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Abstract

The Harmonic index H(G) of a graph G is defined as the sum of weights
WE)-%GY of all edges uv of G, where d(u) denotes the degree of a vertex u
in G. In this paper, we consider the Harmonic index of unicyclic graphs
with a given order. We give the lower and upper bounds for Harmonic
index of unicyclic graphs and characterize the corresponding extremal

graphs.
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1 Introduction

For a graph G = (V, E), the Harmonic index H(G) of a graph G is
defined as the sum of weights W of all edges uv of G, where d(u)
denotes the degree of a vertex u in G, i.e.,

9
HO) = ). govedw)

uv€ E(G)

In recent years, many researchers focus on topological indices of graphs,
such as Randié¢ index, Wiener index, Hosoya index. For a comprehensive
survey of mathematical properties of the topological indices, see the book
of Li and Gutman [4]. Favaron, Mahéo and Saclé [3] disproved some conjec-
tures in [2] about the eigenvalues and Harmonic index. In [5], the lower and
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upper bounds for Harmonic index on trees and general graphs are obtained.
In this paper, we consider the lower and upper bounds for Harmonic index
on unicyclic graphs.

For a vertex u of a graph G, we use Ng(u) (or N(u)) and dg(u) (or d(u))
to denote the neighborhood and the degree of u, respectively. If d(u) = 1,
then we call u a pendent vertex. For two vertices v; and v; (i # j), the
distance between v; and v; in G is the number of edges in a shortest path
joining v; and v;. We use G — uv to denote the graph obtained from G by
deleting the edge uv € E(G). Similarly, G + uv is the graph that arises
from G by adding an edge uv ¢ E(G), where u,v € V(G). We denote by
S} the unicyclic graph obtained from the star S, on n vertices by joining
its two pendent vertices, and denote by C,, the cycle on n vertices. A
path P = upu; ... ux (k > 2) in G is called a pendent path if d(up) > 3,
d(u1) = d(ug) = -+ = d(ux—1) = 2 and d(ux) = 1. For n = 3, C,, is the
unique unicyclic graph, so we only consider n > 4 in the following. For
convenience, let G(n) be the set of unicyclic graphs with n > 4 vertices.

For terminology and notations not defined here, we refer the readers
to [1].

2 The lower bound for Harmonic index on
unicyclic graphs

Denote by G* the graph in G(n) such that H(G*) < H(G) for any graph
G e G(n).

Lemma 1 Let C = vivy...vxv1 (k > 3) be the unique cycle in G*, then
k=3.

Proof. Suppose to the contrary that k& > 4. Since G* is a unicyclic graph,
we have N(v;) N N(v2) = 0. Let N(v,) = {uy,uz,...,uz} and N(vq) =
{w1,wa, ..., wy}, where u; = vs, ug = i, wy = v; and wa = vs.
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Figure 2.1 G* and G'.

Let G' = G* — {vaws,...,v2wy} + {viwy,...,v1wy}, see Figure 2.1.
Then G’ € G(n) and we have

H(G") - H(G")

Z 2(y—1) Z 2(z-1)

Z (d(wi) +x)(d(wi) +z+y 1) 2 (d(w;) + y)(d(wi) +z+y—1)
>0,

a contradiction. Hence k = 3 and the assertion of the lemma holds. ]

Lemma 2 Let C = uwvwu be the unique cycle in G*. If d(u) > 3, then
every verter in N(u) \ {v,w} has degree ezactly one.

Proof. Suppose for a contradiction that some vertex in N(u) \ {v,w}, say
uy, has degree at least 2. Without loss of generality, suppose d(u,) = k > 2
and N(u) \ {u} = {ug,...,ux}. Since G* is a unicyclic graph, we have
{v,w}n {ug,...,uc} =0

Let G' = G* — {ujug,uyus,...,v1ux} + {uug, uug, ..., uux}, see Fig-

ure 2.2 for an illustration. Then G’ € G(n) and it is easy to calculate that
H(G*) > H(G"), which contradicts the assumption that H(G*) < H(G' )

This proves Lemma 2.

By the same arguments as in the proof of Lemma 2, we can obtain the
same conclusion for the vertices v and w.

