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Abstract

We study the algebraic properties of soft sets in a hypermodule structure. The
concepts of soft hypermodules and soft sub-hypermodules are introduced, and
some basic properties are investigated. Furthermore, we define homomorphism
and isomorphism of soft hypermodules, and derive three isomorphism theorems
of soft hypermodules. By using normal fuzzy sub-hypermodules, three fuzzy iso-
morphism theorems of soft hypermodules are established.
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1. Introduction

Due to information incompleteness, data randomness, limitations of measuring instru-
ments, etc., uncertainties are pervasive in many complicated problems in biology, engi-
neering, economics, environment, medical science and social science [37, 52). Several
theories, such as probability theory, fuzzy set theory [54], vague set theory [20], rough
set theory [46, 47] and interval mathematics [22], have been proven to be useful math-
ematical tools for dealing with uncertainties. However, all these theories have their
inherent difficulties, as pointed out by Molcdtsov in [42]. One of the major reasons
for these difficulties is the inadequacy of the parametrization tools of these theories.
Consequently, Molodtsov proposed the soft set theory [42], as a new approach for
modeling uncertainties, which is free from the difficulties existing in those theories
mentioned above. Furthermore, he gave some applications of soft set theory, including
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function smootheness, Riemann integration, probability theory, measurement theory,
game theory and operations research {42, 43]. At present, soft set theory has been
applied to business competitive capacity evaluation [51), classification of the natural
textures [44], optimization problems [30), data analysis under incomplete information
[59], especially decision making. In [38], Maji et al. gave the definition of parame-
terization reduction on soft sets, and presented an application of soft sets in a decision
making problem by using the rough sets. The application was improved by Chen et al.
[9] with the help of a new definition of parameterization reduction. In [29], Kong et
al. discussed the problems of suboptimal choice and added parameter set of soft sets,
and introduced the normal parameter reduction of soft sets. Furthermore, Cagman and
Enginoglu [7, 8] constructed the soft decision making methods without using the rough
sets, which are more practical and can be successfully applied to many problems that
contain uncertainties.

Also, researches on theoretical aspect of soft sets are progressing rapidly. As a con-
tinuation of Molodtsov’s pioneer work [42], Maji et al. [37] gave a detailed theoretical
study on soft sets. Ali et al. [3] pointed out that several assertions in [37] are not true
in general, and proposed some new operations such as restricted intersection, restricted
union, restricted difference and extended intersection of two soft sets. In [21), Gong et
al. presented the bijective soft sets, which are special soft sets. As an extended concept
of bijective soft sets, the exclusive disjunctive soft sets [50] were introduced. In [7),
Cagman and Enginoglu defined the soft matrices, which are representative of soft sets,
and demonstrated that this representation has several advantages. Furthermore, Jiang
et al. [23] analyzed the existing problems of soft set theory, and presented an extended
soft set theory by using the concepts of description logics to act as the parameters of
soft sets. Recently, the algebraic structures of soft sets have been studied increasingly
[7). Aktag and Cagman (2] introduced the definition of soft groups and showed that
fuzzy groups can be considered a special case of the soft groups. Moreover, some ba-
sic properties of soft semirings [19] and soft rings [1] were introduced. In addition, Sun
et al. [48] considered the soft modules, Jun et al. [24] presented the soft ordered semi-
groups and Li [35] analyzed the soft lattices. For further development, Jun et al. [25),
[26], [45] considered the applications of soft sets in BCK/BCl-algebras, Hilbert alge-
bras and subtraction algebras. Kazanci et al. [28] discussed the algebraic properties of
soft sets in BCH-algebras.

On the other hand, the algebraic hyperstructures, initiated by Marty in 1934 [39],
is a natural generalization of the usual algebraic structures. In recent years, algebraic
hyperstructures have attracted wide attention and had applications in many domains,
such as geometry, hypergraphs, binary relations, lattices, fuzzy sets and rough sets, au-
tomata, cryptography, codes, median algebras, relation algebras, artificial intelligence
and probabilities [11]. Several books and many papers on hyperstructure theory have
been published (4]-[6], [10]-[18], [27], [31]-[34], [36, 40, 41, 49], [55]-[58]. The book
[17] was devoted especially to the study of hyperring theory and applications. Various
hypermodules have been studied by many researchers [4]-[6], [27, 32, 36, 40], [55])-
[58]. We concentrate on the kind of hypermodules over Krasner hyperrings. Zhan et al.
[55] established three isomorphism theorems of hypermodules, and derived the Jordan-
Holder theorem for hypermodules. Also, they considered the fundamental relation de-
fined on a hypermodule and investigated some related properties. In [5], Anvariyeh and
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Davvaz introduced a new strongly regular equivalence relation on hypermodules so that
the quotient is module over a commutative ring. Moreover, Zhan et al. [56] applied
fuzzy sets to hypermodules and introduced the concept of fuzzy sub-hypermodules of
a hypermodule. Furthermore, they [57] considered the normal fuzzy sub-hypermodule
of a hypermodule and investigated the fuzzy isomorphism of hypermodules by using
the normal fuzzy sub-hypermodules.

In this paper, we consider the connection between soft sets and hypermodules. We
define soft hypermodules and soft sub-hypermodules, and study the extended inter-
section, restricted intersection, extended union, A-intersection, cartesian product of the
family of soft hypermodules and soft sub-hypermodules. Also, we consider some basic
properties of soft hypermodules by homomorphism between hypermodules. Moreover,
we introduce homomorphism and isomorphism of soft hypermodules, and establish
three (fuzzy) isomorphism theorems of soft hypermodules.

2. Preliminaries

A hyperstructure (H, o) is a non-empty set H together with a hyperoperation o defined
on H, i.e., a mapping H x H — 2*(H), where 2*(H) is the set of all non-empty
subsets of H. If x € H and A, B are subsets of H,thenAoB= |J aob,Aox = Ao{x}

a€A beB
and xo B ={x}oB.
A hyperstructure (H, o) is called a canonical hypergroup [41] if the following con-

ditions hold:

(1) forevery x,y,z€ H,(xoy)oz=x0(yo2);

(2) forevery x,y€ H,xoy=youx;

(3) there exists 0 € H such that 0 o x = x for all x € H;

(4) for every x € H there exists a unique element x’ € H such that 0 € x o X’ (we

shall write —x for x’ and we call it the opposite of x);
(5) zexoyimpliesy€ —xozand x € zo —y.

