On the second maximal and minimal Wiener
index of unicyclic graphs with given girth *

Lihua Feng®, Aleksandar Ili¢*, Guihai Yu®

?Department of Mathematics, Shandong Institute of Business and
Technology, Yantai, Shandong, P.R. China, 264005.
®Faculty of Sciences and Mathematics, University of Ni§
Visegradska 33, 18000 Ni3, Serbia
Email: fenglh@163.com, aleksandari@gmail.com, yuguihai@126.com

Abstract
Let G be a connected graph. The Wiener index of G is defined as
W(G) = ¥, vev(q) 96 (1, v), where de(x, v) is the distance between
u and v in G and the summation goes over all the unordered pairs of
vertices. In this paper, we investigate the Wiener index of unicyclic
graphs with given girth and characterize the extremal graphs with
the second maximal and second minimal Wiener index.

1 Introduction

Let G be a connected graph. The Wiener index of a graph G is defined in
[14] as: W(G) = > uwev(c) 46 (u,v), where dg(u, v) is the distance between
u and v in G and the summation goes over all the unordered pairs of vertices.
The Wiener index is one of the most studied topological indices, both from
a theoretical point of view and applications [1, 2, 8]. Other topological
indices of various classes of graphs can be seen in [5, 11, 12, 15, 16].

An important direction in chemical graph theory is to determine the ex-
tremal (maximal or minimal) graphs with respect to some topological index
in a certain classes of graphs. Du and Zhou in (3] characterized trees and
unicyclic graphs with given matching number and minimal Wiener index.
Using the connection between the Wiener index and the Laplacian coeffi-
cients, the authors in [9] determined the minimum Wiener index of trees
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with fixed diameter or radius. Fischermann et al. [4] determined the ex-
tremal trees with maximum and minimum Wiener index among trees with
given maximum vertex degree. Xu and Xu [15] determined all the unicyclic
graphs of order n with given maximum degree and maximal Hosoya index
and minimal Merrifield-Simmons index.

Let G be a connected graph with vertex set V(G) and edge set E(G).
For two distinct vertices z and y in V(G), the distance between z and y is
the number of edges in a shortest path joining z and y. Let Dg(u) be the
sum of all distances from the vertex u € V(G) to all other vertices from
V(G). For E' C E, we use G — E’ to denote the graph obtained from G
by deleting the edges in E’. If e = uv € E(G), we write G — uv instead
of G — {e}. Let C, and P, denote the cycle and path with n vertices,
respectively. By Ly, , we denote the graph obtained from Cx and Pn_k41
by identifying a vertex of Cj with one endvertex of P,_x41. We denote
by F, x the graph obtained from Cj by adding n — k pendent vertices to a
vertex of Cy.

A unicyclic graph is a connected graph with equal vertex number and
edge number. Let Uy, x be the set of all unicyclic graphs of order n > 3 and
girth k > 3. For Upx € Uy, if k =n, then Upn 2 Cpjifk=n—-1, then
Un i = Lpn—1. So in the following we assume that 3 < k<n-2

The Wiener indices of C, and Ly n—1 are: W(Cn) = 3|25 |; W(Lan-1) =
nlon’+6n-8 if n is even; W(Lpn-1) = w, if n is odd.

The authors in [17] determined the extremal graphs with the maximal
and minimal Wiener index among unicyclic graphs with n vertices and
girth k.

Theorem 1.1 Let Upx € Un i (3 < k < n—2) be a unicyclic graph with
girth k.

If k is even, then "8—3 + (n — k)(%’- +n—1) £ W(Uni) £ 1‘81 +(n -
k)(Riinki3k=1 _ &%) The left equality holds if and only if Upx = Fa, and
the right equality holds if and only if Up g = L .

Ifk is odd, then 55 + (n—k)(E2 +n—1) S W(Uns) < K5k +(n—
k)(2iinks3k=1 _ &% _ 1y The left equality holds if and only if Un,k 2 Fu k,
and the right equality holds if and only if Up g = L k.

