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How few and how many longest cycles may a cubic graph with p vertices
have? The analogous question for the total number of cycles were addressed
in [1, 2]. A well-known consequence of Smith’s theorem says a cubic hamil-
tonian graph cannot have fewer than 3 hamiltonian cycles. We prove that
for each natural number k, where k > 2, there are infinitely many cubic
graphs with exactly one longest cycle of length p — k. On the other hand, if
the longest cycle has length p — 1, then there must be a second one but not
necessarily a third one. For this we apply a variant of Andrew Thomason’s
proof of Smith’s theorem. Part of this was already done by Fleischner [5].
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Abstract

We consider the questions: How many longest cycles must a cubic
graph have, and how many may it have? For each k > 2 there are
infinitely many p such that there is a cubic graph with p vertices and
precisely one longest cycle of length p—k. On the other hand, if G is a
graph with p vertices, all of which have odd degree, and its longest cy-
cle has length p— 1, then it has a second (but not necessarily a third)
longest cycle. We presents results and conjectures on the maximum
number of cycles in cubic multigraphs of girth 2,3,4, respectively.
For cubic cyclically 5-edge-connected graphs we have no conjecture
but, we believe that the generalized Petersen graphs P(n, k) are rele-
vant. We enumerate the hamiltonian and almost hamiltonian cycles
in each P(n,2). Curiously, there are many of one type if and only
there are few of the other. If n is odd, then P(2n,2) is a covering
graph of P(n,2). (For example, the dodecahedron graph is a cover-
ing graph of the Petersen graph). Another curiosity is that one of
these has many (respectively few) hamiltonian cycles if and only if
the other has few (respectively many) almost hamiltonian cycles.
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We prove that a cubic multigraph with p vertices has at most 27/2 hamil-
tonian cycles, and this is best possible. We raise the question if the number
of longest cycles in a cubic graph with p vertices is at most 12P/1°, We
have similar questions for the maximum number of hamiltonian cycles in
cubic graphs of cyclic edge-connectivity 2, 3, 4, respectively. For cubic cycli-
cally 5-edge-connected graphs, the generalized Petersen graphs are possible
candidates for those that have the maximum number of longest cycles.

Suppose n and k are two integers such that 1 <k <n—1and n > 5.
The generalized Petersen graph P(n, k) is defined to have vertex-set {u;,v; :
i=0,1,...,n — 1} and edge-set {u;uit+1,uivi,vivipk : i =0,1,...,n —1
with subscripts reduced modulo n}.

In [3], Bondy showed that P(n, 2) is hypohamiltonian (which means that
the graph is non-hamiltonian but the resulting graph is hamiltonian if any
one of its vertices is deleted) when n =5 (mod 6).

In [10], Thomason showed that P(n,2) has has precisely three hamilto-
nian cycles when n = 3 (mod 6).

In [8], Schwenk enumerated the number of hamiltonian cycles in the
remaining generalized Petersen graph P(n,2). An alternative proof using
Grinberg’s criterion was given in [4]. In this paper we enumerate the number
of (2n — 1)-cycles in P(n,2) (see Table 1). A cycle of length k is called a
k-cycle. Again, the proof makes use of the following remarkable theorem
of Grinberg (see [7]) concerning planar hamiltonian graphs.

Theorem 1 ([7]) Suppose G is a plane graph with a hamz’ltonic’m cycle C
which partitions its f; faces of degree i into f; (respectively f; ) faces of
degree i in the interior (respectively exterior) of C, then

S G-2i-f) =0

>3

2 Cubic graphs with few longest cycles

By Smith’s theorem (see [15]) every cubic hamiltonian graph has at least
three hamiltonian cycles. Seymour (see [6]) asked if the following is true:
Suppose C is a cycle in a cubic graph G. Does there exist a cycle C’ distinct
from C such that V(C) is a subset of V(C’)? If true this would imply that
there is no cubic graph with precisely one longest cycle. Fleischner proved
in [5] that the conjecture is true if C misses only one vertex of G but false
in general [6] .

