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Abstract

A graph G is 1-extendable if every ege is contained in a perfect
matching of G. In this note we prove the following theorem. Let
d > 3 be an integer, and let G be a d-regular graph of order n with-
out odd components. If G is not 1-extendable, then n > 2d + 4.
Examples will show that the given bound is best possible.
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We shall assume that the reader is familiar with standard terminology
on graphs (see, e.g., Chartrand and Lesniak [2]). In this paper, all graphs
are finite and simple. The vertex set of a graph G is denoted by V(G). The
neighborhood Ng(z) = N(z) of a vertex z is the set of vertices adjacent
with z, and the number dg(z) = d(z) = |N(z)| is the degree of = in the
graph G. A d-regular graph G is a graph with the property that d(z) = d
for all vertices z € V(G). If X is a subset of the vertex set of a graph G,
then G[X] is the subgraph induced by X. A perfect matching of a graph G,
is a matching M in G with the property that every vertex is incident with
an edge of M. We denote by K, the complete graph of order n and by K
the complete bipartite graph with partite sets A and B, where |A| =7 and
|B| = s. If G is a graph and A C V(G), then we denote by ¢(G — A) the
number of odd components in the subgraph G — A.
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A graph G is p-extendable if it contains a set of p independent edges,
and every set of p independent edges can be extended to a perfect match-
ing. In 1980, Plummer (8] studied the properties of p-extendable graphs.

As an application of Tutte’s 1-factor theorem [9], Wallis [12] proved in
1981 the following result.

Theorem 1 (Wallis [12] 1981) Let d > 3 be an integer, and let G be
a d-regular graph without odd components. If G has no perfect matching,
then

IV(G)| > 3d +4 when d > 6 is even,
|[V(G)| = 3d + 7 when d > 3 is odd,
[V(G)| > 22 when d = 4.

For extensions and generalizations of Theorem 1, we refer the reader to
Zhao [13], Cacetta and Mardiyono [1], Volkmann [10] and Klinkenberg and
Volkmann [4], [5] and [6]. In this note, we prove an analogue to Theorem
1 for even order graphs which are not l-extendable. Our main tool is the
following characterization of 1-extendable graphs, which follows easily from
Tutte’s 1-factor theorem.

Theorem 2 (Little, Grant, Holton (7] 1975) A graph G is l-extendable
if and only if for any A C V(G)

(1) ¢(G - A) < |A] and
(2) ¢(G — A) = |A| implies that G[A] is an empty graph.

Proofs of Tutte’s 1-factor theorem as well as of Theorems 1 and 2 can
also be found in the book by Volkmann [11].

Theorem 3 Let d > 3 be an integer, and let G be a d-regular graph of
order n without odd components. If G is not 1-extendable, then n > 2d+4.

Proof. Suppose to the contrary that there exists a d-regular graph G
of order n < 2d + 2 without odd components which is not 1-extendable.
Then it follows from the hypothesis and Theorem 2 that there exists a
non-empty set A C V(G) such that g(G — A) > |A| + 1 or ¢(G — A) = | 4|
and G[A] contains an edge.

We call an odd component of G — A large if it has more than d vertices
and small otherwise. We denote by a and 8 the number of large and small
components of G — A, respectively. Since G is a d- regular graph without
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odd components, it is easy to see that there are at least d edges in G joining
each small component of G — A with A and at least one edge in G joining
each large component of G — A with A. The d-regularity of G therefore
implies
a+dB < djA|. (1)
Case 1. Assume that ¢(G — A) > |A|+ 1. Since n is even, the numbers
q(G — A) and |A| are of the same parity, and we deduce that

a+B=q(G-A)2|Al+2 (2)

Inequality (1) yields 8 < |A| and thus (2) leads to a > 2. Applying the
assumption n < 2d + 2, and using the fact that A # 0, we obtain the
contradiction

2d+2>n>|Al+a(d+1)+ B> |A|+2(d+1)>2d+2. (3)

Case 2: Assume that g(G — A) = |A| and G[A] contains an edge. This
implies that |A] > 2. If o > 2, then we arrive a contradiction as in (3).
In the case o = 0, we have 8 = |A|. Since there are at least d edges of
G joining each small component of G — A with A and at least one edge
in G[A], there exists at least one vertex in A of deree greater than d, a
contradiction to the d-regularity of G.

