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Let G be a simple connected graph with vertex set V(G) and edge set
E(G). The distance between vertices u and v in G, denoted by dg(u,v), is
the length of a shortest path connecting » and v in G. Let Dy, = D(u|G) =
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Abstract

The sum-Balaban index of a connected graph G is defined as

JC) = —— 3 (Du +D,)" 1,
bt 1 wv€EEB(G)

where D,, is the sum of distances between vertex u and all other
vertices, u is the cyclomatic number, E(G) is the edge set, and m =
|E(G)|. We establish various upper and lower bounds for the sum-
Balaban index, and determine the trees with the largest, second-
largest, and third-largest as well as the smallest, second-smallest,
and third-smallest sum-Balaban indices among the n-vertex trees
for n > 6.

Introduction

Y vev(c) 9 (¥, v), which is the distance sum of vertex u in G [4, 8.

Let |V(G)| = n and |E(G)| = m. The cyclomatic number p of G is
the minimum number of edges that must be removed from G in order to

transform it to an acyclic graph. It is known [12] that py=m —n + 1.
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The Balaban index of a connected graph G is defined as [1, 2

m 1
J@)=—= > (DuD,) %
Bt 1 uweE(G)

It has been used successfully in developing QSAR/QSPR models [11] and
in drug design [6]. Mathematical properties of Balaban index may be found
in [9, 13]. Balaban et al. [3] proposed the study of the sum-Balaban index
of a connected graph G, defined as

J(G) = ——

IL+1 Z (Du+D‘D)--al'

uwvEE(G)

Note that the idea to change the multiplication to sum was first proposed
in the case of the connectivity index in [14].

We establish some mathematical properties, mainly lower and upper
bounds for the sum-Balaban index in terms of some other parameters,
and determine the trees with the largest, second-largest, and third-largest
as well as the smallest, second-smallest, and third-smallest sum-Balaban
indices among the n-vertex trees for n > 6.

2 Sum-Balaban index of connected graphs

For a vertex u of the graph G, the degree of u, denoted by 4,, is the number
of its neighbors, and the eccentricity of u is the maximum distance to other
vertices of G. The diameter of G is the maximum eccentricity of vertices
of G.

Theorem 2.1. Let G be a connected graph with n > 2 vertices, m edges,
and mazimum degree A. Then

s m nmA m
O s sV am—2=a Su+pY™

with the first equality if and only if G is a regular graph with diameter at
most two, and with the second equality if and only if G is the complete
graph.

Proof. By the Cauchy-Schwarz inequality, we have 3 . p(g)(Du +
D)%< \ﬁnzwe £(c)(Du + D,)~! with equality if and only if Dy, + D,
is a constant for all edges uv of G. It is easily seen that (D, + D,)~! <

DytDe = 1 (& + 4;) with equality if and only if D, = D, Thus

> (D..+D,,)‘%s\|m > %(31,,-+-[§_,,)=J% g_.;

uw€e€E(G) uveE(G) ueV(G)
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with equality if and only if D, is a constant for all vertices u of G.
Note that D, > 2n — 2 — 4, with equality if and only if the eccentricity
of u is at most two. Since 5—5— is increasing and A < n — 1, we have

6y < Ou n

> s X < <n

with the second equality if and only if G is regular of degree A and every
vertex has eccentricity at most two, and with the third equality if and only
if G is the complete graph. Note that D, is a constant for all vertices u
of G if G is regular of degree A and every vertex has eccentricity at most
two. It follows that

z (Du'l'Du)_%Sl nmA lm

g f— <=
weB(©) 2V2n—-2-A "2

with the first equality if and only if G is regular of degree A and its diameter
is at most two, and with the second equality if and only if G is the complete
graph. O

Theorem 2.2. Let G be a connected bipartite graph with m edges. Let
A4 and Ap be the mazimum degrees among the partite sets A and B,
respectively, where |A| = p and |B| = q. Then

my/m pAa qAp
(p+1)Y 2p+3¢—-2—-A4 29+3p—-2-Ap

9(6) <5

with equality if and only if ¢ — 26, = p— 26, forvu € A and v € B,
every vertex in A has degree A 4, every vertex in B has degree Ap, and the
diameter of G is at most three.

Proof. By arguments in the proof of Theorem 2.1,

- m Oy
Y Du+D)y g ’Z > o
uwwEE(G) ueV(G)

with equality if and only if D,, is a constant for all vertices u of G.

