., Pan—3, P},_o, P3,_,} forms a (2n—1)*-container
of AQ, between u and v.

It is easy to check that AQ; and AQ» are super spanning connected.
With Lemma 7, Lemma 8, Lemma 9, and Lemma 10, we have the following
theorem.

Theorem 5. The n-dimensional augmented cube AQ, is super spanning
connected.
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