We shall here point out that the conjecture holds in many situations.
We shall use a variant of Thomason’s lollipop method [9]. That method
was also used to find many hamiltonian cycles in bipartite graphs with
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large minimum degrees [13] and, perhaps more surprising, to prove that
any longest cycle in a cubic graph has a chord [14].

Theorem 2 Let C be a cycle in a graph G such that all vertices in C have
odd degree in G and such that G — V(C) is connected. Then G has a cycle
C' distinct from C such that V(C) is a subset of V(C’).

Proof. Select a vertex z in C which has a neighbor in G — V(C). Let y
be a neighbor of z on C. Now define a new graph H as follows: A vertex
in H is a hamiltonian path P in G(V(C)) which starts with the edge zy.
Let z denote the other end of P. A vertex P’ in H is a neighbor of P if P’
can be obtained from P by adding an edge zu from z to P — z and then
deleting the edge succeeding u on P. Then the degree of P is even unless
either z is joined to z or to a vertex in G — V(C). If we delete from C the
edge preceding = we get a hamiltonian path which has odd degree in H.
Then H must have another vertex P’ of odd degree. Either P’ is contained
in a hamiltonian cycle C’ of G(V(C)), or else the end z of P’ distinct from
z is joined to G — V(C) in which case P’ can be extended to a cycle C’
intersecting G — V(C). In either case the cycle C’ satisfies the conclusion
of the theorem. O

Corollary 1 If G is a cubic graph with p vertices and the longest cycle of
G has p — 1 vertices, then G has at least two longest cycles.

Corollary 1 follows also from Fleischner’s paper [5]. We shall now prove
that it is best possible. Consider the Petersen graph. If we delete a vertex,
the resulting graph has precisely two cycles of length 9. Now let G; be
obtained from the Petersen graph by replacing every vertex, except precisely
one, by a triangle. Then G, has 28 vertices, it is non-hamiltonian, and it
has precisely two cycles of length 27. Let e be an edge in one of these
but not in the other. Let G be obtained from two disjoint copies of G
by deleting the edge e in both copies and then adding two edges from one
copy to the other. Then we get a cubic graph with 56 vertices, and it has
precisely one longest cycle which has length 54. Let v be a vertex contained
in the longest cycle. If we take two copies of G2 and delete v in either copy
and add three edges between the copies, then we obtain a cubic graph with
110 vertices with a unique longest cycle of length 106. If we replace a vertex
contained in the longest cycle by a triangle, then we get a cubic graph with
112 vertices with a unique longest cycle of length 108, and this operation
can be repeated. More generally, we get by this method for each natural
number k > 2 and infinitely many natural numbers p, a cubic graph with
p vertices having a unique longest cycle with p — k vertices.
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Corollary 2 Every cubic, vertez-transitive, nonhamiltonian graph with p
vertices containing a cycle of length p — 1 has at least 2p cycles of length

p—1.

Proof. Let C be any cycle of length p — 1. Let v be the vertex not in C.
By Theorem 2, G has another hamiltonian cycle of G —v. Corollary 2 now
follows by using the automorphisms of G. O

Corollary 3 Every cubic hypohamiltonian graph with p vertices has at least
2p cycles of length p — 1.

We do not know to which extent Corollaries 2, 3 are best possible. In
Corollary 3 it is not possible to replace 2p by 100 x 219, To see this,
consider the smallest planar cubic hypohamiltonian graph G in [11]. It has
less that 100 vertices so it has less that 21%0 cycles missing precisely one
vertex. It also has a 4-cycle zyzuz. Now replace this 4-cycle by a ladder,
that is the cartesian product of a path with two vertices and a longer path.
The resulting graph is also hypohamiltonian and has p vertices, say. For
each vertex w in the ladder there are less than 21%° cycles missing precisely
that vertex w. If w is a vertex not in the ladder, then G has less than 2190
cycles missing precisely that vertex w. Each such cycle can be extended to
the ladder in less than p ways.

Problem 1 Does every planar, cubic, cyclically 4-edge-connected graph
with p vertices contain at least p/2 longest cycles?

The cartesian product of an odd cycle with n vertices and a K, has
precisely n hamiltonian cycles.