Lemma 3 Let x > 1 be an integer, then f(z) = 46x2 — 6z — 16 > 0, and

both g(z) = sti¥merny and h(z) = TEiaseTey are monotone decreasing
Sfunctions.
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Figure 2.2 G* and G'.

Proof. For z 2 1, f(z) > 4622 — 622 — 1622 = 2422 > 0,
9(z+1) ~ 9(e) = sty <O

h(z +1) - h(z) = ermtres <O
This finishes the proof of Lemma 3. |

Lemma 4 Let C = vvwu be the unique cycle in G* with d(u) > d(v) >
d(w) > 2, then d(v) = d(w) = 2.

Proof. Without loss of generality, suppose that d(u) = z, d(v) = y and
d(w) = z.

Ifd(w) =z > 3,thenz >y > z > 3. Let N(u)\{w,v} = {uy,...,uz—2}
and N(w)\ {u,v} = {ws,...,w.—2}. Then by Lemma 2, we have d(»;) = 1
forl1<i<z-2,andd(w;))=1for1<i<z-2.

Figure 2.3 G* and G'.



Let G' = G* — ww, + uwy, see Figure 2.3. Then G’ € G(n) and we get

H(G") - H(G")

_2(z—2) |, 2(z-2) 2 2 2(z-1) 2(z-3) 2

T+l z+1 z+y y+z z+2 2z  zHy+1
2

Ty+z-1

B 6 6 2 2

T EADE+Y) e+ ]) @ YEryrD)  @Graw+e-1)
6 6 2 2

2 GiDE+d) T D) T @) 2202-1)

_ —11z® -3z +2 11z -7

e+ )E+2)Cr+D) 2+ Dz -1)

S ~112%2 -3z 42 + 11z -7

Tz(z+1)(x+2)(2x+1)  z(x+1)(2x-1)

_ 4622 — 6z — 16

T z(z+1)(z+2)(2x-1)(2z+1

)>0,

a contradiction. Therefore d(w) = 2.
In the following argument, we will further show that d(v) = 2.

Suppose to the contrary that d(v) = y > 3. Let N(u) \ {w,v} =
{u1,...,uz—2} and N(v)\ {w,u} = {v1,...,vy—2}. Then by Lemma 2, we
have d(u;) =lfor 1 <i<z—2,andd(y;)=1for1<i<y—2.

Figure 2.4 G* and G'.
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Let G' = G* — vv; + uv,, see Figure 2.4 for an illustration. Then
G' € G(n) and we have

H(G*) - H(G")
=2(:1:—2) 2(y-3) 4—2x+ 2 2y-=3) 2

z+1 y+1 z+2  y+2 Y z+4+3
- —4(z + 4) 4(y + 3)
ErDE+DE+3 | W+ DE+2)
—4(z +4) 4(z + 3)
T(x+1)(z+2)(z+3) z(z+1)(z+2)
N 4(2z + 9) >0
Tz(z+1)(z+2)(z+3) "

again a contradiction. Hence d(w) = 2. This completes the proof of
Lemma 4. 1

It follows immediately from Lemma 2 and Lemma 4 that the following
theorem holds.

Theorem 1 Let G € G(n), then H(G) > § — X243 with equality if and
only if G = S},

3 The upper bound for Harmonic index on
unicyclic graphs

Theorem 2 Let G € G(n), then H(G) < § and the equality holds if and
only if G=C,.

Proof. We denote by G the graph in G(n) such that H(G) > H(G) for any
graph G € G(n). Let C = vyva...vv; (k = 3) be the unique cycle in G.
To prove Theorem 2, it suffices to show that k = n.

Suppose for a contradiction that k < n. Then there exists some vertex
in {v1,v,,..., v} with degree at least 3. Without loss of generality, we may
assume that dz(v1) > 3 and Ng(vq) \ {ve, v} = {u1,ua,...,us} (s > 1).

Case 1. For some vertex u; (1 <14 < s), we have dz(u;) = 1.

Let da(v1) = = > 3, da(v2) = ¥ = 2, and assume the degrees of
N(v) \ {ve,u;} are {p1,p2,...,Pz—2}. Construct G’ = G — v vz + u;ve,
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then G' € G(n) and C = vyu;vav3... Vv is the unique cycle in G'. But
now, we have

H(@)—H(G’)
z—2 -2
‘Z L2 ‘Z 2 2
p.+:z T4y p¢+a:—1 y+2
s 2 2z — 2) 2z — 2)

<0,

Z(p;+=v)(pa +z-1) @+y)w+2)  (@+y)y+2)

i=1
a contradiction.
Case 2. For every vertex u; (1 <% < s), we have dg(w;) > 2.

