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Abstract

A (v,m,m —1)-BIBD D is said to be near resolvable (NR-
BIBD) if the blocks of D can be partitioned into classes R,
Ry, ..., R, such that for each point z of D, there is pre-
cisely one class having no block containing = and each class
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contains precisely v — 1 points of the design. If a (v,m,m —
1)-NRBIBD has a pair of orthogonal near resolutions, it is
said to be doubly resolvable and is denoted DNR(v, m,m —
1)-BIBD. A lot of work had been done for the existence of
(v,m,m — 1)-NRBIBDs, while not so much is known for the
existence of DNR(v, m, m — 1)-BIBDs except for the existence
of DNR(v, 3,2)-BIBDs. In this paper, doubly disjoint (mt +
1,m,m — 1) difference families((mt¢ + 1,m,m — 1)-DDDF in
short) which were called starters and adders in the previous
paper by Vanstone, are used to construct DNR(v, m,m — 1)-
BIBDs. By using Weil’s theorem on character sum estimates,
an explicit lower bound for the existence of a (mt + 1,m,m —
1)-DDDF and a DNR (mt + 1,m,m — 1)-BIBD is obtained,
where mt + 1 is a prime power, (m,t) = 1. By using this re-
sult, it is also proved that there exist a (v, 4,3)-DDDF and a
DNR(v, 4, 3)-BIBD for any prime power v = 5 (mod 8) and
v> 5.

Keywords: DR(v, m, A)-BIBD, DNR(v, m, m~1)-BIBD, dou-
bly disjoint difference family, character sum.

1 Introduction

Let G be an abelian group of order v, k an integer satisfying 2 < k <
v, and )\ a positive integer. A (v,k, ) difference family, denoted by
(v,k, A)-DF, is a collection F = {B; : i € I} of k-subsets of G, called
base blocks, such that any nonzero element of G can be represented
in precisely A ways as a difference of two elements lying in some base
blocks in F. The number of base blocks of a (v, k, A)-DF is obviously
A(v—1)/k(k—1), and hence the necessary condition for the existence
of a (v, k,A)-DF is that A(v — 1) = 0 (mod k(k — 1)).
Example 1 Let G = Zys, then
F = {{8,6,22},{5,10,12}, {7,17,18}, {9, 13,21} } is a (25,3,1)-DF.

If the base blocks of a (v,k,A)-DF are mutually disjoint, then
this (v, k, A)-DF is said to be disjoint, and denoted by (v, k, A)-DDF.
Example 1 is also a (25,3, 1)-DDF.

Much work had been done for the existence of (v, k, A)-DFs(see
(1,5, 6, 7, 8,9, 10]). There are also some results on the existence of
(v, k, A)-DDFs(see [13, 14]).
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A (v,m, A)-BIBD D is said to be near resolvable (NRBIBD) if the
blocks of D can be partitioned into classes Ry, Ry, ..., Ry, such that
for each point = of D, there is precisely one class having no block
containing = and each class contains precisely v — 1 points of the
design. The classes Ry, Rz, ..., R, form a near resolution of D. For
such a design to exist, the necessary conditions are v = 1 (mod m)
and A = m — 1. These necessary conditions are also sufficient for the
existence of a (v,m,m — 1)-NRBIBD for m = 3,4,5,6([2, 11, 15]).
There are also results for m > 7. The interested readers may refer
to [11] for details.

It is not difficult to obtain the following result by developing the
(mt + 1,m,m — 1)-DDF over group G.

Lemma 1.1 If there ezists a (mt + 1,m,m — 1)-DDF in group G,
then there exists a (mt + 1,m,m — 1)-NRBIBD.

Let R and R’ be two resolutions of a (v,m,m — 1)-NRBIBD.
R and R’ are said to be orthogonal near resolutions of the design
provided that

|R; N R;| <1 for all R; € R, R;eR.

If a (v,m,m — 1)-NRBIBD has a pair of orthogonal near resolu-
tions, it is said to be doubly resolvable and is denoted DNR(v, m, m —
1)-BIBD. It was stated in [18] that these designs are very useful in
recursive constructions for doubly resolvable (v, m,\)-BIBDs, and
hence the existence question for them is of interest.

It is nature to find a special disjoint difference family to construct
a doubly near resolvable balanced incomplete block design. Suppose
F ={By,Ba,+-,B:} is a (mt + 1,m,m — 1)-DDF in group G, F is
called a doubly disjoint difference family((mt+1,m,m—1)-DDDF in
short) if the design generated by it is simple (i. e. without repeated
blocks) and if there exists a t-tuple A(F) = (a1, a2, - - -, a;) of pairwise
distinct elements of G such that {B; + a1, B2 + a2,--,B; + at} is
also a (mt+1,m, m —1)-DDF. In [18], A(F) is called an adder of F.