Definition 2.1([31]). A hyperring (Krasner hyperring) is an algebraic structure (R, +, )
which satisfies the following axioms:
(1) (R, +) is a canonical hypergroup;
(2) Relating to the multiplication, (R, -) is a semigroup having zero as a bilaterally
absorbing element, i.e.,0-x=x:-0=0forall x € R.
(3) The multiplication is distributive with respect to the hyperoperation +.

Definition 2.2({49]). A non-empty set M is called a left hypermodule over a hyperring
R (R-hypermodule) if (M, +) is a canonical hypergroup and there exists the map -:
RXxXM — Mby (r,m) = r-msuch that for all r;,r; € R and m;,my € M, we
have (1) ry - (my +m2) = rp-my+r -my; Q) (n + 1) -my = -my +r2-m; (3)
(n-r)-m=r-(rz-m).

A non-empty subset A of an R-hypermodule M is called a sub-hypermodule of M
if A is itself a hypermodule. A sub-hypermodule A of M isnormal in M if x+A-xC A
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forall x € M.

Example 2.3((49])). Let M be an R-module, where R is an unitary ring, and let A
be a subgroup of the multiplicative semigroup of R, which satisfies the condition
aAbA = abA, for every a,b € R. Note that this condition is equivalent to the nor-
mality of the subgroup A only when R \ {0} is a group, which appears only in the case
of division rings. Define an equivalence relation ~on M by x ~ y & x = ty,f € A.
Let M be the set of all equivalence classes of M modulo ~. A hyperoperation & can
be endowed in M by X @y = {(w € M | % € % +5). Then (M, ®) becomes a canonical
hypergroup. Now, suppose that Ris _the quotient hypemng of R by A. Consider an
external composition from R x M to M defined by @ ¥ = ax for every@a € R,X€ M.
Then the above composition satisfies the conditions of the hypermodule and so M be-
comes a hypermodule over R. Massouros [40] showed that the hypermodule is strongly
related with the analytic projective geometries as well as with the Euclidean spherical
geometries.

In what follows, all hypermodules mean left hypermodules. If A is a normal sub-
hypermodule of an R-hypermodule M, then for all x,y € M, A+ x)+ (A +y) =
A+x+y=A+zforallzex+yandA+x=A+yforallye A+x. IfAand Bare
sub-hypermodules of an R-hypermodule M with B normal in M, then AN B is a normal
sub-hypermodule of A, and B is a normal sub-hypermodule of A + B.

If A is a normal sub-hypermodule of an R-hypermodule M, then the relation A*
defined by x = y(mod A) if and only if (x — y) N A # @ is an equivalence relation.
Let A’[x] be the equivalence class of the element x € M. Then A + x = A*[x] for all
x € M. Moreover, on the set of all classes M/A = (A*[x] | x € M], define the the
hyperoperations & and the multiplication © by A*[x] ® A*[y] = {A*[z) | z € A*[x] +
A*D]). ro A*[x] = A°[r - x). Then (M/A, ®,©) is an R-hypermodule [55].

Let M; and M be two R-hypermodules. A mapping f : M; — M, issaid tobe a
homomorphism if forall a,b € M) and r € R, f(a+b) = f(a)+ f(b), f(r-a) = r- f(a),
and f(0) = 0. A homomorphism f is an isomorphism if f is bijective. If f is a
homomorphism from M, into M, then the kernel of f is the set kerf = {x € M, |
S(x) = 0}. It is trivial that kerf is a sub-hypermodule of M), but in general it is not
normal in M.

Definition 2.4([56)). A fuzzy subset u of an R-hypermodule M is called a fuzzy sub-
hypermodule of M if the conditions hold: (1) min{u(x), u(y)) < infexey p(2) for all
X,y € M; (2) u(x) < pu(~x) forall x € M; (3) u(x) < u(r-x)forall r € R and x € M.
A fuzzy sub-hypermodule u of M is called normal if u(y) < infoersy—, p() for all
x,yEM.

Now, we review some notions about soft sets. Let U be an initial universe set and
E be a set of parameters. 22(U) denotes the power set of U and A C E.

Definition 2.5([42]). A pair (F, A) is called a soft set over U, where F is a mapping
givenby F : A —» FP(U).

In fact, a soft set over U is a parameterized family of subsets of the universe U.
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For e € A, F(e) may be considered as the set of e-approximate elements of the soft set
(F, A). There are several examples in [37].

Definition 2.6([37]). For two soft sets (f’_, A) and (G, B) over U, we say that (F,A) is
a soft subset of (G, B), denoted by (F,A)S(G, B), if A € B and for all e € A, F(e) and
G(e) are identical approximations.

Tw_g soft sets (F, A) and (G, B) over U are called soft equal if (F, A)S(G, B) and
(G, B)S(F,A).

Definition 2.7([3, 28]). (1) The extended intersection of two soft sets (F, A) and (G, B)
over U is the soft set (H,C) = (F,A) Ng (G, B), where C = AU B, and forall e € C,
ife € A— B, then H(e) = F(e); if e € B — A, then H(e) = G(e); if e € AN B, then
H(e) = F(e) N G(e).

(2) The extended intersection of a non-empty family of soft sets (Fi, Ai)iea over U is
the soft set (G, B) = (Ng)ica(Fi» As), where B = Jip A, and for all e € B, G(e) =
Nicae Fie) and A(e) = (i€ Al e € Aj).

Definition 2.8([3, 19)). (1) The restricted intersection (or bi-intersection) of two soft
sets (F,A) and (G, B) over U is the soft set (H,C) = (F,A) Ng (G, B), where C =
ANB+oandforall e € C, H(e) = F(e) N G(e).

(2) The restricted intersection of a non-empty family of soft sets (Fi, Aj)iea Over U
is the soft set (G, B) = (Na)ica(FirAi), where B = N A; # @ and forall e € B,
G(e) = Niea Fie).

Definition 2.9([37, 19]). (1) The extended union of two soft sets (F, A) and (G, B) over
U is the soft set (H,C) = (F,A) Ug (G, B), where C = AU B, and forall e € C, if
e € A - B, then H(e) = F(e); if e € B - A, then H(e) = G(e); if e € AN B, then
H(e) = F(e) U G(e).

(2) The extended union of a non-empty family of soft sets (F;, A;)ica over U is the soft
set (G, B) = (Ug)iea(Fi, Aj), where B = Ujep Ai» and for all e € B, G(e) = Useaco) File)
and A(e) ={ie Ale€A).