3 Graphs with many long cycles

We now turn to cubic graph with many longest cycles. If G is a cubic
multigraph with p vertices, then its cycle space Z(G) has dimension p/2+1.
Hence the number of eulerian subgraphs is 2P/2+1, If G is nonbipartite, then
the number of elements of Z(G) with even cardinality equals the number
of those that have odd cardinality. (To see this, let Sp be the edge set of
any fixed odd cycle in G. Let S be any element in Z(G) of even cardinal-
ity. Then the symmetric difference of S and Sy is an element of Z(G) of
odd cardinality.) Hence precisely half of the elements of Z(G) have even
cardinality, and hence the number of even cycles in G is at most 27/2, and
the number of odd cycles in G is at most 27/2. In particular, the number
of longest cycles in G is at most 27/2, This is best possible in a sense. To
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see this, take a cycle of length p and replace every second edge by a double
edge. Let us call this multigraph a semi-double-cycle.

In the bipartite case it is also true that the number of hamiltonian cycles
is at most 27/2, However we cannot use the cycles space argument above,
as all elements in the cycle space now have even cardinality.

Theorem 3 Let G be a cubic multigraph with p vertices, and let e be an
edge of G which is not in a 2-edge-cut. Then G has at most 2P/~ hamil-
tonian cycles through e, unless p = 2.

Proof (by induction on p). The statement is easily verified for p = 4, so
we proceed to the induction step.

If G has a double edge we replace that edge and the two edges incident
with its ends by a single edge, and we use induction. So assume that G has
no double edge.

If G has a 2-edge-cut E, then we choose E such that the component H of
G — E not containing e is smallest possible. Then we add two edges to G—FE
to obtain two cubic multigraphs, and we apply induction to each. When
we apply induction to H with an edge added, then the added edge plays
the role of e. Note that this edge is not contained in a 2-edge-cut because
of the minimality of H. Also, H has more than two vertices because G has
no 2-cycle. So assume that G is 3-connected.

Suppose G has a 3-edge-cut E such that G — E has two components
G,, G, with p), ps vertices, respectively. Assume that G2 does not contain
e. We first contract G3 to a single vertex and use induction. Then resulting
graph has at most 2P1/2-1/2 hamiltonian cycles containing e. Consider one
of these, say C. Then we apply induction to G5 with an appropriate edge
(which will play the role of €) added, and with a path of length 2 replaced
by a single edge. This shows that C can be extended to at most 2P2/2-1/2
(in fact at most 2P2/2-3/2) hamiltonian cycles in G. So assume that G is
cyclically 4-edge-connected.

Now let e = zy, and let y, 1,2 be the neighbors of z, and let x,y1,¥2
be the neighbors of y. Now consider each of the four paths of the form
z;zyy;. We delete z,y and add the edge z;y; which we call e’. We suppress
the two vertices of degree 2 so that the resulting graph G’ has p— 4 vertices.
As G is cyclically 4-edge-connected, €’ is not contained in a 2-edge-cut in
G'. By the induction hypothesis, G’ has at most 27/2~3 hamiltonian cycles
through €’. As e’ can be chosen in four ways, the result follows. O

Theorem 4 Let G be a cubic multigraph with p vertices. Then G has at
most 2°/2 hamiltonian cycles. If G is not a semi-double-cycle, then G has
at most (3/4)2P/2 hamiltonian cycles.
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Proof. If G has a 2-edge-cut E, then we apply induction to each component
of G — E with an edge added. If the new edge is not contained in a 2-edge-
cut, then we apply Theorem 3 instead. So, the result follows unless each
of the two graph to which we apply induction are semi-double-cycles, and
the two added edges are contained in 2-edge-cuts. Hence also G is a semi-
double-cycle.