Corollary 1.2 Let G be a unicyclic graph of order n > 4. Then n?2-2n<
W(G) < 1(n® — Tn + 12). The left equality holds if and only if U = Fr 3
for n > 6, and the right equality holds if and only if G = L, 3. Forn =4,
there are ezactly two unicyclic graphs Cy and Ly 3, with equal Wiener indez
8. For n = 5, the left equality holds if and only if G is Cs or Fs 3, with
Wiener indez 15.
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In this paper we continue the research and obtain the extremal graphs
with the second maximal and second minimal Wiener index among unicyclic
graphs with n vertices and girth k.

We implemented a linear O(|V|) algorithm for calculating the Wiener
index of unicyclic graphs. In Table 1, we present the computational results
for the second-minimal and the second-maximal value of Wiener index of
unicyclic graphs on n = 5 to n = 14 vertices for every girth 3 < k <
n—2, with the number of extremal graphs in the parenthesis. The extremal
graphs Lﬁ'k are labeled with asterisk, while the other extremal graphs are

L} ., where L3 | and L} , are defined in Section 4.

3 4 5 6 7 8 9 10 11 12
5 16 (1)
5 16 (1)
6 26(1) 27Q)
6 29(1) 28(1)
7 38(1) 40(1) 40 (1)
7 48(1) 46(1) 41(1)
8 52 (1) 55(1) 56 (1) 60 (1)
8 74(1) 71 (1) 63(1) 62(1)
o 68(1) 72(1) T4(1) 80(1) 83(1)
9 108 (1) 104 (1) 93* (2) 90 (1) 85 (1)
10 86 (1) 91(1) 94 (1) 102(1) 107 (1) 115(1)
10 151 (1) 146 (1) 133* (1) 127 (1) 118 (1) 118 (1)

-
-

106 (1) 112 (1) 116 (1) 126 (1) 133 (1) 144 (1) 1561 (1)
204 (1) 198 (1) 183* (1) 174* (2) 162* (1) 158 (1) 154 (1)

128 (1) 135 (1) 140 (1) 152 (1) 161 (1) 175 (1) 185 (1)

268 (1) 261 (1) 244* (1) 233* (1) 218* (1) 209* (2) 200 (1) 202 (1)

152 (1) 160 (1) 166 (1) 180 (1) 191 (1) 208 (1) 221 (1) 238 (1) 250 (1)

344 (1) 336 (1) 317* (1) 304* (1) 286* (1) 274* (1) 260* (1) 256 (1) 254 (1)

178 (1) 187 (1) 194 (1) 210 (1) 223 (1) 243 (1) 259 (1) 280 (1) 296 (1) 315 (1)
433 (1) 424 (1) 403* (1) 388* (1) 367* (1) 352* (1) 334* (1) 324* (1) 315 (1) 320 (1)

—
-

-
NN

-
w

- b
o R

Table 1: Wiener index of unicyclic graphs with small order.

2 Preliminaries

Lemma 2.1 [17] Let Gy be a connected graph of order ng > 1 and u €
V(Go). LetT be a tree of orderny > 1 andv € V(T), Np(v) = {v1,v2,...,Vs}.
Let G, be the graph obtained from Go and T by adding edge uwv, G =
G ~vv —vvg—...—vUs +uv; +uve +...+uvy. Then W(Gy) > W(G2).

Lemma 2.2 [10] Let G be a connected graph and v € V(G). Graph G}, is
obtained from G by attaching two paths P =vv,...v; and Q = vuy ... um
of lengths s and m (s 2m > 1) atv. Then W(G; ) < W(G5y1 m-1)-
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Lemma 2.3 [17] Let Gg be a connected graph of order no > 1 and uo, v €
V(Go) be two distinct vertices in Go. P, = uyua...u, and P, =v1v3... 9
are two paths of order s and t, respectively. Let G be the graph obtained
from Go, P; and P, by adding edges uou,, vovy. Suppose that G; = G —
upy + ey and G = G — vovy + u,vy. Then either W(G) < W(G,) or
W(G) < W(G?2) holds.