Definition 2.10([3, 28]). (1) The restricted union of two soft sets (F, A) and (G, B) over
U is the soft set (H,C) = (F,A) U2 (G,B), where C =ANB # @ and forall e € C,
H(e) = F(e) U G(e).

(2) The restricted union of a non-empty family of soft sets (F;, A))iea over U is the
soft set (G, B) = (N&)iea(Fi, A;), where B = Nica A; # @ and for all e € B, G(e) =
Uiea Fi(e).

Definition 2.11([37, 19]). (1) The A-intersection of two soft sets (F, A) and (G, B) over
U is the soft set (H,A x B) = (F,A)A(G, B), where H(a,b) = F(a) N G(b) for all
(a,b) e AXB.

(2) The A-intersection of a non-empty family of soft sets (F;, Ajica over U is the soft
set (G, B) = AIEA(FI"AI')’ where B = niEA Ai and for all e = (ei)iel\ € B, G(E) =
Niea Fi(ei).

Definition 2.12({37, 19]). (1) The v-union of two soft sets (F,A) and (G, B) over
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U is the soft set (H,A x B) = ((F,AWV(G, B), where H(a,b) = F(a) U G(b) for all
(a,b) e AxB.

(2) The v-union of a non-empty family of soft sets (Fi, A;)ica over U is the soft set
(G,B) = Viea(Fi,Aj), where B = [Jies A; and for all e = (e))ien € B, Gle) =
Ulea Filed).

Definition 2.13([37, 28]). (1) Let (F, A) and (G, B) be two soft sets over U and V,
respectively. Then the cartesian product of the two soft sets (F, A) and (G, B) is the soft
set (H,A X B) = (F, A) X (G, B), where H(a,b) = F(a) x G(b) for all (a,b) € A X B.
(2) Let (F;, A;)ica be a non-empty family of soft sets over U;, i € A. Then the cartesian
product of these soft sets is the soft set (G, B) = [Tiea(Fi, A;), where B = [];en A; and
for all e = (€:)ica € B, G(e) = [Tiea Files).

Definition 2.14([19]). For a soft set (F, A) over U, the set Supp(F,A) = {x € A |
F(x) # @} is called the support of the soft set (F,A). A soft set (F, A) is non-null if
Supp(F,A) + @.

3. Soft hypermodules

In what follows, let M be an R-hypermodule and A be a non-empty set. A set-valued
function F : A —» (M) can be defined as F(x) = {y € M | (x,y) € p} forall x € A,
where p is an arbitrary binary relation between an element of A and an element of M,
that is, p is a subset of A X M. Then the pair (F, A) is a soft set over M.

Definition 3.1. Let (F, A) be a non-null soft set over M. Then (F, A) is called a soft
hypermodule over M if F(x) is a sub-hypermodule of M for all x € Supp(F, A).

Example 3.2. Let R = {0, 1,2} be a set with hyperoperation + and operation - as fol-
lows:

+/0 1 2 -lo 1 2

oo 1 2 0|0 0 O

1|1 1 R 110 1 2

22 R 2 210 1 2
Then (R, +, ) is a hyperring. Let M = {0, 1,2, 3,4, 5,6, 7, 8} be a set with the hyperop-
eration as follows:
®|0 1 2 3 4 5 6 7 8
00 1 2 3 4 5 6 7 8
111 1 {0,1,2}) 4 4 {3,4,5} 7 7 {6,7.8)
212 {01,2} 2 5 {3,4,5} 5 8 {6,7,8} 8
313 4 5 3 4 5 {0,3,6} (1,4,7} {(2,5,8}
414 4 {3,4,5) 4 4 {3.4,5} (1,4,7} (1,4,7) M
5(5 {3.4,5) 5 5 {3.4,5) 5 {2,5,8) M {2,5,8}
6|6 7 8 0,3,6} (1,4,7} (2,5,8} 6 7 8
717 7 6,7,8y (1,4,7} {1,4,7} M 7 7 {6,7,8}
8|8 (67,8} 8 (2,5,8} M {2,5,8} 8 (6,7, 8} 8

Then (M, ®) is a canonical hypergroup. Now, we define the external product from RxM
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to M as follows:

©/0 1 2 3 4 5 6 7 8
0[0 1T 2 3 4 5 6 7 8
1/0 1 2 3 45 6 7 8
2/0 1 2 3 45 6 7 8

Then (M, ®,®) is an R-hypermodule [27].

Let (F,A) be a soft set over M, where A = Mand F : A —» P (M) is a set-
valued function given by F(x) = {y € M | xpy & x € x@®y) for all x € A. Then
F(0) = {0), F(1) = F2) = {0,1,2}, F(3) = F(6) = {0,3,6) and F(4) = F(5) = F(7) =
F(8) = M are sub-hypermodules of M. Thus (F, A) is a soft hypermodule over M.

Theorem 3.3. Let (F, A) be a soft hypermodule over M. If B C A, then (F g, B) is a
soft hypermodule over M if it is non-null.
Proof. It is straightforward.

Theorem 3.4. Let (F;, A;)ica be a non-empty family of soft hypermodules over M, then
the extended intersection (N g )iea (Fi» A;) is a soft hypermodule over M if it is non-null.
Proof. By Definition 2.7(2), we can write (N ¢)iea(Fi, A)) = (G, B), where B = Usen Ai
and G(x) = Nieae Fi(x) for all x € B. For all x € supp(G, B), we have G(x) =
Nieawy Fi(x) # @ which implies that Fi(x) # @ for all i € A(x). Since for all i € A,
(Fi, Aj) is a soft hypermodule over M, the non-empty set F;(x) is a sub-hypermodule
of M. So we deduce that G(x) = Nie(x) Fi(¥) is a sub-hypermodule of M for all x €
supp(G, B). Hence, (Mg )iea(Fi» A)) = (G, B) is a soft hypermodule over M.

Theorem 3.5. Let (Fj, Aiea be a non-empty family of soft hypermodules over M, then
the restricted intersection ((\g)iea (Fi» A} is a soft hypermodule over M.

Proof. According to Definition 2.8(2), we can write (Ng)ica(Fi»Ai) = (G, B), where
B = NieaAi # @ and G(x) = Nea Fi(x) for all x € B. Let x € supp(G, B), then
G(x) = Niea Fi(x) # 0, ie, Fi(x) # 0 for all i € A. We have Fi(x) is a sub-
hypermodule of M for all i € A, since (Fi, Aiea is a non-empty family of soft hy-
permodules over M. It follows that G(x) = Njea Fi(x) is a sub-hypermodule of M.
Therefore, (Nz)iea(Fi, Aj) = (G, B) is a soft hypermodule over M.

