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Abstract

The graph P, is defined as the one obtained by taking b vertex-disjoint copies of
the path P.y; of length a, coalescing their first vertices into one single vertex labeled
u and then coalescing their last vertices into another single vertex labeled v. KM
Kathiresan showed that Pyr2m-1 is graceful and conjectured that P, is graceful
except when (a,b) = (2r +1,4s + 2). In this paper, an algorithm for finding another
graceful labeling of Ps..2 is provided, and Pa,3(2k+1) is proved to be graceful for all
positives r and k.
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1 Introduction

The problem of finding a graceful labeling of the vertices of a graph was
introduced by Rosa (1] in seminal paper in the mid-1960s and has since attracted
much attention. Suppose that G is a graph with g edges. A graceful labeling
of G is an injection f : V(G) — {0,1,2,--+,q} such that when the edge uv is
assigned the label |f(u) — f(v)|, the set of induced edge labels is {1,2,---,q}.
A graph that admits a graceful labeling is called graceful In [1], Rosa shows
that if all trees are graceful, then the so-called Ringel-Kotzig conjecture [2] is
true. Labeled graphs serve as useful models for a broad range of applications
such as: coding theory, X-ray crystallography, radar, astronomy, circuit design,
and communication network addressing(see [3] and [4] for details).

Over the intervening years, a number of variations on graceful labeling have
been proposed(see [5] for a comprehensive survey). In this paper, we shall
consider one such variation, introduced by KM Kathiresan [6] who used the
notation P, 4 to denote the graph obtained by identifying the end points of &
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internally disjoint paths each of length a . He conjecture P, is graceful except
when a is odd and b= 2 (mod 4). He has proved the conjecture for the case
that a is even and b is odd. Y S Yang proved the conjecture for the case when
both a and b are odd. The graphs P, 2. have already been proved to be
graceful by C Sekar and V Swaminathan in [7]. The specialty of this paper is
to provide a new technique for proving the gracefulness of Pa,,2, from which the
gracefulness of Py, 2(2k41) follows.

Firstly, in Section 2, we will describe how to denote the vertices of P, om
and construct an algorithm for finding the non-trivial graceful labeling of Py, 2,
and also examples r = 9,300 are given.

Secondly, from the graceful labeling of P, 2 given in section 2, we will prove
that Py a(2x+1) is graceful in Section 3.

2 Preliminary results

Let v}, vi,vd,---, v, denote the vertices of the ith path of length 2r of
Pay.2m, for all i,v§ = u,v, = v. For example, the vertices of Ps 4 so labeled is
illustrated by Fig 1.

Fig.l1 vertices of Ps,4

Let r € N, and f, : V(Per,2) — {0,1,:--,4r} be the graceful labeling of
graph Py, 2. We now label the vertices u,v,andvj;_, (1 < j < ri = 1,2)
firstly as follows:

fr(u) =0; fo(v) =2r;
fr(v3j) =4r—2(i—-1) (1<j<r)
fr(vd; ) =4r-2(i-1)-1 (1<j<r)

We describe below how to label the vertices v}; (1 < j <r —1;i=1,2).
Let

I = (f"(”%)» ff‘("%): f"(v})’ f"(”g)! ] ff(”ilx(r—l)):fr(vg(r-l))) .
For example, see Fig.2, fa is the graceful labeling of P, 2, and Is = (2,5,1,4).
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Fig.2 the graceful labeling f3 and Is

In order to get the graceful labeling £, we must find out the proper 2(r — 1)-
dimensional vector I, namely we must define f,-(v.:;j) (i=121<j<r~-1). A
useful observation is that no matter how we define f,.(v};), the f-(v3;_,) defined
above satisfy (for any i =1,2;1<j<r-1)

fr(”i;j-l) - fr(v;j) = fr(”;j+1) - fr(”i;j) +2;
fr(vii_1) > Fr(v3;);
fr(vh0) > fr(”i;j)-

Let Dg denote the set of induced edge labels |, i.e.
Dg = {fr(véj-l) - fr(”{’j)» fr(”:i’j—l) - f"(v;(j—])) ll <jisni=l, 2}-
={ar4r-1, 1,2} U { (k) - f,(vgj)|1 <i<r-Li=12}

U{#r(0haa) - Frloh) +21 <5 <r-13i=1,2}.
It follows that an approach to constructing graceful labeling f, of Py, 2 is to find
the proper f(v3;) (1<j<r—1;i=1,2)satisfying the following conditions:
PU: {fi(hy) - Flo)1<isr-1i=12)
={ar-anar-ai-1prgigr-1}
= {4r —4,4r —5,4r — 8,4r—9,---,8,7,4,3};
P2: 1< fr(vf)<2r-1 (1<j<r-Li=12)

