Notes on the Support of t-Designs

M. ARIANNEJAD, M. EMAMI

Department of Mathematics, University of Zanjan, P.O.Box: 45195-313, Zanjan, Iran arian@znu.ac.ir; emami@znu.ac.ir

Abstract

The support of a t-design is the set of all distinct blocks in the design. The notation $t \cdot (v, k, \lambda \mid b^*)$ is used to denote a t-design with precisely b^* distinct blocks. We present some results about the structure of support in t-designs. Some of them are about the number and the range of occurrences of i-sets $(1 \le i \le t)$ in the support. A new bound for the support sizes of t-designs is presented. In particular given a $t \cdot (v, k, \lambda \mid b^*)$ design with $b > b_0$, where b and b_0 are the cardinality and the minimum cardinality of block sets in the design, respectively, then it is shown that $b^* \ge \lceil \frac{(2b/\lambda) + 7}{2} \rceil$. We also show that when λ vary over all positive integers, then there is no $t \cdot (v, k, \lambda \mid b^*)$ -design with the support sizes equal to $b^*_{min} + 1$, $b^*_{min} + 2$ and $b^*_{min} + 3$, where b^*_{min} denotes the least possible cardinality of the support sizes in this design.

1 Introduction

Let t, v, k and λ be positive integers with $v \ge k \ge t$. A t- (v, k, λ) design is a set of collection \mathcal{D} of k-subsets called blocks of a v-set $V(\mid V\mid = v)$ such that every t-subset of V is contained in exactly λ blocks. It is well known that if $1 \le i \le t$, then every t-design is also an i-design. In other words every i-subset is contained in exactly λ_i blocks in \mathcal{D} . Let $\lambda = \lambda_t$ and let b be the number of all blocks in \mathcal{D} ($\mid \mathcal{D} \mid = b$), then the following are the necessary relations for the existence of a t- (v, k, λ) design:

$$\lambda \binom{v-i}{t-i} = \lambda_i \binom{k-i}{t-i}; \ b \binom{k}{i} = \lambda_i \binom{v}{i}, 1 \le i \le t.$$

Let b_0 , λ_0 and λ_{0i} denote the least positive integers which satisfy the above relations, then these relations are hold only for $b = b_0 s$, $\lambda = \lambda_0 s$, $\lambda_i = \lambda_{0i} s$,

where $s \in N$. The support of a t-design \mathcal{D} denoted by \mathcal{D}^* is the set of all distinct blocks of \mathcal{D} . We use $b^* = |\mathcal{D}^*|$ to denote the support size. The least possible value of b^* in a given design is denoted by b^*_{min} . We sometimes denote a t- (v, k, λ) design with the support size b^* , $b = b_0 s$, $\lambda = \lambda_0 s$ and $\lambda_i = \lambda_0 i s$, by a full configuration t- $(v, b_0 s, k, \lambda_0 i s, \lambda_0 s, |b^*)$ or with a more detailed format, by t- $(v, b_0 s, k, \lambda_0 i s, \lambda_0 s, |b^*)$.

For a family of t- (v, k, λ) design one of the important mathematical problems is to determine the set of all possible b^* or their existence bounds[see for example 4,5]. In this paper we give a new existence bound for the support sizes of t-designs, in general.

Let \mathcal{D} be a t- $(v, k, \lambda \mid b^*)$ design. If $b^* < b$, then \mathcal{D} is called a t-design with repeated blocks. Let $\mathcal{D}^* = \{B_1, B_2, \cdots, B_{b^*}\}$ be the support of \mathcal{D} . We denote by f_B the multiplicity or frequency of a block $B \in \mathcal{D}^*$ in \mathcal{D} . Consider f as the greatest common divisor of frequency of blocks or $f = \gcd(f_{B_1}, \cdots, f_{B_{b^*}})$. If $\gcd(f, \lambda) > 1$, then by applying the Trade Off Method [6], b can be reduced by dividing it over the greatest common divisor of λ and f without any change on the size of \mathcal{D}^* (note that $b = f_{B_1} + \cdots + f_{B_{b^*}}$). Since the main interest in this note is the study of support sizes, we usually assume that $\gcd(f, \lambda) = 1$. Now consider the following subsets of \mathcal{D}^* for every $j \in N$:

$$E_j \stackrel{def}{=} \{B \in \mathcal{D}^* \mid f_B = j\}; \quad H_j \stackrel{def}{=} \{B \in \mathcal{D}^* \mid f_B \geq j\} = \bigcup_{l \geq j} E_l,$$

$$\Delta_{j} \stackrel{def}{=} \{B \in \mathcal{D}^{*} \mid f_{B} = nj, n \in N \} = \bigcup E_{jn}.$$