Theorem 3.6. Let (Fi, A))ica be a non-empty family of soft hypermodules over M. If
AinA;=0foralli,je Aandi# j, then the extended union (| g)iea (Fi» A7) is a soft
hypermodule over M.

Proof. From Definition 2.9(2), we can write (Ug)ica(Fi,A)) = (G, B), where B =
Uiea Ai» and for all x € B, G(x) = Uiea) Fi(x). Since {A; | i € A} are pairwise
disjoint, we have Supp(G, B) = Uiea Supp(Fi,Aj) # @, that is, (G, B) is non-null.
For all x € Supp(G, B), G(x) = Ujeacs Fi(x) # 0. By the hypothesis, we know that
A(x) contains only a element and suppose the element is #p. Furthermore, we have that
G(x) = F,(x) is a sub-hypermodule of M since (F),,A,,) is a soft hypermodule over
M. Thus, (Ug)ier(Fi, Ai) = (G, B) is a soft hypermodule over M.

Theorem 3.7. Let (Fi, Aj)iea be a non-empty family of soft hypermodules over M.
Then the A-intersection A5 (Fi, 4;) is a soft hypermodule over M.
Proof. Using Definition 2.11(2), we can write Aia(Fi,A) = (G, B), where B =
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ITiea Ai and G(x) = Njea Fi(x;) for all x = (x;)iea € B. Obviously, Supp(G, B) = [Tiea
Supp(Fi, A;) # 0. Let x = (x)iea € Supp(G, B), then we have G(x) = (Nica Fi(x)) # 0.
Since (Fi, A;) is a soft hypermodules for all i € A, it follows that the non-empty set
Fi(x;) is a sub-hypermodule of M. So we have G(x) = ey Fi(x) is a soft sub-
hypermodule of M for all x = (x;);ea € Supp(G, B). Hence, A;p(Fi,A)) = (G, B)
is a soft hypermodule over M.

Theorem 3.8. Let (F;, Aj)ica be a non-empty family of soft hypermodules over M;.
Then the cartesian product [T;ca (Fi, A:) is a soft hypermodule over [Tien Mi.

Proof. By Definition 2.13(2), we can write [Jiea (Fi, A;) = (G, B), where B = [Jiea A;
and G(x) = [Tiea Fi(x;) for all x = (x)ien € B. It is clear that Supp(G, B) = [Tie
Supp(F;, A;) # 0. For all x = (x)iea € Supp(G, B), G(x) = [ljep Fi(x:) # @ which
implies that F;(x;) # 0 for all i € A. Furthermore, we have F;(x;) is a sub-hypermodule
of M; since (F;, A;) is a soft hypermodule over M; for all i € A. So G(x) = [T;ea Fi(x)
is a sub-hypermodule of [];cs M; for all x = (x;)iea € Supp(G, B). Consequently, the
cartesian product [1,cA(Fi, Ai) = (G, B) is a soft hypermodule over [];ep M;.

Definition 3.9. Let (F, A) be a soft hypermodule over M, then (F, A) is called the trivial
soft hypermodule over M if F(x) = (0} for all x € A; (F,A) is called the whole soft
hypermodule over M if F(x) = M forall x € A.

Example 3.10. Consider the hypermodule M defined in Example 3.2. Let A =
{1,2,3,6} and F : A — (M) be the set-valued function defined by F(x) = {y €
M| xpy & x@®y = {x}) \ {x} for all x € A. Then F(1) = F(2) = F(3) = F(6) = {0}.
Hence (F, A) is the trivial soft hypermodule over M.

Let B = {4,5,7,8) and G : B — 2(M) be the set-valued function defined by
Gx)={yeM|xp'y & x€ x@y)]forall x € B. Then G(x) = M for all x € B and so
(G, B) is the whole soft hypermodule over M.

Theorem 3.11. Let M and M, be two hypermodules, and f : M; — M, be a homo-
morphism. If (F, A) is a soft hypermodule over M|, then (f(F), A) is a soft hypermodule
over M, where f(F)(x) = f(F(x)) for all x € A.

Proof. It is clear that Supp(f(F),A) = Supp(F,A). For every x € Supp(f(F),A),
J(F)(x) = f(F(x)) is a sub-hypermodule of M,, since F(x) is a sub-hypermodule of
M and its homomorphic image is also a sub-hypermodule of M,. Therefore, (f(F), A)
is a soft hypermodule over M,.

Theorem 3.12. Let M, and M, be two hypermodules, f : M; — M, be a homomor-
phism, and (F, A) be a soft hypermodule over M,.
(1) If F(x) = kerf for all x € A, then (f(F), A) is the trivial soft hypermodule over
M,.
(2) If f is onto and (F, A) is the whole soft hypermodule over M,, then (f(F), A) is
the whole soft hypermodule over M,.
Proof. (1) Since F(x) = kerf forall x € A, we have f(F)(x) = f(F(x)) = {0}. It follows
from Theorem 3.11 and Definition 3.9 that (f(F), A) is the trivial soft hypermodule over
M;.
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(2) Since f is onto and (F, A) is the whole soft hypermodule over M), we have
fIF)X) = f(F(x)) = f(M)) = M, for all x € A. According to Theorem 3.11 and
Definition 3.9, we have that (f(F), A) is the whole soft hypermodule over M,.

Definition 3.13. Let (F, A) and (G, B) be two soft hypermodules over M. Then (G, B)
is called a soft sub-hypermodule of (F, A) if the following conditions are satisfied:

(1) BgA;

(2) for all x € Supp(G, B), G(x) is a sub-hypermodule of F(x).

Example 3.14. Consider the hypermodule M and the soft hypermodule (F, A) given in
Example 3.2. Let B = {0,1,2,7,8)} € A and G : B — P (M) be the set-valued function
defined by G(x) = {0) U {y € M\{6,7,8} | xpy & x®y C {6,7,8]}} for all x € B. Then
G(0) = {0},G(1) = G(2) = {0} and G(7) = G(8) = (0, 1,2} are sub-hypermodules of
F(0) = {0}, F(1) = F(2) = {0,1,2} and F(7) = F(8) = M, respectively, so (G, B) is a
soft sub-hypermodule of (F, A).