Foru € A, D, > 8, +3(qg —6.) +2(p — 1) = 2p + 3¢ — 2 — 26, with
equality if and only if the eccentricity of u is at most three. For v € B,
D, > 6, +3(p—6y)+2(g—1) = 29+ 3p — 2 — 26, with equality if and only
if the eccentricity of v is at most three. Thus

0y, 51; 0y
P A S
wevicy Do Za2+3¢-2-8  LF2+3p-2-4,
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pAy qAp
2p4+3¢q—-2-A4 20+3¢g—-2-Ap’

and then

> (Du+D,)t

wwEE(G)
m Ou
<7 X &
4 ueV(Q) D

< _{n_( PAs + 945 )
- 4 \2p+3¢g—2—-A4 2p+3¢g—-2-Ap

with equalities if and only if ¢ — 26, = p — 26, for v € A and v € B,
every vertex in A has degree A4, every vertex in B has degree Ap, and
the diameter of G is at most three.

For a connected graph G, D'(G) = Zuev(a) 8uD,, is the degree distance
of G [5], which is also a part of the Schultz molecular topological index [10).
We give a relation between sum-Balaban index and the degree distance.

Theorem 2.3. Let G be a connected graph with n vertices and m edges.
Then

0
7@ 2 (r+ 1)\/D'(G
with equality if and only if Dy + D, is a constant for any uwv € E(G).
Proof. By the Cauchy-Schwarz inequality,

2

D, +D,) % > m ,
WEZE:@( + D) > wvesie)Da + Do)l
> (Du+D)t< fm Y (Du+Dy)=+/mD'(G)

uwvEE(G) wweE(G)

with either equality if and only if D, + D, is a constant for any uv € E(G).
Thus

Y Dut+D)tr - VT
weE(G) ’ V/mD'(G) \/ D'(G)’
and then the result follows easily. a
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3 Sum-Balaban index of trees

Let T be a tree with n vertices. Then |[E(T)| = n — 1, the cyclomatic
number of T is 0, and thus ¥(G) = (n — 1) 3_, e g1y (Du + D,)"%.
Let S,, and P, be the star and the path with n vertices respectively.
First, we determine the first three largest sum-Balaban indices among
the n-vertex trees, and characterize the trees for which the sum-Balaban
indices attain these values.

Lemma 3.1. Let u be a vertez of a tree Q with at least two vertices. For
integer a > 1, let Ty be the tree obtained from Q by attaching a star S,4i
at its center v to u, and Ty the tree obtained from Q by atteching a + 1
pendent vertices to u, see Fig. 1. Then J(T1) < J(T3).

v
w
v +1
: : ta
ors! |
Ty T

Fig. 1. T; and T3 in Lemma 3.1.

Proof. Let n =|V(T})| = |V(T2)|. Denote by w a pendent neighbor of v
in T} and a pendent neighbor of u in T outside Q. Note that D(z|T3) =
D(z|T\)-a-dt,(z,w)+a-dr, (z,w) = D(z|T1)—a for any vertex x € V(Q),
and D(v|T2) = D(v|T1) — a - dr, (v,w) + & - dr, (v, w) = D(v|T1) + a. Then
D(u|T3) + D(v|T2) = D(u|T1) + D(v|T1). Thus

I(T2) - I9(T)
n-1

- 3 (___1__ _ 1 )
syebie) \VD@IT2) + D|T2)  /D(zITh) + D(uIT1)

1 1
e (\/——D(usz) T D(T;) /D) +D<wm))'

For simplicity, let D, = D(z|T}) for z € V(T}). Note that D(w|T3)
Dy ~([V(@)| —1) = Dw —n+a+2. For zy € E(Q), D(z|T2) + D(y|T2)
(Dz —a)+(Dy —a) = Dz + Dy —2a, and D(u|T2) + D(w|T2) = (Dy —a) +
(Dy —n+a+2)=D,+ D, —n+2. Note that D,, = erv(q) dr, (u,z) +
1+2a and Dy = 3 ey (o) 1, (v; %) + @ = 3 ey (qy(dny (u,2) + 1) +a =
Yzev(@)dn(w,z) +n — 1. Then D, = Dy +n — 2a — 2. Obviously,
n—a—2>0. Thus

I(T) - U(Ty)

n-—1
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1 1
(o=~ o)
e
v + Dy —n+2 e+ Dw+n—2a-2
> 0,
from which the result follows. O
By the previous lemma, we have immediately the following result.

Theorem 3.1. Let T' be a tree with n > 3 vertices. Then J(T') < %L“':_:
with equality if and only if T = S,,.