Also, the notations E'_j , Δ'_j and H'_j are used for their set complements in \mathcal{D}^* , respectively. Let $E\subseteq \mathcal{D}^*$, where \mathcal{D} is a t-design with the element set V. Let X be an i-subset of V. By $\lambda_{iE}^*(X)$, we denote the number of blocks in E containing X. By $\lambda_{iE}(X)$ we denote the sum of frequency of blocks in E containing X. When we write λ_{iE} or λ_{iE}^* without any specification of a special i-set X then a property about all i-subsets in E is considered. When $E=\mathcal{D}^*$ we usually drop E in λ_{iE} or λ_{iE}^* and write them as λ_i and λ_i^* . We use the notation $a\mid b$, when integer a divides integer b.

2 On the structure of support

The first theorem is about the number of occurrences of i-subsets in some special subsets of the support set.

Theorem 1. Let \mathcal{D} be a t- $(v, b_0 s, k, \lambda_{0i} s, \lambda_{0} s, | b^*)$ design, for a fixed $s \in N$ and let $1 \le i \le t$. Then we have:

- (1) $s \mid \lambda_{i\Delta'}$ and $\lambda^*_{i\Delta'} \neq 1$. If i < t we also have $\lambda^*_{i\Delta'} \neq 1, 2$.
- (2) If i < t and $k i \ge 2$, then $\lambda_{i \Delta'}^* \ne 1, 2, 3$.
- (3) Either $|\Delta'_s| = 0$, or $|\Delta'_s| \geq 7$.
- (4) If $i \leq t$, then $\lambda_{i E_a}^* \neq (\lambda_{0i}^* 1)$.
- (5) If i < t and $\lambda_0 \mid \tilde{\lambda}_{0i}$, then $\lambda_{iE_{\lambda}}^* \neq ((\lambda_{0i}/\lambda_0) 1)$. Also if for an i-set X we have $\lambda_{iE_{\lambda}}^* = (\lambda_{0i}/\lambda_0)$, then for all (t-i)-sets in $V \setminus X$ we have $\lambda_{(t-i)E_{\lambda}}^* \neq 0$.
- (6) In case of $\lambda_0 = 2$ and $1 \le i \le t$, if for an i-set $\lambda_{i H'}^* > 0$, then for the same set $\lambda_{i H_*}^* \ne \lambda_{0i} 1$.
- Proof. (1) We have $\lambda_i = \lambda_{i0}s = \lambda_{i\Delta_s} + \lambda_{i\Delta'_s}$. By definition of Δ_s , it is clear that $s \mid \lambda_{i\Delta_s}$, hence $s \mid \lambda_{i\Delta'_s}$, this implies to $\lambda^*_{i\Delta'_s} = 0$ or ≥ 2 . Now let i < t and X be an i-set with $\lambda^*_{i\Delta'_s}(X) = 2$. Since i < t then by above, all (i+1)-sets, containing X in one of these two blocks of Δ'_s should occur in the second block too. This leads to the equality of two blocks in \mathcal{D}^* which is impossible.
- (2) Let X be an i-set with $\lambda_{i\Delta'}^*(X)=3$ number of occurrences in blocks B_1, B_2, B_3 of Δ'_s . Since $\Delta'_s \subseteq \mathcal{D}^*$, by part (1) every two blocks of these three blocks have a common point out of X, which do not appear in the third one. Since $k-i\geq 2$ there are enough points to distinct these three blocks. Now let $y\in V\setminus X$ be a point such that $y\in B_1\cap B_2$ but $y\notin B_3$. Hence the (i+1)-set $(X\cup\{y\})\subset B_1\cap B_2$ and do not appears elsewhere in Δ'_s . By Part (1), $s|(f_{B_1}+f_{B_2})$. Also, $s|(f_{B_1}+f_{B_2}+f_{B_3})$, consequently $s|f_{B_3}$, which is impossible, since $B_3\in\Delta'_s$.
- (3) If $\Delta'_s \neq \phi$, then by part (2) we may consider a point $x \in V$ with maximum $\lambda^*_{1\Delta'_s}$, greater than or equal to 4. We study three cases $\lambda^*_{1\Delta'_s}(\{x\}) = 4, 5$ and ≥ 6 and show that in each case the claim holds. Let $\lambda^*_{1\Delta'_s}(\{x\}) = 4$, so Δ'_s has at least 4 blocks B_1, B_2, B_3, B_4 all of which contain the point x. Let $y \in V \setminus \{x\}$ and $y \in B_1 \setminus B_2$. By part (2) above y appears at least 4 times in Δ'_s . By Parts (1) and (2) the point y does not appear in both blocks B_3 and B_4 , for otherwise, considering $\lambda^*_{2\Delta'_s}(\{x,y\})$ implies that $s|f_3$ or $s|f_4$, which in not possible. Hence y needs at least two other appearances in Δ'_s to satisfy the conditions of part (2). In other words Δ'_s has at least 6 blocks. Considering distinctness of the 5-th and the 6-th block, implies that $\Delta'_s \geq 7$. For the other two cases $\lambda^*_{1\Delta'_s}(\{x\}) = 5$ and $\lambda^*_{1\Delta'_s}(\{x\}) \geq 6$, a similar argument implies the claim.

