On E_{ν} — cordial labeling

Maged Z. Youssef

Department of Mathematics, Faculty of Science, Ain Shams University, Abbassia 11566, Cairo, Egypt.

Abstract

Cahit and Yilmaz [15] called a graph G is E_k —cordial if it is possible to label its edges with numbers from the set $\{0,1,...,k-1\}$ in such a way that, at each vertex v of G, the sum modulo k of the labels on the edges incident with v satisfies the inequalities $\left|m(i)-m(j)\right|\leq 1$ and $\left|n(i)-n(j)\right|\leq 1$, where m(s) and n(t) are, respectively, the number of edges labeled with s and the number of vertices labeled with s. In this paper, we give a necessary condition for a graph to be s0 cordial for certain s1. We also give some new families of s2 cordial graphs and we prove Lee's conjecture about the edge-gracefulness of the disjoint union of two cycles.

MSC: 05C78.

Keywords: Edge-cordial, \boldsymbol{E}_k — cordial, k-cordial, edge-graceful and harmonious labelings

1. Introduction

All graphs in this paper are finite, simple and undirected. We follow the basic notations and terminology of graph theory as in [5].

Let G be a graph with vertex set V(G) and edge set E(G). An edge labeling $f: E(G) \to \{0,1,...,k-1\}$ induces a vertex labeling $f^+: V(G) \to \mathbb{Z}_k$, defined by $f^+(u) = \sum_{uv \in E(G)} f(uv) \pmod k$, for all vertex $u \in V(G)$. For $i \in \mathbb{Z}_k$, let $m_i(f) = \left| \{e \in E(G): f(e) = i\} \right|$ and $n_i(f) = \left| \{u \in V(G): f^+(u) = i\} \right|$. f is called an

 E_k — cordial labeling of G, if the following conditions are satisfied for all $i,j\in\mathbb{Z}_k: \mid m_i(f)-m_j(f)\mid \leq 1$ and $\mid n_i(f)-n_j(f)\mid \leq 1$. A graph G is called E_k — cordial if it admits a E_k — cordial labeling.

The notion of E_k —cordial labeling was introduced by Cahit and Yilmaz [4] in 2000. Yilmaz and Cahit [15] first introduced the notion of E_2 —cordial labeling in 1997 under the name of E-cordial as a weaker version of edge-graceful labeling.

Lo [10] introduced the notion of edge-graceful graphs. A (p,q) graph G is said to be edge-graceful if there exists a bijection f from E(G) to $\{1,2,...,q\}$ so that the induced mapping f from f from

We present some definition of labelings related to our work. Let G be a graph with vertex set V(G) and edge set E(G). A vertex labeling $f:V(G)\to\mathbb{Z}_k$ induces an edge labeling $f^+\colon E(G)\to\mathbb{Z}_k$, defined by $f^+(xy)=f(x)+f(y)$, for all edge $xy\in E(G)$. For $i\in\mathbb{Z}_k$, let $n_i(f)=\big|\{v\in V(G)\colon f(v)=i\}\big|$ and $m_i(f)=\big|\{e\in E(G)\colon f^+(e)=i\}\big|$. A labeling f of a graph G is called k-cordial if $|n_i(f)-n_j(f)|\leq 1$ and $|m_i(f)-m_j(f)|\leq 1$ for all $i,j\in\mathbb{Z}_k$. A graph G is called k-cordial if it admits a k-cordial labeling.

The notion of k-cordial labeling of graphs was introduced by Hovey [8] as a generalization of harmonious and cordial labelings. Harmonious labeling was introduced by Graham and Sloane [7]. They defined a graph G of q edges to be harmonious if there is an injection f from V(G) to \mathbb{Z}_q such that the induced function f from E(G) to \mathbb{Z}_q , defined by ,

 $f^*(xy) = f(x) + f(y)$ for all edge $xy \in E(G)$, is a bijection, while cordial labeling was introduced by Cahit [2] who called a graph G is cordial if there is a vertex labeling $f:V(G) \to \{0,1\}$ such that the induced labeling $f^*:E(G) \to \{0,1\}$, defined by $f^*(xy) = |f(x) - f(y)|$, for all edge $xy \in E(G)$ and the following inequalities hold: $|n_0(f) - n_1(f)| \le 1$ and $|m_0(f) - m_1(f)| \le 1$, where $n_i(f)$ (resp. $m_i(f)$) is the number of vertices (resp. edges) labeled with i.