Let M, = (m;;) be a (2r — 1) x (2r — 2) matrix, and my; = (4r — 1) — (i + 7).
For example, if » = 3, then

9 8 7 6
8 76 5
Mg=] 7 6 5 4
6 5 4 3
5 4 3 2

Clearly, 2 < m;; < 4r — 3. We consider how many elements equal to 4r — 4!
or 4r — 41 — 1 are there in the matrix M,. It is easily seen that the number
of elements equal to 4r — 4l , 4r — 4l — 1 is 4l — 2, 4{ — 1,respectively, where
1 €1 < r/2. And the number of elements equal to 4r—4l, 4r—4l—1is 4r—4l-1,
4r ~ 4] — 2 respectively, where (r +1)/2 <! < r—~ 1. If we can pair each column
j€{1,---, 2r — 2} with a distinct row ¢ € {1,---, 2r — 1} so that the set of the

(3, j)-entries of matrix M,. is the set {4r —4,4r—5,4r—8,4r-9,---,8,7,4, 3},
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i.e. there exist 2r — 2 distinct rows 4y, s, - - -, 42,2, such that

{mill,m,-,z, - ,m,.,,_,,(g,_z,} = {41‘ —4,4r—5,4r - 8,4r -9, ---,8, 7,4,3}.

then, clearly, we define f,(v};) as the exact row paired with the (2(j — 1) +4)-th
column. i.e. fr(v};) =1, where t =2(j — 1) +1.

Next we describe our algorithm (column first algorithm, CF)for finding out
the indices 43,42, -+, t2,~2 Which satisfy the required conditions.

CF algorithm:

Stepl(initialize) For the given integer r, construct (2r — 1) x (2r —2) matrix
M, = (m;), where m;; := (4r — 1) — (i + j); for j = 1 : (2r —2) do m,; = 0;
l:=1,A=(ay;) =M,

Step2(finding) For ! from 1 to r — 1, find the elements equal to 4r — 4! or
4r — 41 — 1 of the matrix A.

Step2.1 Firstly, find the elements equal to 4r — 4{ of the matrix A from
the first column to the last column. If we find 4r — 4l for the first time in the
column jo and row ip, then let hj, =14p and a;, ; =0, aij, =0 for all i and j.

Step2.2 Find the elements equal to 47 — 4! — 1 of the matrix A from the
first row to the last row. If we find 4r — 4! — 1 for the first time in the column
j1 and row 1,, then let hj, = i; and a;,,; = 0, a;5, = 0 for all ¢ and j, go to
Step2.3; If we can’t find 4r — 4l — 1 in the matrix A, go to Step2.4.

Step2.3 %, :=10, %5, =141, My := A, l:'=141. Ifl < r, go to Step2.1.

Step2.4 A = (ai;) := My, hj, = 0. Firstly, find the elements equal to
4r — 41 — 1 of the matrix A from the first column to the last column. If we find
4r — 4l — 1 for the first time in the column j, and row ia, then let h;, =iz and
ai,,; =0, a; j, = 0 for all 7 and j.

Step2.5 Find the elements equal to 4r — 4! of the matrix A from the
first row to the last row. If we find 4r — 4l for the first time in the column j3 and
row iz, then let h;, =43 and a;,,; =0, a;,j, = 0 for all  and j, go to Step2.6;
Otherwise, go to Step2.7.

Step2.6 ij, :=1g, i, :=13, M, ;= A, l:=1+1. Ifl <7, go to Step2.1.

Step2.7  Stop.

Step3 I, := (¢3,42,*-,%2r~2). Stop.

Theorem 1 CF algorithm can find out all the distinct rows iy,42,- -, 1372 of
the matriz M, satisfy

{m.-,l,m.-,z, . ,m,-,,_,,(z,_g)} = {4r —4,4r —5,4r - 8,4r ~9,---,8,7,4, 3}.