Lemma 2.4 [10] Let H,X,Y be three connected graphs disjoint in pairs.
Suppose that u,v are two vertices of H, v' € V(X) and v’ € V(Y). Let G
be the graph obtained from H, X, Y by identifying v with v’ and u with v/,
respectively. Let G' be the graph obtained from H, X, Y by identifying the
vertices v,v', ', and G" be the graph obtained from H, X, Y by identifying
the vertices u,v’,u'. Then W(G') < W(G) or W(G") < W(G).

3 The second minimal Wiener index

Let F!, and F2, be the unicyclic graphs depicted in Fig. 1. The graph
F,}, . is obtained from a cycle Cj by attaching n—k—1 pendent vertices to
a vertex up of Ck, and one pendent vertex to a vertex vo # uo of Ck. The
graph F,f, . is obtained from Cj; by attaching n — k—2 pendent vertices and

a path P, to a vertex ug of Cj.
Ul

D 0 V2
@ @R

Y] y

F::'; - FZ,

Figure 1. Two extremal unicyclic graphs
Lemma 3.1 Let U, i € Uy be a unicyclic graph with the second minimal
Wiener indez and girth k (3 £ k < n—2). Then Un . must be of the form
B i=12). . . .
Proof. Let Ci be the unique cycle in U, k. Note that there is at least one
vertex u on Cj of degree greater than two.

If there are at least three vertices on Cj of degree greater than 2, then
by Lemma 2.1 and Lemma 2.4, there exists a graph of the form F}, such
that W(Uy, x) > W(FL,) > W(F,), which contradicts to the fact that
Un,x has the second minimal Wiener index. Hence, there are at most two
vertices in C}. of degree at least 3.

If there are exactly two vertices of C). with degree at least 3, then by
Lemma 2.1 and Lemma 2.4, we conclude that U, ; must be of the form
Fl..

If there is exactly one vertex of Ci with degree at least 3, then by
Lemma 2.1, we conclude that Uy, x must be of the form F2,. B

Now we can present the proof of the main result of this section.
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Theorem 3.2 Let Uy, i € Up i be a unicyclic graph with the second min-
imal Wiener indezx and girth k (3 < k < n—2). Then Uni & F,i'k (as
shown in Fig. 1).
Proof. By Lemma 3.1, we need to compare W( k) and W(F, k)

We can calculate the Wiener index of W(F} ;) by summing the Wiener
index of F,,_ 1,k and DF: (v1). Let [ be the dlstance between ug and vg.

W(FL,) = +(n Is:--l)('fl +n-— 2)+4+(n k-1)(l+1)+n-1,
if k is even;
W(FL,) = 55t 4 (n—k—1)(E 4 n—2)+ ol (n—k—1)(I+1) +n—1,
if k is odd.

It follows that W(F,}’ &) attains the minimum for [ = 1.

Similarly, we have
WEF2) =58+ (n—k-1)(E +n-2)+. 4 3n—k—5,if k is even;
W( 3. = -'°+(n k— 1)(#+n~2)+#+3n—k—5, if k is
od

From the above computations, it follows W (F, k) W (F, k) = (3n —
2k—3)-(3n—k—5) = —k+2<0, and F], has the second minimal
Wiener index in L{n,k [ |

For n = 5 the second minimum Wiener index is 16, which is achieved
only for F5 4 and FJ 3. For n =6, the second minimum Wiener index is 26
which is achieved only for Fs,4, Fg5 and F 5.