If G is 3-connected, then let v be any vertex of G. For each of the three
edges incident with v, apply Theorem 3. Then we count at most 3 times
2P/2=1 hamiltonian cycles. As each hamiltonian cycle is counted twice, the
result follows. O

Let H be a cubic graph with m vertices, and let e be an edge contained
in some longest cycle. Let ¢ be the number of longest cycles containing
e. Consider ¢ disjoint copies G1,G3,...,G: of H where the indices are
expressed modulo ¢. Now delete e from each G;, and add an edge from G;
to Gi41 so that we obtain a new cubic graph G. Then G has tm vertices,
and ¢* longest cycles. If H is K33, then we obtain in this way a cubic
graph G with p = 6t vertices and 4* = 27/3 hamiltonian cycles. If H is the
Petersen graph, then we obtain in this way a cubic graph G with p = 10¢
vertices and 12¢ = 12P/10 Jongest cycles.

Problem 2 Does there erist a cubic graph with p vertices and more than
12°/10 Jongest cycles?

Does there ezist a cubic graph with p vertices and more than 2°/3 hamil-
tonian cycles?

Consider a vertex v in a cubic graph G, and let v,, v, v3 be the neigh-
bors of v. Now form a new cubic graph G’ by deleting v and adding five new
vertices uj, ug, us, ¥, z such that u; is joined to v; by an edge fori = 1,2, 3,
and y, z are joined to each of u;,u2,us. Then G’ has twice as many hamil-
tonian cycles as G. If we start with K3 3 and repeat this operation ¢ times,
then we obtain a graph with 6 4 4t vertices and 6 - 2¢ hamiltonian cycles.

Problem 3 Does there ezist a cubic, 3-connected graph with p vertices and
more than (3//2) - 2P/4 hamiltonian cycles?

Consider p/4 disjoint 4-cycles x;y;z;u;z; where again p is divisible by
4 and the indices are expressed modulo p/4. For each i add the edges
YiTit1, uizi41. This graph has (3/2) - 2P/4 hamiltonian cycles.

Problem 4 Does there exist a cubic, cyclically 4-edge-connected graph with
p vertices and more than (3/2) - 2°/4 hamiltonian cycles?
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4 The number of long cycles in generalized
Petersen graphs

The situation becomes more interesting when the cyclic edge-connectivity
is at least 5. It is not clear which such cubic graphs have the maximum
number of hamiltonian cycles. The hexagonal tilings of the torus and the
Klein bottle would be interesting examples to study. Their structure is
completely described [12].

Another interesting class are the generalized Petersen graphs P(n,2).
Their hamiltonian cycles have been counted in [8]. We shall now count the
number of cycles missing one vertex as well.

Let F,,, denote the m-th Fibonacci number defined by F} = F; =1, and

Theorem 5 The number of cycles of length 2n, respectively 2n — 1, in the
generalized Petersen graph P(n,2) is given in Table 1 below.

Number of 2n-cycles Number of (2rn — 1)-cycles | Congruent classes
2(Fg41+Fz_1-1) » n =0 (mod 6)
n n(Flt_: +1) n =1 (mod 6)
2(Fap+Fg_1—1) n{n-2) n =2 (mod 6)
3 (Fap1 + 3) n =3 (mod 6)
n+2(Fp41+Fpo1-1) 0 n =4 (mod 6)
0 n(Fop + adl) n =5 (mod 6)

Table 1. The numbers of 2n-cycles and (2n — 1)-cycles in P(n,2).
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As Hamilton observed, the graph of the dodecahedron P(10, 2) is hamil-
tonian. In fact it has precisely 30 hamiltonian cycles. If we think of the
dodecahedron as a sphere and we identify pairs of antipodal vertices, then
the sphere is turned into the projective plane, and the graph of the dodeca-
hedron is turned into the Petersen graph P(5, 2). By the Grinberg criterion,
P(10,2) has no cycle of length 19. Curiously, the Petersen graph has no
hamiltonian cycle but 20 cycles of length 9. This curiosity generalizes, as
P(2n,2) is a covering graph of P(n,2) when n is odd. (We can transforms
P(2n,2) into P(n,2) by identifying each u; with u,;, and identifying each
v; with v,44. P(2n,2) is planar while P(n, 2) is projective planar.)

We also obtain the following curious facts:

P(n,2) has exponentially many cycles of length 2n, if and only if it has
only polynomially many of length 2n — 1.

P(n,2) has exponentially many cycles of length 2n — 1, if and only if it
has only polynomially many of length 2n.

We do not know if there are similar phenomena for other classes of cubic
graphs.