For 2 < a < |3, let By s be the n-vertex double star formed by adding
an edge to the centers of the stars S, and S,,_,. It is easily seen that

J(Bn,a)
n—1
_ a—1 + 1
ViBr—-a—-4)+(2n-a-2) /(2n-a-2)+(n+a-2)
n—a-—1
+\/(n+a—2)+(2n+a—4)
a—1 1 n—a-—1

\/5n—2a—6+\/3n—4+\/3n+2a—6'

For a function f(z) defined in an interval I, if f”(z) > 0, then by the
Lagrange mean-value theorem, f(a) + f(d) > f(b) + f(c) for a,b,c,d € I
witha<b<ec<danda+d=b+c

Lemma 3.2. For2<a < |%] -1, ¥(Bnat1) < I (Bn,a)-
Proof. Let f(z) = Tersy=» Where 2 < z < |3 — 1. Then f'(z) =
(Tf% and thus f"(z) = %ﬁ; > 0. We have
g(Bn.aH) — g(Bn,a)
n-1
(__‘.’__ PR S L“?)
Vvoin—2a—8 3n-4 3n+2a-4
a-—-1 1 n—a-—1
B (\/Sn—2a-—6 + Vin—-4 + \/3n+2a—6)
= fl@)-fle-1)+f(n-a-2)-f(n-a-1)
< 0.

216



The result follows. O

Theorem 3.2. Let T be a tree with n > 4 wvertices different from Sy.

Then J(T) < (n—1) (7;%::13 + 73-51:3 + 7"?}%) with equality if and only
if T = Bp .

Proof. If T has at least two non-pendent edges, then by Lemma 3.1, we
can obtain an n-vertex tree with only one non-pendent edge, which is a
double star with larger sum-Balaban index than T. Now by Lemma 3.2,
the result follows easily. O

Let P,t1 = vov1...vn. Let Ty 4 be the n-vertex tree formed by at-
taching a,b and n — a — b — 3 pendent vertices to vp, v; and v; in the path
P3 respectively, where 1 < a < [ﬁgﬁj —1and a+b < n—4. Then any
n-vertex tree with exactly two non-pendent edges is of the form T, q 5.

Theorem 3.3. Let T be a tree with n > 6 vertices different from S, and
Br. Then 9(T) < (n—1) (ygiepy + 7o + 553 with equality if and
only if T = By 3.

Proof. If T has at least two non-pendent edges and is different from
Tn,1,n—5, then by Lemma 3.1, we can obtain an n-vertex tree with only one
non-pendent edge, which is a double star different from By 2 with larger
sum-Balaban index than T'. Thus, if T is different from T, 1 n—5, then by
Lemma 3.2, J(T) < J(By,3) with equality if and only if T = Bp 3. Let
g(z) = Jz for > 0. Then g"(z) > 0. Thus

?](Bn.3) - '?](Tn,l,n—s)

n—1

2 1 n—4
= (vs‘——mJ““"m-— T‘ﬁ)
2 2 n—5
- + +
(o=t vt )
_ 2( 1 _ 1 )-I- 1 +_l__ 2
S8 van=3) n=d an V-2
1 1 2
Snd An Sn-2
= g(3n—4)+ g(3n) —2g(3n - 2)
> 0,

from which the result follows. (]
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In the following, we determine the first three smallest sum-Balaban
indices among the n-vertex trees, and characterize the trees for which the
sum-Balaban indices attain these values.

Lemma 3.3. Let z be a vertex of a tree Q with at least two vertices. For
integers @ > b+ 1, let T} (T2, respectively) be the tree obtained from Q
and the path P = u, ... uyuovov ... v by identifying x and uo (z and vy,
respectively), see Fig. 2. Then J(Ty) > J(T3).

u-l- -o—?—b—o -- -o—y a Yo u-l- tfb‘ Ya
0 0
- = p——y -=-—ae
Y N1 Vp (Y W

T1 T2
Fig. 2. T} and T3 in Lemma 3.3.

Proof. Let n=|V(T1)| =|V(T2)|. Then |V(Q)| =n—(a+b+2)+1=n—
a—b—1. Fori =0,1,...,a, D(wl|T}) = D(wi|T1) =¥ cv (o a) 9T (i, ¥) +
Eer(Q)\{:} dr, (ui,y) = D(ui|T1) +|IV(Q)\ {z}| = D(wi|T1) +n—a—b-2,
and similarly, for j = 0,1,2,...,b, D(vj|T2) = D(v;|T1) — |V(Q) \ {z}| =
D(v;|T1)—(n—a—b—2). Then D(uo|T2)+D(vo|T2) = D(uo|T1)+D(wo|Th).
Thus