Theorem 3.15. Let (F,A) and (G, B) be soft hypermodules over M. If B C A and
G(x) € F(x) for all x € supp(G, B), then (G, B) is a soft sub-hypermodule of (F,A).
Proof. Straightforward.

Theorem 3.16. Let (F, A) be a soft hypermodule over M, and (G, B;)ica be a non-
empty family of soft sub-hypermodules of (F, A), then
(1) the extended intersection (N ¢)iea(Gi. By) is a soft sub-hypermodule of (F, A) if
it is non-null;
(2) the restricted intersection ((\z)iea(Gi» B) is a soft sub-hypermodule of (F, A);
(3) ifA;nA;=0foralli,j € A andi # j, then the extended union (Ug)iea(Gi, Bp)
is a soft sub-hypermodule of (F, A);
(4) the A-intersection Aiea(Gi, B;) is a soft sub-hypermodule of the soft hypermod-
ule Agea(F,A),
(5) the cartesian product [T (Gi, B;) is a soft sub-hypermodule of the soft hyper-
module [];ea (F, A).
Proof. Similar to the proofs of Theorem 3.4-3.8.

Theorem 3.17. Let M; and M, be two hypermodules, and f : M, — M, be a
homomorphism. If (F,A) is a soft hypermodule over M, and (G, B) is a soft sub-
hypermodule of (F, A), then (f(G), B) is a soft sub-hypermodule of (f(F), A).

Proof. Since (F,A) and (G, B) are soft hypermodule over M, it follows from Theo-
rem 3.11 that (f(F),A) and (f(G), B) are soft hypermodules over M,. It is clear that
Supp(f(G), B) = Supp(G, B). Since (G, B) is a soft sub-hypermodule of (F, A), we have
that B € A and G(x) is a sub-hypermodule of F(x) for all x € Supp(G, B). So for all
x € Supp(f(G), B), f(G)(x) € f(F)(x). It follows from Theorem 3.15 that (f(G), B) is
a soft sub-hypermodule of (f(F), A).
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4. Isomorphism theorems of soft hypermodules

Definition 4.1. Let M, and M, be two hypermodules, (F, A) and (G, B) be soft hyper-
modules over M, and M;, respectively, and f : M; - M, andg : A — B be two
functions. Then (f, g) is called a soft homomorphism if the following conditions hold:

(1) fis ahomomorphism;

(2) gis amapping;

(3) forall x € A, f(F(x)) = G(g(x)).

If there is a soft homomorphism (f, g) between (F, A) and (G, B), we say that (F, A)
is soft homomorphic to (G, B), denoted by (F,A) ~ (G,B). Furthermore, if f is a
monomorphism (resp. epimorphism, isomorphism) and g is a injective (resp. sur-
jective, bijective) mapping, then (f, g) is called a soft monomorphism (resp. epimor-
phism, isomorphism), and (F, A) is soft monomorphic (resp. epimorphic, isomorphic)
to (G, B). We use (F, A) = (G, B) to denote that (F, A) is soft isomorphic to (G, B).

Example 4.2. Consider the hypermodule M described in Example 3.2. Let N be the set
of natural numbers and (F, A) be the soft set over M, where A = Nand F : A —» P (M)
is the set-valued function defined by for all x € A, F(x) = M, if 2 | x; otherwise,
F(x) = {0, 3, 6}, then (F, A) is a soft hypermodule over M.

Let (G, B) be the soft set over M, where B = N and G : B —» (M) is the set-
valued function defined by for all x € B, G(x) = (0, 3, 6}, if 2 | x; otherwise, G(x) = 0,
then (G, B) is a soft hypermodule over M.

Let f : M — M be the mapping defined by for all x € M, f(x) = 6, if x € {6,7, 8);
f(x) = 3, if x € (3,4, 5); otherwise, f(x) = 0, then f is a homomorphism. Define the
mapping g : A — B by g(x) = 2x for all x € A. It is easy to check that f(F(x)) =
G(g(x)) for all x € A. Therefore, (f, g) is a soft homomorphism and (F, A) ~ (G, B).

In the following theorems, if x € A—Supp(F, A), we mean that (F/N)(x) = @, where
(F,A) is a soft hypermodule over M, and N is a normal sub-hypermodule of M.

Theorem 4.3. Let N be a normal sub-hypermodule of M, and (F, A) be a soft hyper-
module over M, then (F, A) is soft epimorphic to (F/N, A), where (F/N)(x) = F(x)/N
forall x € A, and N € F(x) for all x € Supp(F, A).

Proof. Clearly, Supp(F/N, A) =Supp(F,A). Since F(x) is a sub-hypermodule of M
and N € F(x) for all x € Supp(F, A), we have that F(x)/N is a sub-hypermodule of
M/N. Thus, (F/N,A) is a soft hypermodule over M/N. Define f : M — M|/N by
Sf(x) = N*[x], for all x € M. Itis clear that f is an epimorphism. We defineg: 4 — A
by g(x) = x for all x € A. Then g is surjective. For all x € A, f(F(x)) = F(x)/N =
F(g(x))/N. Therefore, (f,g) is a soft epimorphism, and (F, A) is soft epimorphic to
(F/N, A).

Theorem 4.4. (First Isomorphism Theorem) Let M) and M, be two hypermodules,
(F,A) and (G, B) be soft hypermodules over M, and M,, respectively. If (f,g) is a
soft epimorphism from (F, A) to (G, B) with kernel N such that N is a normal sub-
hypermodule of M; and N € F(x) for all x € supp(F, A), then

(1) (FIN,A) = (f(F),A);
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(2) if g is bijective, then (F/N, A) = (G, B).
Proof. (1) It is clear that (F/N, A) and (f(F), A) are soft hypermodules over M| /N and
M,, respectively. Define f' : Mi/N — M, by f'(N*[x]) = f(x), forall x € M,. If
xN°y, we have (x —y) N\ N # 0, that is, there exists z € (x— y) N N. Hence f(z) = 0 and
f@) € f(x) - £). It follows that f(x) = f(). So f’ is well-defined.

Since f is surjective, it is clear that f’ is surjective. To show that f” is injective,
assume that f(x) = f(y), then we have 0 € f(x - y). Thus, there exists z € x — y such
that z € kerf. It follows that (x — y) N N # @, which implies N*[x] = N°[y]. There f
is injective. Furthermore, we have

SN N'D)) = f(IN[2) | z € N'[X] + N°DI) = {f(2) | z € N°[x] + N* DY)}

= f(N*[x]) + fIN"DYD) = fO) + fO) = f/(IN"[x]) + FF(N*DD)
FoNx) = fFN'[r-xD=fr-x)=r-f(x)=r- f(N"[x])
and f'(N*[0]) = f(0) = 0. So f’ is an isomorphism.