As mentioned earlier, the number of hamiltonian cycles in P(n,2) pre-
sented in the first column of Table 1 were counted by Bondy [3], Thomason
[10] and Schwenk [8], and a unified proof was given in [4]. We shall here
extend the proof to (2n — 1)-cycles.

5 Proof of Theorem 5 when restricted to the
number of (2n — 1)-cycles

First, suppose n is odd.

Since for every pair of vertices u;,u; (respectively v;,v;), there is an
automorphism of P(n,2) that maps u; to u; (respectively v; to v;), we
need only count the number of hamiltonian cycles in P(n,2) — u; and in
P(n,2) — v; and then multiply the sum by n.

Throughout, let C denote a hamiltonian cycle in P(n,2)—u; or P(n,2)—
v1.

Draw P(n,2) as shown in Figure 1.

We treat the case P(n,2) — u; first.

(1) Assume first that vovy is an edge in C. We claim that the number
of such hamiltonian cycles in P(n,2) —u; is 1if n =1 (mod 6) and 252 if
n =5 (mod 6), and 0 otherwise.

Suppose u3vs; is an edge in C. Then the paths vgvqususvsvy, Vn—1v1v3u3
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Figure 1: P(n,2) withn =1 (mod 2)

UgVoUpUQUn—1 aNd Up—2Un_3Un—q are clearly part of C. Since the three
edges vav4, uzuy and vaus are not in C, we may delete them from P(n, 2)—u)
and obtain a plane graph whose face-degree sequence is (5,...,5,9,n+4).
By Grinberg’s criterion (or by a direct combinatorial argument), P(n,2) —
u; has a hamiltonian cycle only if n = 5 (mod 6) (since the 9-face and the
(n + 4)-face are on different side of C). If n = 5 (mod 6), then the paths
mentioned above extend to a unique hamiltonian cycle of P(n,2) — u;.

On the other hand, if u3v; is not an edge in C, then the paths vsvjusuzus
VoUoUoUn—1, Un—1V1V3VsUsUG, VoUrtty and Un_gUn_oUn_4 are part of C.

(O1) If ugus is an edge of C, then uguy and vgvs are not in C. We may
then draw P(n,2) —u; as in Figure 1 but with the edge vov intersects with
vsvr, ugur and vgvg (instead of with vavs and ugug). We can then delete
these three edges and obtain a plane graph whose face-degree sequence
is (5,...,5,12,n + 1). Again, by Grinberg’s criterion, P(n,2) — u; has a
hamiltonian cycle only if n = 5 (mod 6). If n =5 (mod 6), then there is a
unique hamiltonian cycle of P(n,2) — u; containing these paths.

If ugve is not an edge of C, then the above four paths are replaced
by ugugvUsUeValaUaUaVaVolpUn~1, Vn—1V1V3VsUsUEUTVTVY, V12V10U10 and
Up—2Un—2Un_4 respectively.

If ugvg is an edge of C, then we repeat the argument as in (O1), where
vsvr, ugly and vgvs are replaced by vov)1, Ugui0 and vgvyo respectively. The
face-degree sequence of the resulting graph is (5,...,5,15,n — 2). Apply
Grinberg’s criterion to get n = 5 (mod 6) in which case we have a unique
hamiltonian cycle in P(n,2) — u; containing these paths.

Continue arguing in this way, we see that, if ¢ (> 2) is the smallest
integer such that ug;vs; is an edge in C, then we do the same as in (01) and
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then delete the edges va;_1v3:41, uziuzi+1 and va;v3i42 to get a plane graph
whose face-degree sequence is (5,...,5,3i + 6,n + 7 — 3i). By Grinberg’s
criterion, we have n = 5 (mod 6), in which case, there is only one way to
extend those paths to get a unique hamiltonian cycle in P(n,2) — ;.

If such 7 does not exist, then n — 1 is divisible by 3, that is, n =
1 (mod 6), and we get a unique hamiltonian cycle.