Example 2 Let G = Zyg, F = {B; : 1 < i < 5}, (a1,02,03,04,05) =
(7,2,10,5,8), where B; = {1,7,14}, By = {2,10,13}, B3 = {3,8,12},
By = {4,5,6}, Bs = {9,11,15}. Then F is a (16,3, 2)-DDDF-.

In [18] a starter and an adder was introduced to construct a
DNR(v, m,m —1)-BIBD. The starter in [18] is now usually a disjoint
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difference family F. Further more, the existence of a starter F of
order m — 1 and an adder A(F) in an abelian group G in [18] is
equivalent to the existence of a (mt + 1,m,m — 1)-DDDF in G. In
fact, now, by a starter of a group G of odd order everybody means
a set of disjoint pairs {z,y} covering G \ {0} and whose differences
+(z — y) also covering G \ {0}(see e. g. [12]). Instead, the concept
of a starter of a group of even order is more recent and a little bit
more complicated, it can be found in several papers(see e. g. [4]).

As stated above, a lot of work had been done for the existence of
(v,m,m—1)-NRBIBDs, while not so much is known for the existence
of DNR(v, m, m — 1)-BIBDs except for the following results.

Lemma 1.2 ([16]) Let v = 1 (mod 3), v > 10, then there exists a
DNR(v,3,2)-BIBD exzcept possibly for v € E = {34,70, 85, 88,115,
124,133,142},

Note Recently, the existence of DNR(v, 3,2)-BIBD for each v €
E had been solved by R. Abel et al ([3]). So, we have the following
result.

Lemma 1.3 ([3]) For each v = 1 (mod 3), v > 10, there exists a
DNR(v,3,2)-BIBD.

Suppose G is a group, B = {z),%2,-:,T;} is a subset of G.
For convenience, we will use the notation devB = {{z; + g,z +
9,"**,Zkr + g} : g € G}, which is called the development of B.

Lemma 1.4 If there exists a (mt+ 1,m, m — 1)-DDDF in group G,
then there exists a DNR(v,m,m — 1)-BIBD.

Proof Let F = {By,Bs,---,B;} is a (mt + 1,m,m — 1)-DDDF in
group G, (a1,02,--+,0;) is the t-tuple. Then F and F’' = {B; +
a1,Ba + ag,:--,B; + a;} are two disjoint difference families. From
Lemma 1.1, R = devF and R’ = devF’ form two resolutions of the
(mt + 1,m,m — 1)-NRBIBD. It is not difficult to check that R and
R' are orthogonal resolutions. This completes the proof. o

m—1
Suppose v = mt + 1 is a prime power. Let A = Y (,2)(m —
u=1
1)¥+ly, B = m™, E = A+VA%+B Aoras
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In this paper, by using Weil’s theorem on character sum esti-
mates, the following result is obtained.

Theorem 1.5 Suppose v = mt + 1 is a prime power, (m,t) = 1.
If v > |E?| + 1, then there ezist a (v,m,m — 1)-DDDF and a
DNR(v,m,m — 1)-BIBD.

By applying Theorem 1.5 with m = 4 and a computer search, the
following result is also obtained.

Theorem 1.8 There ezist a (v,4,3)-DDDF and a DNR(v,4,3)-BIBD
for any prime power v =5 (mod 8) and v > 5.

2 Proof of Theorem 1.5

Let v = mt+ 1 be a prime power and £ be a primitive element of F,.
Let us denote by H* and H™ the multiplicative subgroup of F, of
indices ¢ and m, respectively, and F = {Ht ™ Ht,... ¢t-Umpt},
Let F} = F, \ {0}.

Lemma 2.1 Let v = mt + 1 be a prime power, (m,t) = 1, and
& be a primitive element of F,. Suppose there ezists an element
z € F* such that z + &% € €H™ for 0 < i < m — 1, then there
erists a (mt + 1,m,m — 1)-DDDF in F,, and hence there erists a
DNR(mt + 1,m,m — 1)-BIBD.