Shiu et al. [12] proved that the composition of the path P_3 and any null graph of odd order is edge-graceful. Hovey [8] has obtained the following results: odd cycles with pendant edges attached are k-cordial for all k; cycles are k-cordial for all odd k, for k even C_{2mk+j} is k-cordial when $0 \le j < \frac{k}{2} + 2$ and when k < j < 2k; $C_{(2m+1)k}$ is not k-cordial for even k and he conjectured that C_{2mk+j} is k-cordial if and only if $j \ne k$, where k and j are even and $0 \le j < 2k$. This conjecture was verified by Tao [13]. This result combined with those of Hovey [8] show that for all positive integer k the n-cycle is k-cordial with the exception that k is even and n = 2mk + k. Terms and notations not defined in the paper can be found in ([5] and [6]). The later reference surveyed the known results to all variations of graph labelings appears in this paper.

In the next section of this paper we give a necessary condition on E_k —cordial labelings for certain k and we give new families of E_k —cordial graphs. In Section 3, we deal with cycles and we present a proof of a conjecture due to Lee (see [9]).

2. New families of E_k — cordial graphs

In this section, we give A necessary condition for a graph to be \boldsymbol{E}_k -cordial in certain cases of k and give some new families of \boldsymbol{E}_k —cordial graphs.

Cabaniss et al. [1] observed that if G is a (p,q) graph with q=np, then an edge-graceful with edges labeled 1 to q is equivalent to using each edge label 1,2,...,p exactly n times so that the induced vertex labeling yields distinct labels modulo p. We formalize this observation in the following theorem.

Theorem 1. Let G be a (p,q) graph with q=np, then G is edge-graceful if and only if G is E_p -coordial.

Corollary 1. C_n is edge-graceful if and only if C_n is E_n —cordial.

Yilmaz and Cahit [15] have observed that any graph of order p fails to be E-cordial when $p \equiv 2 \pmod 4$. In the following theorem we generalize the result of Yilmaz and Cahit for all even k.

Theorem 2. Let k be even. If G is a (p,q) E_k — coordial graph with p and $q \equiv 0 \pmod{k}$, then $p \equiv 0 \pmod{2k}$.

Proof. Let f is a E_k —cordial labeling of G , then

$$\sum_{v \in V(G)} f^+(v) \equiv 2 \sum_{e \in E(G)} f(e) \pmod{k}.$$

As p and $q \equiv 0 \pmod k$, then $m_i(f) = \frac{q}{k}$ and $n_i(f) = \frac{p}{k}$ for all $i \in \mathbb{Z}_k$ and hence

$$\sum_{i=0}^{k-1} i \frac{p}{k} \equiv 2 \sum_{i=0}^{k-1} i \frac{q}{k} \pmod{k} \Rightarrow \frac{p(k-1)}{2} \equiv 0 \pmod{k}, \text{ and as } k \text{ is even, then } p \equiv 0 \pmod{2k}. \square$$

Corollary 2. (i) If G is E_2 -cordial of even order p, then $p \equiv 0 \pmod 4$ [15].

(ii) Every graph of order congruent to $4 \pmod 8$ and of size congruent to $0 \pmod 4$ is not E_4 -cordial.

Theorem 3. Let k be odd and let G be a non-null $(p,q)E_k$ — cordial graph with $p \equiv 0 \pmod{k}$ and H be $(n,m)E_k$ — cordial graph. If q or $m \equiv 0 \pmod{k}$, then G + H is E_k — cordial graph.

Proof. Let V $(H) = \{u_1, u_2, ..., u_n\}$ and let g, h be the E_k —cordial labelings of G, H respectively. Define $f: E(G+H) \rightarrow \{0,1,...,k-1\}$ as follows:

$$f \mid_{E(G)} = g$$
, $f \mid_{E(H)} = h$ and for all $v \in V(G)$:
 $f(uv) = i$ if $g^+(v) = i$ and for all $u \in V(H)$, in case of $n \not\equiv -1 \pmod{k}$ and otherwise,

f(uv) = i if $g^+(v) = i$, for all $u \in V(H) - \{u_n\}$ and $f(u_nv) = k - 1 - i$ if $g^+(v) = i$.

