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1. INTRODUCTION

For a subset S of a finite group G we set S% = {zy|z,y € S}. K, for
some positive integer n, G has the property that |S| = n implies |S?| < n?
then G is said to have the small squaring property on n-sets. Groups with
this property have been characterized by Freiman [2] when » = 2, and by
Berkovich, Freiman, Praeger[1] and Longobardi, Maj[3] when n = 3.

For G abelian, |S| = n implies |S?| < ﬂ';—"'—ll and, in general, groups
with this property are called B,-groups. Ba-groups were characterized in
[2](as noted above), while Bs-groups and Bjs-groups were characterized in
[4]

The following definition generalizes both the above notions.

1.1 Definition

Let n, k be positive integers with £ < n? — 1. A group G is called a
B(n, k) group if |{a;a;|1 < i,j < n}| <k, for any n-subset S = {a1,...an}
of (; n(n+1) . .

0 B,-groups are B(n, ——2—) groups, while groups with the small
squaring property on n-sets are B(n,n? — 1) groups.

In this paper we complete the classification of B(2, k) groups and B(3, k)
groups for all values of k. These results are presented in the next section.
All but the B(3,7) case are quite straightforward, and the proof of this
latter case is left to Section 3.

It is assumed throughout that all groups are finite (though some argu-
ments do extend to the infinite case).

2. RESULTS

We begin with the previously mentioned result of Freiman[2]. A proof
is included for convenience.

Theorem 2.1 A group G is B(2,3) if and only if G is either abelian or
a Hamiltonian 2-group.

1A substantial part of this paper is from the first author’s M.Sc. thesis.
2The second author’s research was supported in part by a Discovery Grant from the
Natural Sciences and Engineering Research Council of Canada.
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Proof: <

We take a subset {z,y} where 2,y € G. If G is abelian, we have zy = yz,
and thus there exist at most three distinct products. So we check the case
where G is a Hamiltonian 2-group, i.e. Qs X C;... x Cy where Qs is the
quaternion group of order 8. We may assume by the last remark that
and y do not commute. But since all elements of order 2 are central, then
z2 = y2, and so there exist at most three distinct products. Consequently,
the listed groups are B(2,3).
=

Assume G is a nonabelian B(2,3) group. Consider the subset {z,y},
where a:,y € G do not commute. Since G is a B(2,3) group, this forces

= y%. Next, we conmder the subset {z,zy}. Again, z and Ty don’t
commute S0 we get 2?2 = (zy)? = zyzy = z = yry or y~lay = 7y% =
¥y lzy = 28 since 32 = a:2 So G is Hamiltonian, or equivalently, G &
Qs x C2 x ... x Cy x A where A is abelian and |A| is odd.

Note that {z, y3} = {z,z%y}. Since z and z2y don’t commute, z2 =

(¥*)% = y® = 25, s0 2 = 1 for all noncentral z € G. It follows that |A| =1

a.nd we're done. O

Next we classify B(2,2) groups.

Proposition 2.2 A group G is a B(2,2) group if and only if G is an
elementary abelian 2-group.
Proof: <—

Conmder a subset {z,y} where z, y €G, from which we get the products

z?,zy,yz,y?. Clearly, yz = ry and 22 = 1 = 32, so we can obtain only two

distinct products. Therefore G is B(2,2).
=

Let Gbea B(2 2) group. If we consider the subset {1,z}, we obtain the
products 1, z, z2, of which only two are distinct, hence, by the cancelation
law, we must ha.ve z2 = 1. It follows that every element of G must be
of order 2. Consequently G is abelian and hence G = C; x ... x C,, as
required. O

This completes the classification of B(2, k) groups for all positive inte-
gers k. It is convenient to begin the study of B(3,k) groups with the case
k=86.

Theorem 2.3[4] A group G is a B(3,6) group if and only if either
|G| < 6 or G is abelian.

Next we observe that if G & S3 =< a,bla® = b? = 1,ba = a?b >, then
the subset S = {a, b, ab} satisfies |S%| = 6. Hence S is not a B(3, k) group
when k£ < 5, and it follows from Theorem 2.3 that when studying such
groups we may assume G is abelian.

-
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Proposition 2.4 A group G is a B(3,3) group if and only if |G| < 3.
Proof:

Assume G is a B(3, 3) group. Taking a subset {1, z,y}, we get the prod-
ucts 1,z,y,z2%, xy, y2. Since only three of these are distinct, the products
z2, zy, y? must be equal to either 1, z or y. Using the cancellation law, we
get zy = 1, and we are left with the possibilities > = 1 or 22 = y. But in
the first case z2 = 1 = zy from above, contradicting the cancellation law,
so x2 = y. This means that G can have only three elements. [

Proposition 2.5 A group G is a B(3,4) group if and only if either
|G| £ 4 or G an elementary abelian 2-group.