Summarizing, we see that, if vov; is an edge in C, then P(n,2) —u; has
no hamiltonian cycle unless » = 1,5 (mod 6). Moreover, whenn = 5 ( mod
6), for every integer j € {1,2,..., "T‘z}, there is a unique hamiltonian cycle
in P(n, 2) —u, avoiding the edges v3;_1v3;+1, uzjuzjy1 and v3jvzj+2. When
n =1 (mod 6), the hamiltonian cycle C is unique. This proves the claim
in (1).

(2) Assume now that vove is not an edge in C. We shall show that
the number of hamiltonian cycles in P(n,2) — u; is Fl;_u in this case. In
fact, this follows from the assertion that the number of hamiltonian cycles
is equal to the number of matchings in the path P(n) = vqvgvs ... vn_;.

To see this, we observe that in any hamiltonian cycle C in P(n,2) —u,,
those edges in P(n) = v4vevs ... vn—1 Which are not part of C clearly form
a matching on P(n). Observe also that the paths vgvusua, v3v3v,-1 and
Up—1UVoVUn—2 are part of C.

On the other hand, if ¢ € {4,6,...,n—1} is the smallest integer such that
ViVi+2 is not an edge in C, then the path u; 3u;+2v; 42944 is part of C and
the path v3v;v,-) extends t0 v 3V Ui 1% VVi2 . . . VaU2URUZ . . . Ui_3U;i—2
Ui—1Vi—1Vi—3 ... U3V1Un—1 (Where the subpath u;_3u;_su;_1v;-1vi-3 be-
comes an empty path if i = 4).

If j € {4,6,...,n — 1} is the second smallest integer such that vjv;42
is not an edge in C, then the configuration is repeated with i replaced by
J. Therefore, if we specify a matching on the path P(n), there is a unique
hamiltonian cycle which avoids this matching.

If there is no such integer i in {4,6,...,n — 1}, then we have an empty
matching on P(n), and there is a unique hamiltonian cycle containing all
the edges in this path.

This completes the case of P(n,2) — u;.

Next, we treat P(n,2) — v;.
(i) Assume first that vov; is not an edge in C. We claim that the number
of hamiltonian cycles in P(n,2) — v; is Fli-% in this case.

Clearly, the paths v4vsusu; ugUVn—2, Un—2Un~1Vn—-1Vn—3 and vsuzuauy
are part of C. We repeat the argument of (2) and conclude that the number
of hamiltonian cycles in P(n,2) — v, is equal to the number of matchings
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on the path vsvz .- v,_o which is Fg_;_g.

(ii) Assume now that vouy is an edge in C. We claim that the numbers of
such hamiltonian cycles in P(n,2)—v; are0, 3 and1ifn=1,3 and 5 ( mod
6), respectively.

If uous is not an edge of C, then we delete it and obtain a plane graph
(with vovz redrawn so that it is on the unbounded face). Here the face-
degree sequence is (5,...,5, 247, Eth) and Grinberg’s criterion is satisfied
only if n = 3 (mod 6) because the two 2}Z-faces are on the same side of C.
This is because the paths uou;u2v2v0, Un—1Vn—1Vn—3 and VeV U4 U3V3VsU5UG
are part of C. Further, there is a unique hamiltonian cycle containing these
paths in the case n = 3 (mod 6).

We are left with the case usus is an edge of C. Here, clearly the subpaths
Up—1Un—1Vn—3, U0l UaU3V3Vs, UoU2vslaUs and ugvgvs are part of C. This
immediately implies that P(7,2) — v; has no such hamiltonian cycle and
that P(5,2)—v; has precisely one such hamiltonian cycle. Hence we assume
that n > 9.

(02) If usvs is an edge of C, then vsv7 and usug are not in C. We
may then draw P(n,2) — v, as in Figure 1 but with the edge vov; intersects
with vsvr, usug and v4ve (instead of with vavs and uzus). We then delete
these three edges and obtain a plane graph whose face-degree sequence is
(5,...,5,11,n+2). By Grinberg’s criterion, P(n,2) — has a hamiltonian
cycle only if n = 3 (mod 6) (because the 11-face and the (n+2)-face are on
different side of C). If n = 3 (mod 6), then there is a unique hamiltonian
cycle of P(n,2) — v; containing these paths.