In this case, the graph G — vyvg — v1v% has two components, say G and
Gj. Let G, be the component containing v;. Then dg,(v1) =z —2 and
dg, (v) = dg(v) for every vertex v € V(G1) \ {v1}.

We claim that dG(vl) = 3 (i.e., dg, (v1) = 1) and G} is a path of length
at least 2. Suppose this is not true. Since dg(u;) = dg, (v1) 2> 2, we have
dg,(v1) > 2 or there exists some vertex in V(Gy) \ {v1} with degree at
least 3. It is easy to see that in both cases, there exist at least two pendent

vertices in Gy \ {v1}.

Without loss of generality, we may assume that dg, (w;) = dg, (w2) = 1.
Suppose w; and ws have the common neighbor, say w. Since G is a tree
and dg(uw;) = de,(u:) 22 (1 <4 < s), we have w # v; and d(w) =1 > 3.
Let G’ = G — ww; +w w, and assume the degrees of Ng(w) \ {w, w2} are
{Pl,P2, 1pt—2}s then

H(G’)—H(@)
7’*“— t+1 3T Lprt 41
2 2 2 _2 2
= m———— > ——— >0
;(pz+t)(pz+t—1)+3 fF1°3 f¥1°"

contradicting the assumption that H(G) > H(G). So we deduce that w;
and wo have distinct neighbors. Let Ng, (w1) = {w} and Ng, (w2) = {w'}
such that w # w’. Then d(w) = r > 2 and d(w’) =t > 2. By symmetry,
we may assume that > ¢ > 2, and the degrees of Ng(w) \ {w1} are
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{a1,92,...,8r—1}. Let G’ = G — ww; + wywy, then G’ € G(n) and we have

H(G')—H(é)

5> -5 2

‘1q1+r- t+2 = a+T r+1 T t+1
2 2 2 2

=§(Qi+1‘)(q§+’r—1) Y3 L GA e+

If r > 3, then it is easy to calculate that the above equation is greater than
0, a contradiction. Therefore » = ¢ = 2. By the choice of w; and ws, we
know that every pendent vertex is adjacent to a vertex of degree 2 in G;.

We now consider two subcases to finish the proof of the above claim.
Subcase 2.1. dg,(v1) = z — 2 > 2 and dg, (v) < 2 for every vertex
veE V(Gl) \ {1)1}.

For i = 1,2, let P; be the pendent path linking v; and w; in G (also in
G1), then vyu; € E(P;). Construct G' = G—vus +w1u2, see Flgm'e 3.1 for
an illustration. Then G’ € G(n) and H(G") — H(G) = m >0
for z > 3, a contradiction.

Figure 3.1 G and G'.

Subcase 2.2. There exists some vertex in V(Gy) \ {v1} with degree at
Jeast 3.

In this case, it is easy to see that there always exist two pendent paths
which are attached to a same vertex of degree at least 3 (since every pen-
dent vertex is adjacent to a vertex of degree 2 in G1). Hence by a similar
argument as in the proof of Subcase 2.1, we can obtain the same contra-
diction.

Hence the claim holds. If dz(va) > 3, then by the same argument as
above, we can show that v has the same property as that for vy: dg(v2) =3
and the component of G — vyv3 — vavs containing vy, say Gy, is a path of
length at least 2.
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Figure 3.2 G and G'.

By the claim, let G; = viwnwie... wik, (k1 > 2) and let G2 =
VoWa Waa . . . Wok, With ko > 2 if da(v2) = 3. We can now prove Theo-
rem 2.

Suppose da(ve) = 2. Let G' = G- v1v2 + Wik, U2, see Figure 3.2(a).
Then G’ € Q(n) and we have H(G’) - H(G) = mm + % >0,
a contradiction. So we conclude that dz(ve) = 3. Let G’ = G—vvy+

W1k, Wak, , See Figure 3.2(b). But now, H(G’) ~-H@G) = @m >
0, again a contradiction. |
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