Proof It is well known(see [19]) that F is a (mt+1,m, m—1)-DDF.
We prove that the (mt + 1,m,m — 1)-NRBIBD generated by F is
simple. Suppose the characteristic of Fy, is p, then (m,p) = 1. Let
B; = ¢™H! 0 <i<t—1. First we prove that the blocks generated
by the same base block, say B; are pairwise distinct. If it is not so,
then there exists g € G, g # 0 such that B; = B; + g, thus mg = 0,
and g = 0, a contradiction. Next, if the (mt + 1, m,m — 1)-NRBIBD
is not simple, then there exist 0 < i,j < t—1,7 # j, g € G such that
B; = Bj + g, thus we have £&™ Y oyt T = 7™ 3 ye  + mg. Since
Y zeqt £ =0, then mg = 0, and hence g = 0. So, B; = Bj and i = j,
a contradiction. So, the (mt+ 1, m,m —1)-NRBIBD generated by F
is simple. Let 7’ = {z+ Ht, ez +£MHE, ... (- Nmg 4 ct-Dmpty,
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Since F is a (mt+1,m,m—1)-DF, then F' is also a (mt+1,m, m— D-
DF. If (m,t) = 1 andx+£" ﬁ'Hm for0<i<m-1, then it is
easy to see that 7/ = F. Since |F'| = mt, then the elements in
F' are pairwise distinct, ‘and F' is also a (mt + 1,m,m — 1)-DDF.
Let a; = z¢6-U™ 1 < i < t. Then F and (a;,as,---,a;) form the
desired (mt + 1, m, m — 1)-DDDF. This completes the proof. 0

We will find a bound such that there exists an element = € F
_satisfying conditions:

(Cl) z+€teH™ 0<i<m-—1.
Let C; = &H™,0 <i < m—1, fi(z) = £ (z+£%),0<i < m—1.

Then conditions (C1) can be derived if there exists an element z
satisfying the following conditions:

(02) f,-(a:)eCo,0<i<m—1

Let x be a nontrivial multiplicative cha.racter of order m, that is,
if ¢ € C; then x(c) = §*, where 6 = exp(ZX) is a primitive mth root
of unity. Let D;(z) = x( fi(x)), and let

Hi(z) =1+ Di(z) +++-+ D™ (z), 0<i<m—1.

Then
m, if fi(z) € Co,
Hz(.’l:) = 1, if f,(x) = 0,
0, if f,(a:) g CoU {0}

From these, form the sum

s = £ T B ®

zeF, i=0

This sum is equal to m™n+d, where n is the number of elements z
in F, satisfying the conditions (C2), and d is the contribution when
one or more of the functions fj(z) is 0, 0 < 7 < m — 1. For each
0 < i < m~1, if there exist an z such that f,(a:) = 0 (and thus
H; (a:) = 1), then the contribution to S is at most m™1, and hence
d < mm™ 1 = m™. Thus, if we are able to show that |S| > m™,
then m™n+d = |S| > m™. Since d < m™, then m™n > m™—-d > 0,
and hence n > 0. Since 7 is an integer, then n > 1. So, there exist
at least one element x in F; satisfying the conditions (C2).
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Expanding S we obtain

s = Y1+ ¥ > Y D)+

z€F, 0<ip<m—1 1<ko<m-—1 z€F,

3 3 > DP(z)Df(z) +--- +

0<ip<ii<m—1 1<kg,ky;<m-1 z€F,

z Z Z Df:(x)---Df:(m)+-~

0<ip<-<iu<m~1 1<ky,ku<m—1 z€FR,

+ > Y- D§°(2): -+ D (z)*m )

1<ko,, km-1Sm~1 z€Fy,

Weil’s theorem on multiplicative character sums has been used
to construct various combinatorial designs(see e.g. [7, 10]). We also
use Weil’s theorem on multiplicative character sums to estimate the
inner sums in (2).

Theorem 2.2 ([17]) Let ¢ be a multiplicative character of Fy of
order m > 1 and let f € Fy[z] be a monic polynomial of positive
degree that is not an mth power of a polynomial. Let d be the number
of distinct roots of f in its splitting field over F,, then for every
a € GF(q), we have

Y Y(ef(9)| < (@-1)va. 3)
cEFq
It is clear that fo(z), fi(z), -, fm-1(z) are pairwise coprime.