Proof When 1 <! < r/2, we know that there are 4/ — 2 elements of
the matrix M, equal to 4r — 41, and 4! — 1 elements of the matrix M, equal to
4r — 4l - 1. It is easily seen that we get ¢; = 2 and i3 = 1 at the very beginning
of the CF algorithm when we find 4r — 4 and 4r — 5. Suppose we have already
found 4r — 4,4r —5,.-- ,4r —4(l — 1),4r —4(l — 1) — 1, now we find 4r — 4l and
4r — 4l — 1. Clearly, here, there are at less (4l —2) —4(l— 1) — 1 = 1 elements of
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the matrix A equal to 4r — 4l left. So we can find 4r —4l forany 1 <I<r-1.
The problem is that whether we can find 4r — 4/ — 1 all the time. The only case
we cannot find 4r — 4{ — 1 is when all the columns and rows which contain the
elements equal to 47 — 4! — 1 have been endowed with 0. Since there are 4/ — 1
elements equal to 4r — 4l — 1 in the matrix M,, this case occurs if and only if
the following cases occurs:

(a) each of the preceding numbers 4r — 4,4r —5,---  dr —4(l - 1), 47 — 4(l -
1) — 1 have changed two of the elements equal to 4r — 4{ — 1 into 0. Namely,
altogether there are 4(! — 1) elements equal to 4r — 4l — 1 of the matrix M,
changed into 0. i.e. there are only (4! — 1) — (4L — 4) — 1 = 2 elements equal to
4r — 41 — 1 of the matrix A have been left when we find the elements 4r — 41.

(b) each of the preceding numbers 4r —4,4r ~5, -+, dr —4(l — 1),4r — 4(l -
1) — 1 has changed two of the elements equal to 47 — 4/ into 0. i.e. there is only
one 4r — 4l left when we find 47 — 41.

(c) when we find 4r —4l, we changed two of the elements equal to 4r—4/—1
into 0.

Fig.3 illustrate this badly case, & represents the elements equal to 4r — 4l
and & represents the elements equal to 4r — 41 — 1.

c-th column
1 (c+1)-th column

matrix A ¢

................ B P +— (r—1)-th row

+— 7r-th row

.......................................................

Fig.3 the only case in which one cannot find the 4r — 41 — 1

Suppose the bad case (see Fig.3) occurs, we consider the (r — 1)-th row. It is
easily seen that the cell in row 7 — 1 and column c¢ contains the elements 4r — 4!.
By the case (b) above, all of the elements lie in the (r — 1)-th row must have
been changed into 0, i.e. a(,—1),; =0 (1 £ j < (2r —2)). And by the case (a),
the (¢+ 1)-column must not have been changed into 0. Hence the (r — 2)-th row
must have been changed into 0. So consider the (r — 1)-th row,(r — 2)-th row,- - -
in turn, we know all the rows in front of the r-row should have been changed
into 0. This contradicts the case (c). Thus, the bad case does not occur. We
can find the elements equal to 4r — 4, or 4r — 4l — 1 forany 1 <1 < r/2.

Similarly to prove the case (r +1)/2 <1< (r—-1).

On all accounts, we can find all the distinct indices ;, 43, - - -, 42,-2 satisfying
the required conditions by the CF algorithm. 0O

For example, we get some I, by the CF algorithm as following:

Io= (2, 5, 1,7, 3, 13, 8, 4, 11, 6, 12, 16, 14, 10, 17, 15);
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Tsoo=( 2,5, 1, 7, 3, 17, 8, 4, 10, 6, 9, 27, 11, 13, 16, 12, 18, 14, 48, 20, 15
21, 28, 23, 19, 22, 32, 24, 26, 30, 25, 31, 86, 34, 29, 35, 42, 37, 33, 36, 54, 38,
40, 43, 39, 45, 41, 44, 50, 46, 60, 51, 47, 53, 49, 52, 55, 57, 64, 56, 62, 58, 72,
63, 59, 65, 61, 64, 82, 66, 68, 71, 67, 73, 69, 99, 75, 70, 76, 83, 78, 74, 77, 87,
79, 81, 85, 80, 90, 93, 89, 84, 106, 97, 92, 88, 91, 94, 96, 103, 95, 98, 112, 100,
102, 105, 101, 104, 107, 109, 316, 108, 114, 110, 124, 115, 111, 117, 113, 116,
134, 118, 120, 123, 119, 125, 121, 155, 127, 122, 128, 135, 130, 126, 129, 139,
131, 133, 137, 132, 138, 189, 141, 136, 142, 149, 144, 140, 143, 161, 145, 147,
150, 146, 152, 148, 151, 157, 153, 167, 158, 154, 160, 156, 159, 162, 168, 175,
163, 169, 165, 195, 171, 166, 172, 179, 174, 170, 173, 176, 178, 181, 177, 180,
194, 182, 184, 187, 183, 209, 185, 199, 190, 186, 192, 188, 191, 197, 193, 196,
202, 198, 204, 200, 214, 205, 201, 207, 203, 206, 212, 208, 466, 210, 224, 215,
211, 217, 213, 216, 234, 218, 220, 223, 219, 225, 221, 255, 227, 222, 228, 235,
230, 226, 229, 239, 231, 233, 237, 232, 238, 293, 241, 236, 242, 249, 244, 240,
243, 261, 245, 247, 250, 246, 252, 248, 251, 257, 253, 267, 258, 254, 260, 256,
259, 262, 264, 331, 263, 269, 265, 279, 270, 266, 272, 268, 271, 289, 273, 275,
278, 274, 280, 276, 306, 282, 277, 283, 290, 285, 281, 284, 294, 286, 288, 292,
287, 297, 336, 296, 291, 313, 304, 299, 295, 298, 301, 303, 310, 302, 305, 319,
307, 309, 312, 308, 311, 314, 320, 327, 315, 321, 317, 335, 323, 318, 324, 343,
326, 322, 325, 328, 330, 333, 329, 332, 338, 334, 337, 355, 339, 341, 344, 340,
346, 342, 345, 371, 347, 349, 352, 348, 354, 350, 356, 359, 351, 358, 353, 407,
366, 361, 357, 360, 378, 362, 364 , 367, 363, 369, 365, 368, 374, 370, 376, 372,
382, 377, 373, 380, 375, 381, 476, 384, 379, 385, 392, 387, 383, 386, 404, 388,
390, 393, 389, 395, 391, 394, 420, 386, 398, 401, 397, 403, 399, 405, 409, 400,
406, 402, 412, 408, 414, 410, 424, 415, 411, 417, 413, 416, 422, 418, 428, 423,
419, 426, 421, 427, 482, 430, 425, 431, 438, 433, 429, 432, 450, 434, 436, 439,
435, 441, 437, 440, 526, 442, 444, 447, 443, 449, 445, 451, 454, 446, 453, 448,
498, 461, 456, 452, 455, 473, 457, 459, 462, 458, 464, 460, 463, 469, 465, 471,
467, 477, 472, 468, 475, 470, 480, 483, 479, 474, 484, 507, 487, 478, 481, 495,
486, 489, 485, 488, 546, 490, 492, 511, 491, 497, 493, 499, 502, 494, 501, 486,
514, 509, 504, 500, 503, 521, 505, 515, 510, 506, 513, 508, 518, 553, 517, 512,
534, 525, 520, 516, 519, 522, 524, 528, 523, 529, 536, 531, 527, 530, 548, 532,
566, 537, 533, 539, 535, 538, 556, 540, 542, 545, 541, 547, 543, 573, 549, 544,
562, 550, 552, 555, 551, 554, 557, 559, 582, 558, 564, 560, 570, 565, 561, 568,
563, 569, 576, 572, 567, 589, 580, 575, 571, 574, 577, 579, 586, 578, 581, 595,
583, 585, 588, 584, 587, 590, 592, 596, 591, 593, 597, 599, 594, 598).

The preceding discussion is summarized in the following theorem.

Theorem 2 For any given positive integer r, Py, 2 is graceful with the special
graceful labeling given by the CF algorithm. (]

3 Generalization

In order to prove Py om is graceful graph, we show the following lemmas
first.
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Lemma 1 Let f, be the graceful labeling of Par 2 and satisfying:
fr(vd;_1) > frl(vi;), (1<ji<ri=1,2)
fr(vj41) > fr(v3;), (0<j<r—1i=1,2)
then Py, o(ar41) 45 a graceful graph.
Proof We construct the graceful labeling g, of graph Py, 5(2x+1) as follows.

9+(u) =0; gr(v) = (2k + 1) fr(v);

i ) @e+1)fr(vg; ) - (G- 1), 1<i<2k+1;
9251 = (o 4 Dfr(vd_y) — (- (2k+2)), 2k+2<i<dk+2
(2k + 1) fr(v3;) + 1, 1<i<k

(2k+1)fr(vg;) - ((2k+1) —3), k+1<i<2k+1;
(2k+1)fr(v3;) + (G- (2k+1)), 2k+2<i<3k+1;
2k + 1)fr(v3;) - (4k +2) - i), 3k+2<i<dk+2

It is easily seen that the set of labels induced on the edge set of graph
Py, o2k41y 18 {1,2,--+,47(2k + 1)}. i.e. g, is a graceful labeling of Py, 2(2k+1),

and thus Py, a(2r+1) is graceful graph. O
Taken with theorem 2 and lemma 1, the discussion above establishes our

main result.
Theorem 3 For all positive integers r and k, Py, 5(2k41) s graceful graph. O

gr("’i'j) =
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