Corollary 3.3 Among unicyclic graphs on n > 7 vertices, the second min-
imum Wiener index is n* — n — 4 which is achieved only at Fy, 4 or F} 5.
Proof. According to Theorem 1.1 and Theorem 3.2, the second minimum
value of the Wiener index is achieved at Fy, x (k # 3) or F!

Case 1. The graphs F, ; with k > 3.

If k is odd, from Theorem 1.1, we have W (F,, 5) = n2—~10 and W (F,,, k)-—
W(Fas)=3(k?—ak—5)n— & + % +10> J(k2 -4k —5)(k+1) - & +
%4+10= 8(k 5)(k2 — k — 14) > o with equality if and only if k£ = 5 and
n = 6.

If k is even, we have W(F,, 4) = n? —n —4 and W(Fpx) — W(Fn4) =
L2 —ak)n—5 +k+4 > 1(k2—k)(k+1)— £ +h+a = 1(k—4)2(k+2) > 0,
W1th equality 1f and only if k = 4.

It is easy to see that W(F,s) > W(F,4) for n > 6 and W(Fss5) =
W (Fg,a)-

Case 2. The graphs F, ,.

If k > 3 is odd, we have W( 13)=n’—-n—4and W(F, ne)—W(FL3) =
E2 (2n(k—1)— k> -3k -8) > k k=3 (2(k+1)(k—1)—k2 3k — 8)
k= £23(k — 5)(k + 2) > 0, with equallty ifandonlyif k=5and n =k + 1.



If k > 4 is even, we have W(F1 ) =n? —9 and W(F},) - W(Fy,) =
k=t (onk — k2 — 4k — 16) > E3% (2(k+1)k — k% — 4k — 16) = 52(k% -
2k — 16) > 0.

It is easy to see that W(F13) < W(Fy ) for n > 5.

Combining the above two cases, we get that the second minimum Wiener
index is achieved for Fy, 4 and F ;. @

4 The second maximal Wiener index
Let H; = L} x(s:t), Ha = k(s,t) and H; = L3 k(s,t l) be the graphs
described below, where s+t=n—-kand1<!< t -

u; t—l ut

1 Y1 Ve @< “ v1 vz s
1 Vg1 'Us
1 Vg I'U.s

H, = nk(sit) Hy = nk S,t) nk(s!t l)

Figure 2. Three classes of unicyclic graphs

Lemma 4.1 Let Uy i € Un x be a unicyclic graph with the second mazimal
Wiener index and girth k (3 < k < n—2). Then Uy is of the form H;
(¢=1,2,3), where s+t +k =n (as shown in Fig. 2).
Proof. Let Ci be the unique cycle in U, . By Theorem 1.1, there exist
at least two vertices of degree greater than two in U, k. Note that there is
at least one vertex u on Cj of degree greater than two.

If there are at least three vertices on Cj of degree greater than 2, then
by Lemma 2.2 and Lemma 2.3, there exists a graph of the form H; such
that W(Upx) < W(H1) < W(Ln,), which contradicts to the fact that
Uy« has the second maximal Wiener index. Hence, there are at most two
vertices in Cj of degree at least 3.

Casel.3<k<n-—4.

If deg(u) > 5, by Lemma 2.2 and Lemma 2.3, there exists a graph of the
form Hy such that W (U, ) < W(H2) < W(Ln k), which is a contradiction.
Hence, 3 < deg(u) < 4. Let v be a vertex of degree greater than 2, different
from u. We consider the following two subcases.

Subcase 1.1. v € V(Cy). Similarly we have 3 < deg(v) < 4. If at least
one of the vertices u and v has degree 4, then by Lemma 2.2, there exists
a graph of the form H; such that W(Un i) < W(H)1) < W(Ly k), which
is a contradiction. Therefore, it follows deg(u) = deg(v) = 3 and all other
vertices of Uy, x have degree 1 or 2.