Proof: <

If G = Cy x...x Cs, take any subset {z,y,2}. Sincez2 =y? =22 =1,
G is B(3,4).
=N

Assume G is a B(3,4) group and z is of order greater than 2. Taking the
subset {1,z,z2}, we get the products 1,z,22,2°, z%. Since these products
cannot be distinct, z must be of order < 4.

Now, if |G| > 4 then G must also contain an element y such that y
is not in (z). If we consider the subset {1,z,y}, we get the products 1,
z, y, 2, zy, y2. However, 1, z, y, 22, and zy are all distinct, which is a
contradiction. Therefore no such z exists, and G = C; x...x Cs as desired.
(]

Proposition 2.6 A group G is a B(3,5) group if and only if G satisfies
one of the following:

M) IG| <5
(ii) G is an elementary abelian 2-group.

(iii) G = C4 x E where FE is an elementary abelian 2-group.

(iv) G=Cs
Proof: <

If G & Cs = (z), we consider a subset {z° z% z°}. Multiplying, we
get the products z2¢,z°+t? zote g2 zb+e 22¢ whereby the sum of these
exponents is 4a + 4b 4 4c. However, the sum of the exponents of the set
20,z 22, 23,24, 2% is 15, but since 4a + 4b + 4c # 15(mod 6), our list of
products cannot produce all powers of . Therefore we have at most five
distinct powers of = present, so Cg is B(3,5) as required.

If G = Cy x Cy X ... x Cy we know that either 22 = 1 or 22 is the
element (a2,1,...,1) of order 2. So if we take a subset {z,y, 2}, then two
of 22,42, 22 must be equal, and consequently, G = Cy x Ca x ... x Cy is
B(3,5).

=
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We next assume that G is B(3,5). If we can choose x of order greater
than 3, consider the subset S = {1, z,2%}. Then, multiplying in the usual
way, we get the products 1,x,z3, 22, 4, 26. These elements cannot all be
distinct, so we have proved that every element has order at most 6. It
is necessary, therefore, to consider only the groups Cy x ... x Cy4 x Cs X
. X C2,C3x...xC3xCy x...xCy (with perhaps no C; terms in these
cases)and Cs X ... X Cs.

Assume first that we can take the subset {z,y,zy}, where z,y are gen-
erators of different Ci’s, with & > 2. From here we get the products
=2, zy, 22y, %,
zy?, z2y? which are all distinct, and so we cannot have more than one such
Ck. We are left with the possibility that either G = Cy x Cy x ... X C;
or G = C3 x Cy X ... X Cy, with at least one C, term. To finish we must
investigate the latter.

Consider the subset {1, zy,z22} where z € C3 and y, z are generators of
different Cy’s. Since the products 1, zy, 22, 22, yz, z are clearly all distinct,
we have a contradiction. Therefore we can have only C3 x C; & Cg and
we're done. OJ

Here is the result classifying B(3,7) groups. As mentioned in the intro-
duction, the next section will be devoted to its proof.

Theorem 2.7 A group G is a B(3,7) group if and only if G satisfies
one of the following:

(i) G is abelian

(ii) G228,

(iii) G = {a,pla® = 1,6® = p?, pa = a®p)

(iv) G is a Hamiltonian 2 - group.

3. PROOF OF THEOREM 2.7

We will start by showing that the groups listed are B(3, 7) groups. Cases
(i) and (ii) are obvious.

Lemma 3.1 G = (a,pla® = 1,0% = p?, pa = a®p) is a B(3,7) group.
Proof

We note first that A = (a) is a cyclic subgroup of G, and the set
of elements H = {p,ap,...,a®p} all have the same square, namely a3.
We also see that in this group there are six elements of order 4 (the set
H), two elements each of orders 3 and 6, one element of order 2, and
the identity. We proceed by taking a subset {z,y,2} and investigating
the different possibilities of the orders of z,y and z in an effort to find at
least two repetitions of products in each case. Note that if any of z,y, 2
are of order at most 2, then such an element would be central and would
automatically give two repetitions. So we assume that each of z,y, z are of
order at least 3 and consider the following cases.
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(i) lz| = 3, [yl =6, |z] =3 or x| =3, ly| =6, |z] = 6

Since all of these elements are contained in the cyclic subgroup A mentioned
above, z,y, z will commute with each other, immediately giving at least 2
repetitions.