It remains the case that @ = 1 and thus there exists at least one small
component in G—A. If U is a small component of minimum order in G— 4,
then we observe that

VU)| 2d-|4]+1 (4)

and also
V{U)| >d-|A|+2 (5)

when d and |A| of different parity. Now our assumption n < 2d + 2 leads

to
2d+22>n 2> |Al+(d+1)+ (|4 - DIV(U)]. (6)

If |JA| > d + 1, then (6) yields the contradiction
2d+2>n>2d+2+ (A - DIVU)| > 2d+ 2.

Hence we assume in the following that 2 < |A| < d.

Subcase 2.1: Assume that d is odd. This implies that the large compo-
nent is of order at least d + 2, and thus our assumption n < 2d + 2 and (4)
yield the contradiction

2d+2>n |A] + (d+2) + (|A4] — DIV(U)]
|A] + (d+2) + [V(U)
Al +(d+2)+d—|A]+1

2d + 3.

v Iv v
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Subcase 2.2: Assume that d is even and |A| is odd. The assumption
n < 2d + 2 and (5) lead to the contradiction

2d+2>n > |A|l+(d+1)+ (4] - )V)
> A+ (d+1)+ V()]
> |Al+(d+1)+d—|A]+2

2d + 3.

Subcase 2.3: Assume that d and |A| are both even. If |A| > 3, then the
assumption n < 2d + 2 and (4) yield the contradiction

|4l +(d+1) + (Al - DIV V)|
|A] + (d+1) + 2V (V)]
|A] + (d+1) +2(d - |A| +1)
|Al+ (d+1) +d—|A] +2
2d + 3.

2d+2>n

v IV IV IV

Finally, let d be even, and let |A| = 2. Then inequality (4) shows that
[V(U)| 2 d -1, and as d is even, we deduce that |V(U)| = d — 1. Hence
there are at least 2(d — 1) edges in G joining U with A and at least one
edge in G joining the large component of G— A with A. Since the subgraph
G[A] contains also an edge, there exists at least one vertex in A of deree
greater than d, a contradiction to the d-regularity of G. This completes
the proof of Theorem 3. O

Remark 4 It is obvious that each 1-regular or 2-regular graph without
odd components is 1-extendable.

Example 5 Let d > 4 be an even integer. Let H; be a complete graph Kj
with vertex set z,y, let Hy be a complete graph K4, without an edge uv,
and let Hs be a complete graph K41 with vertex set {wy,ws,...,wq41}
without the edges of the path wyws...w4-;. Now we define the graph G
of order 2d + 4 as the disjoint union of Hy, H; and H3 together with the
edges uzx, vy, zw), ywg—1 and zw; as well as yw; for 2 < i < d— 2. The
resulting graph G is d-regular, however, the edge zy is not contained in a
perfect matching of G. This example shows that Theorem 3 is best possible
when d is even.

Example 6 Let d > 3 be an odd integer. Let H; be a complete graph
K> with vertex set z,y, let Ha be a complete graph Ky with vertex set
{u1,u2,...,uq}, and let H3 be a complete graph Ky, o with vertex set
{w1,wa,...,wgs2} without the edges of the path wyws, ... wy and without
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the edge wq41was+2. Now we define the graph G of order 2d + 4 as the dis-
joint union of Hy, Hy and Hj together with the edges yu; for 1 <i<d-1,
zug and zw; for 2 < j < d — 1. The resulting graph G is d-regular, how-
ever, the edge zy is not contained in a perfect matching of G. This example
shows that Theorem 3 is best possible when d is odd.

If d < dg(x) < d + k for each vertex « in a graph G, then we speak of
a close to regular graph or more precisely of a (d,d + k)-graph.

Observation 7 Let d > 3 be an integer, and let G be a (d, d + k)-graph of
even order n. If n < 2d — 2, then G is 1-extendable.

Proof. Let uv be an arbitray edge of G, and define the graph H =
G — {u,v}. Then H is a (d — 2,d + k) graph of even order such that
n(H) < 2d — 4. By the classical theorem of Dirac (3], H has a Hamiltonian
cycle. Consequently, the edge uv is contained in a perfect matching of G.
This implies that G is 1-extendable. O

Example 8 Let H = K, 4 be the complete bipartite graph. If we add
a further edge e to H, then the resulting graph of order n = 2d is a
(d,d + 1)-graph, and the edge e is not contained in a perfect matching of
G. This example shows that Observation 7 is best possible.
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