Subcase 1.2 v ¢ V(Cy). If there are other vertices not from Cj with
degree greater than 2, then by Lemma 2.3, there exists a graph of the form
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Hj such that W (U, x) < W(H3) < W(Ln,k), which is impossible. Hence,
we can assume that u and v are the only vertices of degree greater than 2
in Up k. Similarly as above, we conclude that deg(u) = 3 and deg(v) =

Case 2. k =n —3, k = n — 2. Using a similar reasoning as in Case 1,
we can get that G must be of the form H;, which implies the result. B

Let £31.k be the set of all unicyclic graphs of the form like H; (i = 1,2, 3),
respectively.

‘2 @&k@%

Figure 3. The extremal unicyclic graphs

Lemma 4.2 For 3 < k <n-4, L}, (i = 1,2,3) (see Fig. 3) is the
only graph with the second mazimal Wiener indez in L} e (0= 1,2,3),
respectively.

Proof. We will consider three cases.

Case 1. For graphs in £} ke Let Ll n k(S8 \ {ue, ... u, v, ..,Vs} be
the graph G from Lemma 2.3. Then, we get W(Lﬂ x(8,t)) S W(L], (1,n—

— 1)), which implies the result.

Case 2. For graphs in £2 ,. By repetitive application of Lemma 2.2,
we get the result.

Case 3. For graphs in l:ﬁ, By Lemma 2.2, we have W (L3 x(st0)) <
W(LE ;.(1,n—k—1;1)). This means that the pendent vertex v; is attached
at u, 1 <! < n—k—2 Color the vertices in L3 ,(1,n — k — ;) \
{wi—1,w, 41, - - -, Un—k—1,v1} Ted, and uz-l,’tthul+1,---,un-k-1 blue. It
follows that W (L3 , (1,n—k—1;1)) < W(L3 ,(1,n—k-1; n——k—-2)) because
the distance between a red vertex and a blue vertex remains unchanged,
the sum of distances between v; and blue vertices remains unchanged, while
the distance between a red vertex and v; increases. The equality holds if
andonlyifl=n—k—-2. 8

Now we can present the proof of the main result of this section. The
cases 5 < n < 12 are presented in Table 1.

Theorem 4.3 Let Uy, i € Uy be a unicyclic graph with the second mazi-
mal Wiener indez and girth k (3 <k <n-2) andn > 13.

(i) Ifk=3,k=4,k=n—-3ork=n—2, thenUp = L], (as shown in
Fig. 38), with d(ug,vo) = [ 1;

(%) If5 < k<n~—4, then Un k = L3, (as shown in Fig. 3).
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Proof. By Lemma 4.1 and Lemrna 4.2, we need only to consider the values
W(L,l,,,,), W(LZ,) and W(L3 ,). From Lemma 2.4, we have W(L} ;) >
W(LZ ). Therefore, we need to compare W (L}, ;) and W(L3 ;).

It is well known that (see [6]) D¢, (u) = | & 7 2|

We can calculate the Wiener index of W(L;, ;) by summing the Wiener
index of L,_; % and Du (v1). Let I be the distance between ug and vp.
W( 1)= ___+(n —k— 1)((n_ )3Jne-l)k+3k— 12)+i:3 +gn—k“;—k— !+
(n- gt 1)l+n 1, if k is even;
W(LL,) = B0 (n— k- 1)((=tlHec skl _ 2 3y 4 Koy
Mm+(n k—1)l+n-1,if k is odd.

We get that W(L], ;) attains the maximum value for I = 1%£].

Slmllarly, we have

w(L? k) - -—+(n—k 1)((n—1)’+(n-1)k+3k-1 1{%)+12_2+(n—k—222gn—k—1)+
(n—- k l)k + 2, if k is even;
W(L k) k(k —l! + (,n k— 1)((n—1)2+(n—1)k+3k 1 _’_ _ %) + k’_;l +
M"‘—"’Jl+(n k — 1)k + 2, if k is odd.