I(Tz) — I(Th)

n-—1

yeeb@ \VDPWIT2) + D(z[T3)  +/D(y|T1) + D(z|T)

+a‘2 - 1 )
=0 \VD(uil|T2) + D(uin1|T2)  +/D(wi|T1) + D(uiy1|T1)

b--1

1 1
+ —_—_— ).
= (\/ D(vj|T2) + D(vjn1|T2)  +/D(v;|T1) + D(v,-+1|T1))
For simplicity, let D, = D(y|T}) for y € V(T1). Let w € V(Q). Obviously,

for i = 0,1,...,a — 1, dp(w,u;) = dr,(w,ui+1), and for j = 1,2,...,b,
dr,(w,v;) = dr,(w,vj—1), and then

D(w|Ty) - D, = (z“: dr, (w,u) — i dr, (w, ‘ui))

i=0 =0
b b
+ (Z de (w1 vJ') - z dTl (w, vj))
=0 i=0
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61T

{zI\(®)A>4 1=y 1=

(t+:+@w)op) K +1 K +ﬂlz =

1+t+? t—q

{z}1\(D)A3A (d)AdR
(‘) \Ip z + (A “n) Wp Z -

{=z}\(®)A34 (d)ADR
(i*a) Lp z + (A*a)'Lp :z = mg_qg

ey} uass A[Isea st 9]

( g4 egft (g—g-v-wg—- g+ "“c_r/‘+

1 1
t+!ng+ -‘ng/\ (Z—Q—'D—u)z+ !+.‘na+ .‘ng/\ § S
1 - 1
1—9
rg 4 gt @o9-v-uet Mg+ g § N
1 B 1 T
(‘*’“ +q _(z—q—v—u)z—‘*"“a+1c_r/\+
1 1
1+.-na.+ sng/\ (Z—Q-U—u)z+ l+.‘ua.+ .'ng_/\ § S
1 - 1
-9
g + g @og—v—we— g + gt Z[+
1 1
I-
!'Hna + .'na /\ (z q D — u)z+ l+‘na+ |ng/\ §+
1 1
1-0
‘q+'aq) (@-oe+ a+"a) ‘b’:“’f"‘ _
1 1
I—u

AT (AT
weyg, *(z — 9 — v —u)g — g + g = Bz He)g + (Bzlfe)a
c-[_qc...c-[¢0= _[.IO} pue tl"".‘na._l_ .\na < (Z_q_,o_u)z+ l+!na.+ .'na.
= (¢g|ttm)qg + (BLl*n)@ ‘1 — ¢ 10 = @ 10§ Areqiuag g < © souls
*q +%a < (@-9)z+*q + g = (¢rlz)g + (Zlf)a (D)a > zA 10§ uayy,
q—p =
(% ‘m)p — (% ‘m)%p 4 (On‘m)'p — (°n'‘m)ilp =



a—i b4i+1
(Zk+ kv Y (dQ(y,m)+i))
1 k=1 yeV(Q\{z}
a—i atitl
= - Y k+ Y k+[V@\{=}
k=b—i+1 k=b+i4+2
= 2a—byi+n—2b—2.

Let ay = Dy, + Dy, +2(n—a—b—2), a3 = Dy, + Dy,,,, a3 = Dy, +
Dy, +2(a-b)(2i+1)+2n—-2b-2)—2(n—-a—->b—2) and a4 =
Dy; + Dy, +2(a—b)(2i+1) +2(n — 2b— 2). Note that a; +a3 = a3 +aq,
and since a > b, we have a4 > max{a;,az,a3} and az < min{a;,as,as}.
Let g(z) = -\71; for z > 0. Then g"”(z) > 0. Thus

Y(T) - I(T) _ "i( 1 1 1 1 )

n—1 2\Va V@ Ve Ya
b-1
= ) (9(a1) — g(a2) + 9(as) — g(as))
i=0
< 0,
from which the result follows. ]

By the previously lemma, we have immediately the following result.

Theorem 3. 4 Let T be a tree with n > 3 vertices. Then J(T) > (n —
)Y VTW with equality if and only if T = P,.

A tree T is said ta be starlike if only one vertex of T is of degree more
than two. Let S,(n;,n2,...,n:) be the n-vertex starlike tree obtained by
attaching paths P,,, P,,,...,P,, at one of their end vertlcw to a single
vertex respectively, where n, >1forl <i<tand 2 i =n-—1
Let P,(%,j) be the tree obtained from the path P,_; = vo'ul ++Up_3 by
attaching a pendent vertex to the vertex v; and v; respectively, where
1<i<|2|andi<j<n-—4

Theorem 3.5. If T is a tree with n > 4 vertices different from P,, then
I(T) > I(Sn(1,1,n — 3)) with equality if and only if T = S,(1,1,n - 3).
IfT is a tree with n > 6 vertices different from P, and S,(1,1,n—3), then
I(T) = J(Sn(1,2,n — 4)) with equality if and only if T = S,(1,2,n — 4).