For every $u \in V(H)$, as

$$f^{+}(u) = (h^{+}(u) + \frac{p}{k} \sum_{i=0}^{k-1} i) \pmod{k}$$

$$= (h^{+}(u) + \frac{p(k-1)}{2}) \pmod{k}$$

$$= h^{+}(u) \pmod{k}, \quad (as \ k \text{ odd})$$

we get $n_j(f|_{V(H)}) = n_j(h)$, for all $0 \le j \le k-1$.

Again, as k odd, there exists a permutation $\sigma \in S_p$ such that $f^+(v_i) = g^+(v_{\sigma(i)})$ for all $1 \le i \le p$, that is,

$$n_{j}(f|_{V(G)}) = n_{j}(g)$$
 for all $0 \le j \le k-1$. Now, for all $0 \le i \le k-1$, $n_{i}(f) = n_{i}(g) + n_{i}(h) = \frac{p}{k} + n_{i}(h)$ and $m_{i}(f) = m_{i}(g) + m_{i}(h) + \frac{pn}{k}$.

As $|n_i(f) - n_j(f)| = |n_i(h) - n_j(h)| \le 1$ and if q or $m \equiv 0 \pmod{k}$, we get

 $\left|m_i(f) - m_j(f)\right| = \left|m_i(g) - m_j(g) + m_i(h) - m_j(h)\right| \le 1$ and f is a E_k -coordial labeling of G + H and this completes the proof. \square

Corollary 3. If G is a non-null (p,q) E_k —cordial graph with k odd and $p \equiv 0 \pmod{k}$, then $G + \overline{K}_n$ is E_k —cordial.

Corollary 4. Let k be odd, then K_n is E_k — cordial if $n \equiv 0$ or $1 \pmod{k}$.

Proof. As K_k is edge-graceful for odd k [1], then by Theorem 1, K_k is E_k —cordial. Now, applying Theorem 3 recursively by taking firstly both of the graphs G and H as K_k and secondly consider one of the two graphs as K_{2k} and the other as K_k and so on, we get that K_n is E_k —cordial if $n\equiv 0\pmod k$ and then applying the same theorem taking the graph G as K_n , $n\equiv 0\pmod k$, and H as K_1 , we get K_n is E_k —cordial if $n\equiv 1\pmod k$. \square

Cahit and Yilmaz [4] proved that K_n is E_3 —cordial for all $n \ge 3$. Their proof is so long. However we present a simple one

Corollary 5. K_n is E_3 —cordial for all $n \ge 3$ [4].

Proof. If $n \equiv 0$ or $1 \pmod 3$, then K_n is E_3 —cordial, by Corollary 4. If $n \equiv 2 \pmod 3$, $n \geq 5$ we prove only that K_5 is E_3 —cordial and then applying Theorem 3 by taking the graph H as K_5 and firstly the graph G as K_3 , secondly as K_6 and thirdly as K_9 and so on, we get the required. Now, we show that K_5 is E_3 —cordial. Let $V(K_5) = \{v_1, v_2, ..., v_5\}$, define $f: E(K_5) \rightarrow \{0, 1, 2\}$ as $f(v_1v_i) = 2$, i = 2, 3, 4, $f(v_1v_5) = 1$, $f(v_2v_i) = 1$, i = 3, 4, $f(v_2v_5) = 0$, $f(v_3v_4) = 0$, $f(v_3v_5) = 2$ and $f(v_4v_5) = 0$. One can easily show that f is an E_3 —cordial labeling of K_5 . \square

3. Cycles and other labelings

We note that the notion of \boldsymbol{E}_k —cordial and k-cordial labelings coincide for cycles or for the graph consisting of disjoint union of cycles. We formalize this observation in the following theorem.

Theorem 4. Let G be the disjoint union of cycles of p vertices, G is E_p — cordial if and only if G p-cordial.

Corollary 6. C_n is E_n —cordial if and only if C_n k-cordial.