From the above computations, for 3 < k < n — 3 it follows W(L}, ,) —
W(Lﬁ‘k) — (!n-k!!;—k— ) + (n -k 1)[%] +n-— 1) —_ _( n—k-—22n—k 1 +
(n—k-l)k+2) = —(n—k- 1)([5] —1) +n-3.

Consider the quadratic function f(k) = —(n—k—1) ([£§]-1) +n-3.
We have f(4) = 2 > 0 and f(5) = 9 — n < 0; while on the other side,
f(n—4) =n+6-3[3] <0and f(n-3) = n—1—2["‘3]>0
For5 <k <n-4, we conclude that f(k) < 0 and L3 , has the second
maximum Wiener index, while for k = 3,4,n —3,n—2 the graph L} ; has
the second maximum Wiener index. B

From the above proof and the values f(5), f(n — 4) and f(n — 3),
it follows that for (n,k) € {(9,5),(11,6),(12,8)}, there are two extremal
unicyclic graphs (as shown in Table 1).

Corollary 4.4 Among unicyclic graphs onn > 5 vertices, the second maz-
'mlwm Wiener index is }(n® — 13n + 36) which is achieved only at Lpn 4 or
Ln 3

Proof. According to Theorem 1.1 and Theorem 4.3, the second maximal
value of the Wiener index is achieved at Ly i (k # 3), Ll",c or L3 . ok

Case 1. The graphs L,  with k > 3.

If k is odd, we have W(Ln 5) 6 n3 — 25n + 80) and W(Lns) —
W(Lny) = (k2 — 2k - 15)n - + 3k -2 415 > L(k? - 2k +
15)(k + 1) — -f'-k3 -+ 15 = -1—(k 5)(k2 + 11k — 54) > 0, with
equality if and only if k=5 a.nd n = 6.
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If k is even, we have W(Ln 4) = 3(n® — 13n + 36) and W(Ln,4) —
W(Ln) = 2(k% - 2k 8)n -~ SR+ —E+6> 1(k® -2k -8)(k+
1) - k3 + 3k% — £ + 6 = L (k — 4)(k + 12)(k — 2) > 0, with equality if
and only if k = 4.

It is easy to see that W (L, 5) < W(Ln,4) for n > 5.

Case 2. The graphs L ,.

If k > 3 is odd, we have W(L) ;) = §(n® — 13n + 36) and W(L}, 3) —
W(LL,) = L2 —9)n— Sk~ Tkt > L(k2—0)(k-+1)— Bk~ L+ 5 =
k3 (Ic:2 + 9k — 34) > 0, with equahty if and only if k = 3.

"It k > 4 is even, we have W(L. ;) = §(n® — 19n + 66) and W(LL,) -
W(LL ;) = ;(k*~16)n—3 k3+1k+12 > 4(1c2 16)(k+1)—; lk+12—
b (k2 + 10k — 48) >0, Wlth equality if and only if k = 4.

“Itis easy to see that W(L 3) > W(LL,) for n > 5.

Case 3. The graphs L3 ,.

If £ > 3 is odd, we have W(L 3) = §(n® — 13n + 30) and W(L3 ;) —

W(L3 k) = 3~ 2k~ 3)n— £k Lk k42> (K — 2k 3)(k+
1) - + 3k - Lk+2=%3 (k+10)(k—1) > 0, with equality if and

only if k = 3.
If k > 4 is even, we have W(L3 ;) = ('n3 —19n + 54) and W(L3 ;) -

W( k) = (k2—2k—8)n—§%k3+1k2 tk+6>L(k?—2k- 8)(k+
Sk 1k2 — Lk +6 = 2k + 12)(k - 2) > 0, with equality if and
only ifk= 4.
It is easy to see that W(L3 5) > W(L3 ,) for n > 5.

Comblmng the above three cases, and comparing (n3 — 13n + 36) with
w(L3 n,3)s We get that the second maximum Wiener index is achieved for

L4 andL 3
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