- (4) Let $\lambda^*_{iE_s}(X) = (\lambda^*_{0i} 1)$ for an *i*-set $X \subset V$. Then $\lambda_{iE'_s}(X) = s$, which by part (1) implies the equality of two blocks and this is not possible.
- (5) Let $X \subset V$ be an *i*-subset with $\lambda_{iE_{\lambda}}^*(X) = ((\lambda_{0i}/\lambda_0) 1)$. Since each *t*-set appears in at most one block of E_{λ} , the number of all *t*-sets containing X that do not appear in E_{λ} is

$$\binom{v-i}{t-i} - (\frac{\lambda_{0i}}{\lambda_0} - 1) \binom{k-i}{t-i} = \binom{k-i}{t-i}$$

The *i*-set X has at least two occurrences in E'_{λ} (note that $\lambda_i - \lambda_{iE_{\lambda}} = \lambda$), which leads to a common occurrences of all these $\binom{k-i}{t-i}$, (t-i)-sets with X. This leads to the equality of at least two blocks in E'_{λ} which is impossible. Now, let X be an *i*-set with $\lambda^*_{iE_{\lambda}}(X) = (\lambda_{0i}/\lambda_0)$, so $\lambda_{iE_{\lambda}}(X) = \lambda_i$ and hence X does not appear in E'_{λ} . This implies that all $\binom{v-i}{t-i}$, (t-i)-sets from $V \setminus X$ appear in E_{λ} . In other words $\lambda^*_{(t-i)E_{\lambda}} \neq 0$ for all these (t-i)-sets.

(6) Let $X \subset V$ be an *i*-set with $\lambda_{iH_s}^*(X) = \lambda_{0i} - 1$. Since $\lambda_0 = 2$, no *t*-sets appear more than two times in H_s . Let M and N be the collections of all *t*-sets containing X, which appear in one and two of these $\lambda_{0i} - 1$ blocks in H_s , respectively. Let |M| = m and |N| = n. Counting the number of all these *t*-sets in H_s (not necessarily different) imply the equation $m + 2n = (\lambda_{0i} - 1)\binom{k-i}{t-i}$. Also all possible $\binom{v-i}{t-i}$ number of these *t*-sets (including X) should appear in H_s , hence clearly $m + n = \binom{v-i}{t-i}$. Solving these two equations simultaneously, yields $m = \binom{k-i}{t-i}$ and $n = \binom{v-i}{t-i} - \binom{k-i}{t-i}$. All elements of N do not appear in H_s . Elements of M appear in H_s (since $\lambda_{iH_s}^*(X) > 0$), but they may make only one block there. This implies that in H_s they occur in blocks with frequency greater than s. Hence they build their unique block in H_s again, which is not possible.

The following theorem presents a new bound for the support sizes.

Theorem 2. Let D be a t- $(v, b_0 s, k, \lambda_{0i} s, \lambda_0 s, |b^*)$ design, we have:

- (i) If $b > b_0$, then $b^* \ge \lceil \frac{\lceil (2b_0/\lambda_0) \rceil + 7}{2} \rceil$.
- (ii) If $b > b_0$ and $k i \ge 2$, then $b^* \ge \lceil \frac{\lceil (4b_0/\lambda_{0i}) \rceil + 21}{4} \rceil$ for $1 \le i < t$.
- (iii) If $H_s = \phi$, then $b^* \ge \lceil b_0/\lambda_{0i} \rceil + b_0$ for $1 \le i \le t$.