() |z| =3, lyl =4, |z| =6

This is the subset {a*,a?,a*p} wherei =1or5,j=20r4,0<k <5,
which gives the products a%,a**i,ai*+*p,a*td, a? ad+kp, aF~ip, a*~Ip, ad.
We already have the product a‘*7 repeated once, so we need only find one
more repetition. We examine all possible values of ¢ and j.

i | 7 | resulting repetition
12 a® =a**
1]4 a® = a*
512 a® = g%
5[4 @ =3

We have found a repetition for all possible values of ¢ and j, so we have the
required two repetitions for this case.
(7'1‘2) le =3, Iyl =3, |z| =4
This is the subset {a?,a?, a’p} where 0 < ¢ < 5, which gives the products
at,1,a**2p, 1, a2, a*+ip, ait4p, ait2p,ad. Clearly 1, a**4p and a*+2p appear
twice, so this case holds.
(iv) le = 6, Iyl =6, |z| =4
This is the subset {a,a® a'p} where 0 < i < 5, which gives the products
a?,1,a**1p, 1, a4, a¥+%p, a**5p, a’t'p, ad. Clearly 1, a**5p and a**!p appear
twice, so this case holds.
() |z|=3,lyl=4,|2|=4or|z|=6 |y =4, |2| =4
This is the subset {a’,a’p, a¥p} where i =1,2,4,5;0<j<5,0<k <5,
which gives the products a?, a*+ip, a***p, a?~ip, a3, a7 ~F+3 ok ~ip, gk~i+3,
a®. We already have the product a® repeated once, so we need only find
one more repetition.

If i = 1, we have the products a2,a'*7p,alt*p, a¥=1p,ad~*+3 o*~1p,
a*=3+3 g3, We now check the differences (mod 6)between j and k using
these products.
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j | resulting repetition
a2 = gl F¥3

@ —FF3 — gF—313

a1+kp —_ a"'lp
ak-3+3 — a2

o] eo|vo| = 4

Hence, we get the necessary repetition for all values of j and k& when i = 1.
A similar calculation shows that i = 2,4 and 5 also yield another repetition
completing the proof of this case.
(vi) |z| =4, |y| = 4, |2] = 4 We know all the order 4 elements in G are of
the form a’p and (a’p)? = a2 for all 7, immediately giving the required two
repetitions.

We have checked all possible cases, so G is a B(3,7) group, as required.

0

Lemma 3.2 If G is a Hamiltonian 2-group then G is a B(3,7) group.
Proof

In such a group all non-central elements have the same square. It follows
that if S = {z,y, 2} where z,y, z are all non-central then |S?| < 7. But if
z is central then zy = yz and zz = 2z, again giving |S?| < 7. So G is a
B(3,7) group. O

The proof of the other direction of Theorem 2.7 is quite lengthy and
will proceed using a number of lemmas. For the rest of this section it will
be assumed that G is a nonabelian B(3,7) group.

We remark that in order to keep the proof as self-contained as possible
we have chosen to include some arguments which were previously seen in
[1] (in the case of B(3, 8) groups). In addition we will use some of the same
notation as was introduced there.

Lemma 3.3 If =,y € G are of odd order then = and ¥ commute.
Proof:

We assume yz # =y and take the subset {z,z~!,y} from which we get
the products 22, 1,zy,z~2,z~ 1y, yz,yz !, y2. Using our assumptions and
the cancellation law, we eliminate many of the possible equalities between
products and are left to investigate the following:

(1) 22 = y* = z2 and y? commute. But this implies that z and y
commute, since = € (z?) and y € (y?). A similar argument holds for the
case when z72 = 2,

@ zy=yz !z ylay=2"! =y 2z =y~ lz7ly = y 22y =
(y~'zy)~!. So we have y~2zy® = (z~1)~! = zy? = y?z. But y € (3?),
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therefore z and y2 cannot commute. A similar argument holds for z-ly =
yz.

All cases fail, so there are no two products from our list that are equal,
contradicting the fact that G is B(3,7). So z and y commute. [

Lemma 3.4 If z € G is of odd order and y € G is of order 2™ for some
integer m, then z and y? commute.
Proof:

We assume y?z # xy? and again take the subset {z,z~!,y}. Similar
arguments to those seen in the proof of Lemma 3.3 yield a contradiction.
O
Lemma 3.5 If z € G is of odd order greater than 3 and y € G is of order
2™ for some integer m, then = and y commute.