Proof. Let T be a tree with minimum sum-Balaban index among the
trees with n > 4 vertices different from P,,. By Lemma 3.3, T is a starlike
tree, say T = Sp(n1,n2,...,n:) with ¢t > 3. If t > 4, then by Lemma 3.3,
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we can obtain another starlike tree of maximum degree ¢ — 1 with smaller
sum-Balaban index, which is a contradiction. Then ¢ = 3. By Lemma 3.3,
we have T = S,(1,1,n — 3).

Now let T be a tree with minimum sum-Balaban index among the trees
with n > 6 vertices different from P, and S,(1,1,n—3). First suppose that
T is a starlike tree, say T = S,(n1,n9,...,n;) with £ > 3. By Lemma 3.3,
ift > 4, then J(T) > J(Sn(1,1,1,n—4)) > J(Sa(1,2,n—4)), and ift = 3,
then¥(T) > J(Sn(1,2,n—4)) with equality if and only if T = S,(1,2,n—4).
Now suppose that T is not starlike and T # P,(1,n — 4). Then there exist
at least two vertices of degree more than one in T'. If there are at least
three vertices of degree more than one in T, then by using Lemma 3.3
to the two vertices, both of degree at least two, which are with maximal
distance among all pairs of vertices of degree more than one, we can get a
starlike tree with smaller sum-Balaban index, which is a contradiction. If
there are exactly two vertices of degree more than one in T, then by Lemma
3.3, T is of the form P,(i,j). Since T # P,(1,n — 4) and by Lemma 3.3,
J(T) > J(Sn(1,2,n — 4)) with equality if and only if T’ = S,(1,2,n — 4).
It follows that T is the tree Sp(1,2,n — 4) or Py(1,n — 4) with smaller

sum-Balaban index. Let E; = 37_ 1_7+Z;'__12 ~ti= i(i_1)+("_;'ﬂ("'2_i).

Then
J(Sn(1,2,n—4))
n—1
S S SR S
V2Ei+tn+4 VE +Es+n 1+ Es+n+2
1 1
foe———— t —
V2E; +3n—8  /E| +E; +2(n-3)
1
+) ——,
,-g;in+Ei+x+2(n—3)
J(Pa(l,n—4)) _ ’i“
n—1 ,/"——E1+E2+2(n 2) S VE+ E,+1+2(n VE+Eit2n-3)
and thus
I (Sn(1,2,n — 4)) — T(Pa(l,n — 4))

n-1
1

1 1
— +
V2Ei+n+4 VEi+Es+n E +Es+n+2
1 1
e o
V2E1 +3n-8  JE +E;+2(n-3)
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n—4

1
+ et —————————————————
; VEi+Ei1+2(n-3)

n—4

_ _11___+Z__._1_
VE1+E+2(n-2) = VEi+ Eiy; +2(n-3)
1 1 1

—+-—-——_ —————————————————

V2E +n+4 \/E1+E3+n+\/E1+E3+n+2

1 1
ot ——
-\/2E1+3n—8 \/E1+E'2+2(n—3)
4 1

VBt B r2n-2 VEiE:t2n-3)

By direct calculation, we have By = 22=5n48 [, — n’=Tntld 4pq p, —
ﬁzﬂ. Let g(z) = 71; for z > 0. Then g"(z) > 0. Thus

F(Sn(1,2,n — 4)) — T(Pa(1,n — 4))

m \/n§—6n+1 m Va2 —2n -2
+¢m‘_—¢m‘—\/m
= g(n2—6n+16)+g(n2—4n+4) g(n? — 4n 4 6) — g(n® — 6n + 14)
1 1 1 _ 3
Vn2 4n+1 \/n§—6n+1 \/n2 -2 n?2—-4n+6
1 1 3
\/4—n+l Vi —tnt8  Vi—tn=2 Ve —an¥6

By Matlab 7.0, the right-most function of the above inequality is negative
for n > 6. Thus J(S,(1,2,n — 4)) < I(Pa(1,n — 4)). O

<

As a corollary of Theorems 3.1 and 3.4 , the sum-Balaban index satisfies
the basic requirement to be a branching index in that it has the minimum
value for the path and the maximum value for the star among trees (7] with
given number of vertices.
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