Cahit and Yilmaz [4] proved that C_n is E_3 —cordial for all $n \ge 3$. However, from the work of Hovey [8] and Tao [13], we get the following:

Corollary 7. C_n is E_k — cordial for all odd k and if k is even, C_n is E_k — cordial if and only if $n \not\equiv k \pmod{2k}$.

Graham and Sloane [7] showed that C_n is harmonious if and only if n is odd. Again as C_n is n-cordial if and only if C_n is harmonious [8]. Lo

[10] and Cabaniss et. Al [1] proved that C_n is edge-graceful when n is odd. However, from Corollary 1 and Corollary 6, we get the following result:

Corollary 8. C_n is edge-graceful if and only if n is odd.

In 1987, Lee (see [9]) conjectured that $C_{2m} \cup C_{2n+1}$ is edge-graceful for all $m \geq 2$ and $n \geq 1$ except for (m,n) = (2,1). Lee, Seah and Lo [9] have proved this conjecture for the case m=n and m is odd. They also prove: mC_n is edge-graceful if m and n are odd, $C_n \cup C_{2n+2}$ is edge-graceful when n is odd and $C_n \cup C_{4n}$ is edge-graceful for n odd. Cahit [3] proved that mC_n is harmonious for all m and n are odd. Same result have done by Youssef [16] who proved that if m is a harmonious graph of odd order then m is harmonious for all odd m. Seoud, Abdel Maqsoud and Sheehan [11] proved that when m or n is even, mC_n is not harmonious. They also proved that m is harmonious when m or m is and only if m is and conjectured that m is harmonious when m is an only if m is an odd and m is except for m is except for m is except of the form m is an odd and m is paper enable us to prove the conjecture of Lee in the following corollary:

Corollary 9. $C_{2m} \cup C_{2n+1}$ is edge-graceful for all $m \ge 2$ and $n \ge 1$ except for (m,n)=(2,1).

Again as, mC_n is harmonious if and only if m and n are odd, we get Corollary 10. mC_n is edge-graceful if and only if m and n are odd.

References

- [1] S. Cabaniss, R. Low and J. Mitchem, On edge-graceful regular graphs and trees, *Ars Combin.*, 34 (1992) 129-142.
- [2] I. Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, *Ars Combin.*, 23 (1987) 201-207.

- [3] I. Cahit, On harmonious tree labelings, Ars Combin., 41 (1995) 311-317.
- [4] I. Cahit and R. Yilmaz, E_3 —cordial graphs, Ars Combin., 54 (2000)119-127.
- [5] G. Chartrand and L. Lesniak-Foster, Graphs and Digraphs (3nd Edition) CRC Press, 1996.
- [6] J. A. Gallian, A dynamic survey of graph labeling, The Electronic J. of Combin.14 (2007), # DS6, 1-180.
- [7] R. L. Graham and N. J. A. Sloane, On additive bases and harmonious graphs, SIAM J. Alg. Discrete Method, 1 (1980) 382-404.
- [8] M. Hovey, A-cordial graphs, Discrete Math., 93 (1991) 183-194.
- [9] S. M. Lee, E. Seah and S.-P Lo, On edge-graceful of 2-regular graphs, preprint.
- [10] S. Lo, On edge-graceful labelings of graphs, Congr. Numer., 50 (1985) 231-241.
- [11] M. A. Seoud, A. I. Abdel Maqsoud and J. Sheehan, Harmonious graphs, *Utilitas Math.*, 47 (1995) 225-233.
- [12] W. C. Shiu, P. C. Lam and H. L. Cheng, Edge-gracefulness of the composition of paths with the null graphs, *Discrete Math.*, 253 (2002) 63-76.
- [13] R. Tao, On k-cordiality of cycles, crowns and wheels, System Sci. Math. Sci. 11 (1998) 227-229.
- [14] Y. C. Yang, W. Lu and Q. Zeng, Harmonious graphs $C_{2k} \cup C_{2j+1}$, Utilitas Math., 62 (2002) 191-198.
- [15] R. Yilmaz and Cahit, E-cordial graphs, Ars Combin., 46 (1997) 251-266.
- [16] M. Z. Youssef, Two general results on harmonious labelings, Ars Combin., 68 (2003)225-230.