Proof:

This time we assume yz # zy and take the subset {z,z%,y}. Multi-
plying in the usual way we get the products 22,23, zy, 2%, 2%y, yz, yz?, 3%
Using our assumptions and the cancellation law, as before, we eliminate
many of the possible equalities between products and are left to investigate
one possibility:

zy = yz? = y~lzy = z? = y~lzy = (yz2y~!)? since z = yz®y~'. But
then y~lzy = yziy~! = z = y2z'y~2. Applying the last lemma, it is clear
that = and y? commute giving z* = = = 2% = 1. This contradicts our
assumption that |z| is greater than 3. The case where z2y = yz proceeds
in the same way.

Since all cases fail, so there are no two products from our list that are
equal, contradicting the fact that G is B(3,7). Therefore, z and y commute.
a
Lemma 3.6 If z,y € G are both of order 3, with y # z and y # 22, and
z € G is of order 2™ for some integer m, then z commutes with both z and

Y.
Proof:

We may assume that z does not commute with either = or y (replacing
z or y with zy if needed(using Lemma 3.3)). It is clear also that z doesn’t
commute with z2 or y2. Thus if 2~!zz = y we replace y with y%, so we
can assume z~lzz # y. Also, it follows from Lemma 3.4 that 27 1yz #
27222 = z, so we consider the subset {z,y, 2} and multiply in the usual
way to get the products 2, zy, Tz, y2, y2, 2z, 2y, 22.

Using similar arguments to those seen before we find that there are no
two products from our list that are equal, contradicting the fact that G is
B(3,7). Therefore, z commutes with both z and y. O
Lemma 3.7 If z € G is of order 3,y € G is of odd order greater than 3,
and z € G is of order 2™ for some integer m, than z commutes with both
z and y.
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Proof:

We know from Lemma 3.5 and Lemma 3.3 above that y commutes with
z, and z commutes with y. Since |zy| is odd and greater than 3, Lemma
3.5 says that zy commutes with z, and therefore z also commutes with z.
a

We will now use the previous lemmas to obtain information on the
structure of G when G is a B(3,7) group. Let T = {g € G | the order of g
is odd}. It follows from Lemma 3.3 that T is an abelian normal subgroup
of G. Also if P is a Sylow 2-subgroup of G then G = TP.

Lemma 3.8 There are two possibilities for T, either |[T'| = 3 or T is central
in G.
Proof:

Assume that |T'| > 3 and let = # 1 be any element of T. Let z € G
be such that |z| = 2" for some n. If |z| > 3, then Lemma 3.5 says that z
and z commute. On the other hand, if |z| = 3 we can choose y € T such
that y ¢ (z) (since |T'| > 3). It follows from Lemmas 3.6 and 3.7 that z
commutes with both z and y.

So in all cases z and z commute and we conclude from Lemma 3.3 that
z is central. Thus T is central. O
Lemma 3.9 If T is central in G then T = {1}.

Proof:

Assume T is central in G. If P is a Sylow 2-subgroup of G, then P is
nilpotent and nonabelian because G =T x P and T is central in G with G
nonabelian. As a consequence it is not difficult to find maximal subgroups
M # N of P such that there exist a ¢ M — N and b ¢ N — M with ab # ba.

Next, let t € T, t # 1. If we select S = {a, bt, abt2}, where a and b are
chosen as above, then S? contains the nine products a?, abt, a2bt2, bat, b*t2,
babt3, abat?, ab?t®, ababt*. We now try to show that more than seven of
these are distinct. If t* # 1 this is straightforward, so we will assume
that t> = 1 from now on. We use the cancellation law with the fact that
ab # ba to eliminate most of the possibilities and are left to investigate the
following:

o If we take bab = a® then b~lab = b=2a%2 € MNN = a = b(b~2a2)b~1 ¢
M N N. But then this implies that a € N, a contradiction, so bab and a2
are distinct. A similar argument holds for the case where b%t2 = abat2.

o If we let ababt = bat then a~'ba = bab = b%(b~'ab) € M, which
contradicts b € N — M. So these products are distinct.

We are left with more than seven distinct products, hence no such ¢
can be chosen to satisfy the condition that G is B(3,7). Thus T' = {1} as
required. OJ
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Now we will proceed with the proof of Theorem 2.7. Assume first that
G is not a 2-group, in which case we have shown that |G| = 3(2") for some
n, and G = TP where T =< t > is the unique Sylow 3-subgroup of G, T
is not central in G and P is a Sylow 2-subgroup of G.