We define g’ : A = A by g’(x) = x for all x € A, then g’ is a bijective mapping.
Furthermore, f'(F(x)/N) = f(F(x)) = f(F(g'(x))) for all x € A. Therefore, (f.g)isa
soft isomorphism, and (F/N, A) = (f(F), A).

(2) Since f is an isomorphism, g is bijective and for all x € A, fI(F(xX)/N) =
f(F(x)) = G(g(x)). Hence, (f', g) is a soft isomorphism. So we have (F/N,A) = (G, B).

Example 4.5. Let R be the hyperring described in Example 3.2, and M, = {e,a,b,c)
be a set with the hyperoperation as follows:

®le a b ¢
e |e a b c
ala {eal c¢ (bc}
b|b c e a

cl|lc {(bct a [{ea)

Then (M, ®) is a canonical hypergroup. The external product from R X M to M, is
defined by r©m = e for every r € R, m € M. Then (M,,®,0) is a hypermodule.
Clearly, M, = (e, b} is a sub-hypermodule of M;. Let (F,A) and (G, B) be the soft
sets over M, and M,, respectively, where A = N, B=3N, F : A — P(M,) and
G : B —» P(M,) are the set-valued functions defined by for all x € A, F(x) = My,
if 2 | x; otherwise, F(x) = {e,a), and for all x € B, G(x) = M>, if2 | x; otherwise,
G(x) = {e}, respectively. Then (F, A) is a soft hypermodule over M, and (G, B) is a soft
hypermodule over M>.

Let f : M, — M, be the mapping defined by for all x € My, f(x) = b,if x € {b,cls
f(x) = e, if x € {e,a), and g : A — B be the mapping defined by g(x) = 3x for all
x € A. It is easy to check that (f, g) is a soft epimorphism and g is bijective. The kernel
of f is the set N = {e, a}, which is a normal sub-hypermodule of M, and N C F (x) for
all x € supp(F, A). (F/N,A) is the soft set over M, /N, where FIN : A » 2M,\/N)
is the set-valued function denoted by for all x € A, F(x)/N = {{e,a}, {b,c}}, if 2 | x;
otherwise, F(x)/N = {{e,a}}. We can check easily that (F/N, A) is a soft hypermodule
over My /N.

Define f' : Mj/N = M, by f/(N*[x]) = f(x), for all x € M,. Clearly, f’ is an
isomorphism. For x € 4, if 2 | x, then f'(F(x)/N) = f'(M\/N) = f(My) = {e,b} =
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My = G(g(x); otherwise, f'(F(x)/N) = f'({e,a}/N) = f(le,a)) = {e} = G(g(x)).
Therefore, (f', g) is a soft isomorphism and so (F/N, A) = (G, B).

Theorem 4.6. (Second Isomorphism Theorem) Let N and K be sub-hypermodules of
M, with N normal in M. If (F, A) is a soft hypermodule of X, then (F/(N N K),A) =~
((N + F)/N, A) where N N K C F(x) for all x € supp(F, A).

Proof. We can obtain easily that (F/(NNK), A) and ((N+F)/N, A) are soft hypermodule
over (K/(N N K) and (N + K)/N, respectively. Define f : K — (N + K)/N by f(x) =
N*[x] for all x € K. It is easy to check that f is a homomorphism. For any N*[x] €
(N+K)/N, where x € N+K, that is, there exista € N and b € K such that x € a+b, we
have N*[x] =N+x=N+a+b=N+b = N*[b] = f(b). Thus, f is an epimorphism.

Define g : A — A by g(x) = x for all x € A. Then g is bijective. Forall x € A, we
have f(F(x)) = {N*[a] | a € F(x)} = (N + F(x))/N = (N + F(g(x)))/N. The proof of
{N'[a) | a € F(x)} = (N + F(x))/N is showed as follows.

It is clear that {N*[a] | a € F(x)} G (N + F(x))/N. For any N*[b] € (N + F(x))/N,
where b € N + F(x), which implies that there exist n € N and k € F(x) such that
ben+k,wehave N' (b} =N+b=N+n+k=N+k=N*[k] € (N*[a] | a € F(x)}.

Therefore, (f, g) is a soft epimorphism from (F, A) to (N + F)/N, A). Since NN K
is a normal sub-hypermodule of X, if we have kerf = N n K, then (F/(N N K),A) ~
((N + F)/N, A) according to Theorem 4.4 (2). Forany x € K, x € kerf & f(x) =
N0l=N&N[x]=N+x=N& xe N(sincex € K x € Nn K. Hence
kerf =NNK.

Theorem 4.7. (Third Isomorphism Theorem) Let N and K be normal sub-hypermodules
of M such that N ¢ K. If (F, A) is a soft hypermodule over M, and K € F(x) for all
x € supp(F, A), then ((F/N)/(K/N),A) = (F/K, A).

Proof. Since X and N are normal sub-hypermodules of M, and N € K, we know that
K/N is a normal sub-hypermodule of M/N, so (M/N)/(K/N) is defined. Furthermore,
we can deduce easily that (F/N, A), (F/K, A) and ((F/N)/(K/N), A) are soft hypermod-
ules over M/N, M/K and (M/N)/(K/N), respectively. Define f : M/N — M/K by
J(N*[x]) = K*[x]. Itis clear that f is an epimorphism. We define g : A — A by
g(x) = x for all x € A, then g is a bijective mapping. Furthermore, for all x € A,
J(F(x)/N) = F(x)/K = F(g(x))/K. Consequently, (f,g) is a soft epimorphism from
(FIN, A) to (F/K, A). If we can prove kerf = K/N, then ((F/N)/(K/N),A) =~ (F/K, A)
by using Theorem 4.4 (2). For any N*[x] € M/N, N*[x] € kerf & f(N*[x]) = K*[0] =
KeK[x]=K+x=K & xe€ K & N*[(x]) € K/N. Therefore, we have kerf = K/N.

5. Fuzzy isomorphism theorems of soft hypermodules

In this scetion, we first review some related results of hypermodules [57]. Let u be a
nommal fuzzy sub-hypermodule of M. Define the relation on M: x = y(mod u) if and
only if there exists a € x — y such that y(a) = u(0), denoted by xu*y. The relation u* is
an equivalence relation. If xu'y, then u(x) = u(y).