Suppose that

K(z) = fo(@)® f1(2)P" - fra-1(2)Pm?

with Bo, 51, +,Bm-1 = 0,and > B; > 0. We can show that
0<j<m-1

if B <m—-1,0<j < m-1, then K(z) is not an mth power
of a polynomial in F,[z]. In fact, if K(z) = p(z)™, then since
fo(z), fi(z),- -, fm—-1(z) are pairwise coprime, then o= =--- =
Bm-1 = 0 (mod m). Since f; <m—1,0<j <m-—1, we have
Bo=p02="-+= PBp-1 =0, a contradiction,
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Note that each of the inner product in (2) can be represented as
P(cf (b)) for some ¢, where f(z) is a monic polynomial. It is easy to
see that deg(fi(z)) = 1,0 < i < m—1. So, from Theorem 2.2, we
have

> DitE)l < (Pm-1(1-1)yF =0,
0<ip<m~1 1<kp<m-1 a:
andforl<u<m-1,

D2 (z)Df}(z) - Di#(2)] <

0<ip<i1 <<ty <m—1 1<kg, k1, ku<m—1 :r:EF.,
u+1
u+1) (m - 1 u\/—
Then we have

S12 0= (I)(m = 1)y =v- AVS.

We are now in a position to prove Theorem 1.5.

Proof of Theorem 1.5 Let A,B,E be defined as in Section 1.
If v — Ay/v > B, namely, v > |_E2J + 1, then we have n > 1, and
hence there exists an element z satlsfymg the conditions sta,ted in
Lemma 2.1. This completes the proof. 0

3 Proof of Theorem 1.6

Applying Theorem 1.5 with m = 4 and ¢ odd, we have that A =

513, B =256, E = &b@ < 513.5. So, the following result is
obtained.

Lemma 3.1 If v = 5 (mod 8) is a prime power, and v > 263683,
then there ezist a (v,4,3)-DDDF and a DNR(v, 4, 3)-BIBD.

In order to prove Theorem 1.6, we will treat the remaining prime
powers. We first treat the primes, and then the prime powers.

Let Q = {13, 29,37, 53, 61,101,109, 149, 157, 197, 229, 269, 277, 293,
317, 349, 389, 397, 421, 509, 677, 709, 773, 829, 1013, 1109, 1229, 1493, 1621
1669, 1733, 1861, 1973, 2069, 2213, 2741}.
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Lemma 3.2 Suppose v = 4t + 1 is a prime number, t is odd. If
v = 5 (mod 8), v € [13,263683) and v ¢ Q, then there exzist a
(v,4,3)-DDDF and a DNR(v,4,3)-BIBD.

Proof With the aid of a computer, elements zs satisfying the con-
ditions stated in Lemma 2.1 have been found for each prime number
v =5 (mod 8), v € [13,263683),v € Q. In order to save space, here
we only list (v,&,z) in Table 1 for v < 1400. The interested reader
may contact the corresponding author for other values of v. This
completes the proof.

v Ez (v £ xz (v Ez |v E = | § =

173 2 22 [181 2 12(373 2 28 [461 2 226(541 2 143
557 2 95 [613 2 48(653 2 216|661 2 108|701 2 101
733 6 15 |[757 2 85797 2 188|821 2 176853 2 107
877 2 65 [941 2 35/997 7 15 |1021 10 70 |1061 2 141
1069 6 147{1093 5 29(1117 2 1601181 7 57 |1213 2 207
1237 2 1481277 2 80[1301 2 12 |1373 2 1170|1381 2 6

Table 1 (v,£,z) for v < 1400,v € Q.

0

To construct (v, 4,3)-DDDFs and DNR(v, 4, 3)-BIBDs for v € Q,
one needs to find other construction. The following result was stated
in [18].

Lemma 3.3 ([18]) Let v = mt + 1 be a prime power, £ be a primi-
tive element of F,,. Let M be an m-set whose elements form a system
of distinct representatives for the cosets of H™ and whose differ-
ences are evenly distributed over the cosets of H™. If there exists
an element z € F such that {a + = : a € M} form a system
of distinct representatives for the cosets of H™, then there ewist a
(mt +1,m,m — 1)-DDDF and a DNR(mt + 1,m,m — 1)-BIBD.

Suppose v = 4t + 1 is a prime power, ¢ is odd. Let H* be the
multiplicative subgroup of F;, of indices 4, £ be the primitive element
of Fy, C; =&H* 0<i<3.
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Lemma 3.4 Suppose v = 4t + 1 is a prime power, t is odd. Let
M = {1,a,0%,a°}. If there exist elements a,b € F? satisfying the
following conditions:

(C3) a, a2 +a+1¢€ C1UCs, and a, a® + a + 1 lie in distinct
cosets of H*;

(C4) b+1, b+a, b+a?, b+ a® lie in distinct cosets of H.
Then there exist a (v,4,3)-DDDF and a DNR(v,4,3)-BIBD.