Set Q = {z € Plzt = tz}. Since T is not central in G, P # Q. If
w € P — Q then wtw™! = 2, and it follows that Q is of index 2 in P. We
may assume |G| > 8, so |P| > 2 and it follows that |Q| > 2. We must now
check two cases.
Case 1: P is abelian

We choose (if possible) p € P-Qand g # 1 € Q with p? # ¢, and let S =
{pq,tp, tq}. Multiplying the elements of S in the usual way, we get the prod-
ucts p2q?, patp, pat, tpq, tptp, tptg, tpg?, t2qp, t2q%. Using the earlier re-
mark that ptp~! = 2, this list can be rewritten as p?q?, p?qt?, pg*t, p’qt, p%,
pq, pg*t2, pqt, q*t2. The cancellation law tells us that the only possibility
for equality here is p?¢® = p2. So there must be at least eight distinct
products, giving a contradiction. It follows then that we must have p?=q.

We can conclude that P = (p) must be cyclic of order 4. Therefore the
group in question is exactly G = (p, t|p* = 1,13 = 1,pt = t?p) of order 12.
But it is easy to see that this is isomorphic to the group listed in case (iii)
of Theorem 2.7.

Case 2: P is not abelian

Note that P =< P —Q >, so there exist a,c ¢ P — @ such that ac # ca.
Since Q is of index 2 in P it follows that ac € Q Setting b = ac we have a €
P — Q and b € Q such that ab # ba.

Now we choose two particular subsets.

(¢) First, we choose the subset S = {a,b,t}, with ¢t € T. Multiplying
in the usual way we get the products a2, ab, at,ba,b?,bt, ta,tb,t2. Since
bt = tb, we use our assumptions above and the cancellation law to eliminate
all other possible equalities except for a> = b2. So we get eight distinct
products unless a® = b%. Note that we can replace a € S by ab€ P - Q
since (ab)b # b(ab), which gives us abab = b°.

(#) We now choose another subset S = {a,tb,t}. Multiplying the ele-
ments of S we get the eight products a2, atb, at, tha, 262, 2b, ta, t?, which
can be rewritten as a2, abt, at, bat?, b%t2, bt?, at?, 2. Clearly, the only pos-
sible equality is b%t2 = t2, forcing b?> = 1. So we get eight distinct products
unless b2 = 1.

So now we have a2 = b2 = abab = 1 which implies that aba = b =
aba? = ba = ab = ba, contradicting our assumption that ab # ba. Thus
Case 2 cannot possibly exist and so, the proof of Theorem 2.7 is complete
in the case where G is not a 2-group.

For the rest of this section we will assume G is a 2-group, and will
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make use of the classification of B(3,8) groups obtained in [1] and [3]. The
following easy result settles the issue.

Proposition 3.10 Let G be a 2-group with an abelian subgroup A of
index 2. Assume that o®* =a~!foralla € A wherez ¢ A. Thenif Gis a
B(3,7) group, G must be abelian or Hamiltonian.

Proof:

Assume G is neither abelian nor Hamiltonian. It follows that there
exists @ € A such that a® # 1 and 2% # a®. Consider {a,z,az}. The
products are a?, az, a?z, 0"z,
z2,a7 122, z,a2?,22. Note that z? is repeated but all other products are
distinct (and not equal to 2), contradicting G being B(3,7). O

Looking at the classification of B(3,8) groups we see that the D-groups
and Q-groups mentioned in Theorem 2 of [1] both satisfy the conditions
given in Proposition 3.10, as do the groups listed under (3) in Theorem
A of [3]. The groups listed under (4) and (5) in Theorem A of [3] have
the dihedral group of order 8 as a homomorphic image and thus can’t be
B(3,7) (again using Proposition 3.10).

This leaves only groups listed under (2) in Theorem A, i.e. groups
for which < 22|z € G > is of order 2. So assume G is of this type and let
< z%|z € G >= {1, z}. Note that z is central and {1, z} is the commmutator
subgroup of G.

Assume for the moment that we can choose a,b € G which don’t com-
mute such that either a® =1 or b*> = 1. Consider {a, b, ab}, which gives the
products a2, ab, a%b, abz, b2, ab®z, a%bz, ab?, a2b?z.

Note that exactly two of {a?,b2,a?b%z} are equal while the other six
products are distinct (from each other and from the three just listed), con-
tradicting G being a B(3,7) group.

We are left with the possibility that a> = z and b2 = z whenever a,b € G
don’t commute. But in that case a~!ba = a~!(abz) = bz = b3, and so0 G is
Hamiltonian.

The proof of Theorem 2.7 is complete. O

The authors would like to thank the referee for several helpful sugges-
tions.
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