Let 4*[x] be the equivalence class containing the element x € M, and M/u be the
set of all equivalence classes, i.e., M/u = {u’[x] | x € M). Define the two operations in

300



M/p: p*(x]ep’yl = W'l2d | z € p[x] + " Yl rop’(x] = p*[r - x). Then (M/p, ®,0)
is an R-hypermodule.

Let N be a normal sub-hypermodule of M, and u be a normal fuzzy sub-hypermodule
of M. If u is restricted to N, then g is a normal fuzzy sub-hypermodule of N, and N/u
is a normal sub-hypermodule of M/u. Furthermore, if 4 and v are normal fuzzy sub-
hypermodules of M, thensois z N .

If X and Y are two non-empty sets, f : X — Y is a mapping, and p and v are the
fuzzy sets of X and Y, respectively, then the image f(u) of u is the fuzzy subset of ¥

defined by
{ sup (u(x)) iff'0) 20,
f@o) =4 xr'o
0 otherwise,
for all y € Y. The inverse image f~'(v) of v is the fuzzy subset of X defined by
f"(v)(x) = v(f(x)) forall x € X.

Let M, and M, be two hypermodules, and f : M; — M; be a homomorphism. If u
and v are (normal) fuzzy sub-hypermodules of M, and M,, respectively, then (1) f(u)
is a (normal) fuzzy sub-hypermodule of Ma; (2) if f is an epimorphism, then flv)isa
(normal) fuzzy sub-hypermodule of M. If 1 and v are normal fuzzy sub-hypermodules
of M, and M,, respectively, then (1) if f is epimorphism, then f(f~'(»)) = v; (2) if u
is a constant on kerf, then f~!(f(u)) = p.

Let u be a normal fuzzy sub-hypermodule of M, then M, = {x € M | u(x) = u(0)}
is a normal sub-hypermodule of M.

Theorem 5.1. (First Fuzzy Isomorphism Theorem) Let M| and M> be two hypermod-
ules, and (F, A) and (G, B) be soft hypermodules over M; and M,, respectively. If (f, g)
is a soft epimorphism from (F, A) to (G, B) and y is a normal fuzzy sub-hypermodule
of My with (M), 2 kerf, then

(1) (F/u,A) = (f(F)/ f(), A), where (F/u)(x) = F(x)/u for all x € A;

(2) if g is bijective, then (F/u,A) = (G/f(w), B).
Proof. (1) Since (F, A) is soft hypermodule over M, and u is a normal fuzzy sub-
hypermodule of M,, (F/u,A) is a soft hypermodule over M, /u. For all x € supp(F,A),
JF(x)) = G(g(x)) # @ is a sub-hypermodule of M,. It follows that (f(F)/f(u),A)
is a soft hypermodule over M,/ f(u). Define f' : My/u — M,/ f(u) by f'(u*[x]) =
J@Lf(x), for all x € M. If u'[x] = u*[y], then u(x) = p(y). Since (M)), 2 kerf,
4t is a constant on kerf. So we have f~'(f(1)) = p. It follows that f~'(f())(x) =
o), ie. FEU)) = @) O)). Thus, f@) [(FEN] = f@W) [(FON]. So f

is well-defined. Furthermore, we have

F@lxlep D = f(u'ld |z epxlx]+u'DI) = (f)* [f@] |z € ' [x] + 1))
= [ (@ xD)) & f@* e bD) = fw'xD & f'w b,
frowlx) = @'l x) = f@rlf(r-0]=f@)'lr- f)]
=ro f)'f@) =rof@x)

and f/'(u*[0]) = f()*[F(0)] = f(u)'[0] = 0. Hence, f’ is a homomorphism. Clearly,
[’ is an epimorphism. Now, we show that f’ is an monomorphism. Let f(u)*[f(x)] =
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S Lf()), then we have f(u)(f(x)) = FEUON, i.e., (F' FENE) = F F@MNG).
So u(x) = p(y). Furthermore, we have u*[x] = u*[y). Therefore, f’ is an isomorphism.

Suppose that g’ : A — A defined by g’(x) = x for all x € A, then g’ is a bijective
mapping. Furthermore, for all x € A, we have f'(F(x)/p) = {f()*[al | a € f(F(x))} =
SE@)/ f@) = f(F(g' (x)))/ ). Consequently, (f, g') is a soft isomorphism. So we
have (F/u, A) = (f(F)/ f(1), A).

(2) Since f’ is an isomorphism, g is bijective and for all x € A, f'(F(x)/u) =
f@)°lal | a € f(FG) = f(Fx)/ f() = G(g(x))/f(u). Hence, (f',8) is a soft
isomorphism. Furthermore, we have (F/u, A) = (G/ f(u), B).

Example 5.2. Let (f, g) is the soft epimorphism described in Example 4.5. Clearly, g
is bijective. Define u(e) = u(a) = 0.8, u(d) = u(c) = 0.6. We can check that u is a
normal fuzzy sub-hypermodule of M. Obviously, (M}), = {e,a} = kerf. Furthermore,
we have that f(u) is a normal fuzzy sub-hypermodule of M, with f(u)(e) = 0.8 and
f@®d) = 0.6. (Ffu,A) and (G/f(), B) are the soft sets over M,/u and M,/ f(u),
respectively, where F/u : A — P(M;/y) is the set-valued function denoted by for all
x €A, F(x)/u = {(e, a}, (b, c}), if 2 | x; otherwise, F(x)/u = {{e,a}}, and G/f(u) : B —
P(M,/ f()) is the set-valued function denoted by for all x € B, G(x)/ f(u) = {{e}, (b)),
if 2 | x; otherwise, G(x)/ f(u) = {{e}}. It is easily to check that (F/u, A) and (G/ f(u), B)
are soft hypermodules over M;/u and M2/ f(u), respectively.

Define f' : Mi/u — My/f(u) by f'(@’[x]) = f()*[f(x)), for all x € M,. We
can check easily that f’ is an isomorphism. For x € A, if 2 | x, then f'(F(x)/u) =
M p) = {f)lall a € f(M)) = ({e), (b)) = G(g(x))/ f(u); otherwise, f'(F(x)/u) =
Sf'le,al/p) = {fw)’lal | a € f(e,al)} = ({e}} = G(g(x))/f(u). Therefore, (f',g) is a
soft isomorphism and so (F/u, A) = (G/ f(u), B).