Proof The differences of M are +(a—1){1,a,a?,a?>+a+1,a+1,a(a+
1)}. Since t is odd, then —1 € Cs. It is easy to see that if condition
(C8) is satisfied, then the elements of M form a system of distinct
representatives for the cosets of H4, and the differences of M consist
of 3 elements in each coset of H4. So, from Lemma 3.3 and condition
(C4), there exist a (4¢+1,4,3)-DDDF and a DNR(4¢+1, 4, 3)-BIBD.
This completes the proof. 0

Lemma 3.5 For each v € Q, there ezist a (v,4,3)-DDDF and a
DNR(v,4,3)-BIBD.

Proof With the aid of a computer, elements a, b satisfying conditions
(C3) and (C4) have been found for each v € Q. Here we list (v, £, a,b)
in Table 2 for v € Q.

v Ea b |v € a b |v Ea b |v Ea b
13 27 11129 2 11 5 |37 2 31 9 {53 2 20 31
61 2505 |101 2 2 8 |109 6 10 17|149 2 10 34
157 5 21 10|197 2 13 4 |229 2 31 2 (269 2 2 8
277 55 4 (293 2 2 21317 2 13 7 |349 2 32 8
389 2 22 6 |397 5 45 7 (421 2 29 1 [509 2 2 9
677 2 2 21|709 2 13 36|773 2 2 6 |89 2 6 4
1013 3 7 12|1109 2 2 4 {1229 2 11 8 [1493 2 12 5
1621 2 23 13[1669 2 32 6 [1733 2 44 10(1861 2 7 3
1973 2 2 2212069 2 13 3 {2213 2 43 112741 2 12 17

Table 2 (v,£,a,b) forveQ.
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From Lemma 3.2 and Lemma 3.5, we have the following result.

Lemma 3.6 Suppose that v = 5 (mod 8) is a prime number, v €
(13,263809), then there ezist a (v,4,3)-DDDF and a DNR(v,4,3)-
BIBD.

Similar to Theorem 3.1 in [18], we have the following result.

Lemma 3.7 ([18]) Let q be a prime power. If there ezists a (v,m,m—
1)-DDDF in F,, then exists a (v,m,m —1)-DDDF in F}, n > 1 is
an integer.

Suppose g = p* = 5 (mod 8) is a prime power, where p is a prime,
then it is easy to see that p = 5 (mod 8) and w is odd. So, from
Lemma 3.6 and Lemma 3.7, the following result is obtained.

Lemma 3.8 Suppose that v = 5 (mod 8) is a prime power, v €
[13,263809), then there ezists a DNR(v,4,3)-BIBD.

We are now in a position to prove Theorem 1.6.
Proof of Theorem 1.6 For v > 13, Lemma 3.1 takes care of

all large values of v > 263809. The remaining prime powers come
from Lemma 3.5 and Lemma 3.8. For v = 5, Let G = Z5, F =
{{0,1,2,3}},a1 = 1, it is easy to check that F is a (5,4,3)-DDDF.

This completes the proof. 0

4 Concluding Remark

In this paper, a general lower bound for the existence of (mt +
1,m,m — 1)-DDDF and DNR(mt + 1,m,m — 1)-BIBD is obtained,
where v = mt + 1 is a prime power and (m,t) = 1. Applying this re-
sult and a computer searching with m = 4, it is proved that there ex-
ist a (v,4,3)-DDDF and DNR(v, 4, 3)-BIBD for each v = 5 (mod 8)
is a prime power. When v = 1 (mod 8) is a prime power and v =
1 (mod 4) is not a prime power, the existence of (v,4,3)-DDDFs and
DNR(v, 4, 3)-BIBDs leaves open. When m = 5,t # 0 (mod 5), the
lower bound for the existence of (5¢+1, 5,4)-DDDF and DNR(v, 5, 4)-
BIBD is 87918753 from Theorem 1.5, where v = 5t + 1 is a prime
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power. For m > 6, Theorem 1.5 could also provide a bound B(m)
such that for each prime power v = mt + 1, (m,t) = 1, there exists
a (mt + 1,m,m — 1)-DDDF and DNR(mt + 1,m,m — 1)-BIBD. A
computer could also be used to find a proper element = € F, for each
small prime power v = mt + 1, (m,t) = 1 to guarantee the existence
of a (mt+1,m,m — 1)-DDDF and a DNR(mt + 1,m, m — 1)-BIBD.
But it seems impractical for us at this moment to ask a computer
to find such element z € F, for all prime powers v < B(m) with
v =mt+1,(m,t) = 1 for m > 5. Theorem 1.5 does not work
when v = mt 4 1 is a prime power, (m,t) # 1. New methods
are desired for the construction of (mt¢ + 1,m,m — 1)-DDDFs and
DNR(mt + 1,m,m — 1)-BIBDs
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