If usvs is not an edge of C, then the above four paths are replaced
by %n—1Vn—1Vn—3, UpU1U2U3VU3Vs VT UTUS, VoV2VaU4U5UEVEVS and ugugvyy re-
spectively.

If ugvs is an edge of C, then we repeat the argument in (O2), where
vsV7, usug and v4vg are replaced by v7ve, ugue and vgvio respectively. The
face-degree sequence of the resulting graph is (5,...,5,14,n — 1). Apply
Grinberg’s criterion to get n = 3 (mod 6) in which case we have a unique
hamiltonian cycle in P(n,2) — v;.

More generally, if j is the first integer of the form 23 (for some natural
number i such that 1 < i < 2z8) such that u;v; is an edge in C, then we
apply the argument in (O2) with the edges vjvjy2,ujuj+1 and vj_1vj41
deleted and obtain a plane graph with face-degree sequence (5,...,5,8 +
3i,n + 5 — 3i). Apply Grinberg’s criterion to get n = 3 (mod 6) in which
case we have a unique hamiltonian cycle in P(n,2) — v;.

It remains to consider the case where u;v; is a not edge in C for any j
of the form 2 + 3i. Let j be the largest number which is of the form 2 + 37
and which is <n —3.
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If j = n —4, then n = 3 (mod 6) and the four paths in the preceding
argument can be extended to a unique hamiltonian cycle in P(n,2) — v
avoiding the edge un_4vn—4.

If j =n—3, then n = 5 (mod 6) and again the four paths in the preced-
ing argument can be extended to a unique hamiltonian cycle in P(n,2)—v,
avoiding the edge u,_3vn-3.

If j = n—5, then n = 1 (mod 6) and clearly there is no hamiltonian
cycle in P(n,2) — v; avoiding the edge up_5vn-5.

This proves the claim in (ii).

‘We now comment on the case where 7 is even, that is P(n,2) is planar.
Draw P(n,2) in the plane such that the Z-cycle vjv3 ... v,—1v, is the outer
face boundary.

If n is congruent to 4 modulo 6, then P(n,2) —u; and P(n,2) — v; have
precisely one face whose face boundary has a length which is not congruent
to 2 modulo 3, and therefore they are not hamiltonian, by the Grinberg
criterion. So P(n,2) has no cycle of length 2n — 1 in this case.

If n is congruent to 0 modulo 6, then P(n,2) — u; has precisely three
faces whose face boundaries have length not congruent to 2 modulo 3, and
these face boundaries have length 0 modulo 3. Therefore, these faces must
be on the same side of the hamiltonian cycle in order to satisfy the Grinberg
criterion. But this is clearly impossible. So P(n,2) — u; has no cycle of
length 2n — 1 in this case.

P(n,2) — v; has precisely two faces whose face boundaries have length
not congruent to 2 modulo 3. As their boundary lengths are not congruent
modulo 3, these two faces must be on the same side of the hamiltonian
cycle. Using this it is not difficult to see that P(n,2) — v; has precisely %
hamiltonian cycles. Hence P(n,2) has precisely 1'31 cycles of length 2n — 1
when n is congruent to 0 modulo 6.

If n is congruent to 2 modulo 6, then P(n,2) — v; has precisely one
face whose boundary length is not congruent to 2 modulo 3. Hence it is
non-hamiltonian by the Grinberg criterion. P(n,2) — u; has precisely three
faces whose face boundaries have lengths not congruent to 2 modulo 3, and
these face boundaries have lengths 0,1,1 modulo 3. Therefore, the two
faces with boundary length 1 modulo 3 must be on the same side of the
hamiltonian cycle in order to satisfy the Grinberg criterion. If i = 1, this
implies that any hamiltonian cycle must contain the paths v,_jv,v3 and
Un—1UoUoU2usus. Using this it is easy to see that P(n,2) — u; has 232
hamiltonian cycles. Hence P(n,2) has 1'1"3-;21 cycles of length 2n—1. 0O
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Problem 5 Does there exist a planar, cubic, cyclically 5-edge-connected
graph with 4n vertices that contains more longest cycles than P(2n,2)?
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