Theorem 5.3. Let M; and M; be two hypermodules, and (F, A) and (G, B) be soft
hypermodules over M, and M; respectively. If (f, g) is a soft epimorphism from (F, A)
to (G, B) and v is a normal fuzzy sub-hypermodule of M, then

() (F/fF'0),4) = (F(F)/v A);

(2) if g is bijective, then (F/f~1(v),A) = (G/v, B).
Proof. Since v is 2 normal fuzzy sub-hypermodule of M, and f is an epimorphism,
it follows that f(f~'(»)) = v and f~'(v) is a normal fuzzy sub-hypermodule of M,.
Hence, (F/f~'(v),A) and (f(F)/v,A) are soft hypermodules over hypermodules M,/
f£71(v) and M, /v, respectively. For any x € kerf, we have f(x) = £(0). So v(f(x)) =
w0, ie., ') = f1(¥)(0), which implies that x € (M));-1,). So we have
(My)g-1) 2 kerf. According to Theorem 5.1, we have (F/ 1), A) = (f(F)/v,A).
Furthermore, if g is bijective, then we have (F/f~!(v),A) = (G/v, B).

Theorem 5.4. (Second Fuzzy Isomorphism Theorem) Let (F, A) be a soft hypermodule
over M. If u and v are two normal fuzzy sub-hypermodules with u(0) = v(0), then
(Ful@nv), A) = ((F, + F))[%,A).

Proof. We can obtain easily that 4 N v and v are normal fuzzy sub-hypermodule of M,
and M, +M,, respectively. Hence M,,/(uNv) and (M, +M,)/v are both R-hypermodules.
Since (F,A) is a soft hypermodule over M, we can deduce that (F,/(1 N v), A) and
((Fy + F,)/v, A) are soft hypermodules over M,,/(uNv) and (M}, + M,)/v, respectively.
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" Define £ My /@nv) > (M, + M)/v by f((unv)[x]) = v[x] for all x € M,.
If (N v)*[x] = (N V)], then (N V)(E) = (@ N V)(Q), that is, min{(u(x), v(x)} =
min{(u(y), v(y)). Since x,y € M, and u(0) = v(0), we have u(x) = u(0) = v(0) and
1y = u0) = v(0). It follows that v(x) = »(y). Thus, v*(x) = v*(y). So f is well-
defined. Furthermore, we have

flanavyixle@nvypl) = flunv)’zize @ny)x]+@n b

= {(v[2dIz€ @nv)lx]+ @NN' Dl = v’ (@ny)x) v nvbl)
= flwnvyx) @ f(unv)' DD,
Sro@nw'x) = f(ny)lr ) =vlr-x1=rovx]=ro f(unv)

and f((u N v)*{0]) = v*[0] = 0. Hence, f is a homomorphism.

For any v*[x] € (M, + M,)/v, where x € My + M,, that is, there exist a € M, and
beM,suchthatx e a+b, thereisa € x—aCa+b-ac M,,ie., va) = v(0).
Hence we have v*[x] = v*[a]. So f((u Nv)’[a]) = v'[x] and f is an epimorphism. If
@Ny)*[x] # @Nv)*[y), then (uNv)(x) # (NY)(). It follows that ¥(x) # v(y). Hence,
we have v*[x] # v*[y). So f is a monomorphism. Consequently, f is an isomorphism.

Define g : A — A by g(x) = x for all x € A, then g is bijective. For all x € 4,
FEDI@NV) = Fu()]v = (Fy+ F )Y = (Fy + F )N/ v.

Now, we prove that Fy,(x)/v = (F, + Fy)(x)/v. Clearly, F,(x)/v & (F, + F)(x)/v.
For all v*[a] € (F, + F,)(x)/v, where a € (F, + F,)(x), which implies that there exist
m € Fy(x) and n € F,(x) such thata € m+n,thereisaca-mCm+n-m¢c F,(x),
i.e., v(@) = v(0). So we have v*[a] = v*[m] € Fy(x)/v.

Therefore, (f, g) is a soft epimorphism and (Fy/p N v, A) = ((F, + F,)/v, A).

Theorem 5.5. (Third Fuzzy Isomorphism Theorem) Let (F, A) be a soft hypermodule
over M. If u and v are two normal fuzzy sub-hypermodules with v < 4, u(0) = v(0)
and Fy(x) = M, for all x €Supp(F, A), then ((F/v)/(Fyu/v), A) = (F[u, A).
Proof. It is clear that M, /v is a normal sub-hypermodule of M/v. So (M/v)/(M,/v) is
defined. Since (F, A) be a soft hypermodule over M, it follows that (F/v, A), (F/v)/
(Fy/v), A) and (F/u, A) are soft hypermodules over M/v, (M/v)/(M,/v) and M/u, re-
spectively. Define f : M/v — M/u by f(v*[x]) = u*[x] for all x € M. If v*[x] = v*[y]
for all x,y € M, then there exists @ € x — y such that v(a) = v(0). Since v < p and
1(0) = %(0), we get u(a) = v(a) = v(0) = u(0), which implies that u(e) = u(0). So we
have u*[x] = ¢*[y). Hence, f is well-defined. Furthermore, we have
frxlev' D) = f(v'(zd | ze v'Ix] + v’ DD = ('[z] |z € v [x] + v Y]}
=pvixlex vl = fOIx) & O D,
frovxD) = forlr-x)) =w’lr-x] =rop’lxl =ro f(v'[x)

and f(v*[0]) = u°[0] = 0. Hence, f is a homomorphism. Clearly, f is an epimorphism.
Define g : A = A by g(x) = x for all x € A, then g is bijective. For all x € A,
FF)/v) = F(x)/u = F(g(x))/u. Thus, (f,g) is a soft epimorphism from (F/v,A) to
(F/u, A).

Furthermore, kerf = (v*[x] € M/v | f(’[x]) = p*[0]} = (v'[x] € M/v | u°[x] =
w0 = (v'[x) € M/v | u(x) = u(0)} = (v'[x] € M/v| x € M,} = M, /v. By Theorem
4.4 (2), we have ((F/v)/(Fu/v),A) = (F/u,A).
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6. Conclusion

In this paper, we introduce soft hypermodules and soft sub-hypermodules, and investi-
gate several basic properties. Furthermore, we define homomorphism and isomorphism
of soft hypermodules, and establish the first, second and three (fuzzy) isomorphism the-
orems of soft hypermodules. In the following work, we will apply the notion of soft
sets to other algebraic hyperstructures.
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