Proof. (i) If $b > b_0$, then clearly s > 1 hence $\Delta'_s \neq \phi$. For otherwise we have $\mathcal{D} = \Delta_s$ and and this contradicts our general assumption(in the introduction) that $gcd(f,\lambda) = 1$. In this situation at least $\binom{v}{t} - \binom{k}{t} |\Delta_s|$ number of all t-sets do not appear in Δ_s . By Part (1) of Theorem 1 these t-sets have at least 2 occurrences in Δ'_s , hence $|\Delta'_s| \geq \lceil 2 \frac{\binom{v}{t} - \binom{k}{t} |\Delta_s|}{\binom{k}{t}} \rceil$ or $|\Delta'_s| \geq \lceil 2 \binom{b_0/\lambda_0}{0} \rceil - 2|\Delta_s|$, so $b^* = |\Delta'_s| + |\Delta_s| \geq \lceil (2b_0/\lambda_0) \rceil - |\Delta_s|$. By Part (3) of Theorem 1, $|\Delta'_s| \geq 7$, therefore $b^* \geq 7 + |\Delta_s|$. Summing up these two inequalities, we get $b^* \geq \lceil \frac{\lceil (2b_0/\lambda_0) \rceil + 7}{2} \rceil$.

- (ii) Now let i < t and $k i \ge 2$, then as above at least $\binom{v}{i} \binom{k}{i} |\Delta_s|$ number of all i-sets do not appear in Δ_s . By Part (2) of Theorem 1 these i-sets have at least 4 occurrences in Δ'_s , hence $|\Delta'_s| \ge \lceil 4 \frac{\binom{v}{i} \binom{k}{i} |\Delta_s|}{\binom{k}{i}} \rceil$ or $|\Delta'_s| \ge \lceil 4(b_0/\lambda_{0i})\rceil 4|\Delta_s|$, so $b^* = |\Delta'_s| + |\Delta_s| \ge \lceil (4b_0/\lambda_{0i})\rceil 3|\Delta_s|$. By Part (3) of Theorem 1, $|\Delta'_s| \ge 7$, therefore $3b^* \ge 21 + 3|\Delta_s|$. Summing up the above two inequalities for b^* , we get $b^* \ge \lceil \frac{\lceil (4b_0/\lambda_{0i})\rceil + 21}{4} \rceil$.
- (iii) If $H_s = \phi$, then $D^* = H'_s$ and each *i*-set has at least $\lambda_{0i} + 1$ occurrences in D^* . Hence D^* should contain at least $\binom{v}{i}(\lambda_{0i} + 1)$ of *i*-sets. Consequently

$$b^* \geq \lceil \binom{v}{i} (\lambda_{0i} + 1) / \binom{k}{i} \rceil = \lceil b_0 + (b_0 / \lambda_{0i}) \rceil = b_0 + \lceil b_0 / \lambda_{0i} \rceil.$$

Corollary 3. Let \mathcal{D} be a t- (v, k, λ) design with $\lambda_0 = 1$. Then \mathcal{D} has no support sizes equal to $b_0 + 1$, $b_0 + 2$ and $b_0 + 3$. This, in particular implies that when $b_0 = b^*_{min}$ then the support sizes equal to $b^*_{min} + 1$, $b^*_{min} + 2$, $b^*_{min} + 3$ do not exist.

Proof. Setting $b_0 = b^*_{min}$ and $\lambda_0 = 1$ in case (i) of the above Theorem, implies the claim.

In the following we study the range and dependence of the number of occurrences of *i*-sets in the support of a *t*-design.

Proposition 4.(i) Let λ_i^* be as defined above the number of occurrences of i-sets in the support of a t- (v, k, λ) design, then

$$\lceil \lambda_i/h \rceil \leq \lambda_i^* \leq min\{\lambda_i, \binom{v-i}{k-i}\},$$

where $h = min\{\lambda_i, b/v\}$.

(ii) Let A_j be the set of i-sets with j occurrences in D^* . Also let $a_j = |A_j|$. Then

$$\left\{ \begin{array}{ll} \sum_{j=\lambda_i^*} j a_j &= \binom{k}{i} b^* \\ \sum_{j=\lambda_i^*} a_j &= \binom{v}{i} \end{array} \right. ,$$

where λ_i^* vary over the range given in (i).

- Proof. (i) The least number of occurrences of an *i*-set in the support of a design is obtained if it occurs in blocks with the highest possible frequency, where by Mann's inequality [7] is at most equal to h, so clearly $\lceil \lambda_i/h \rceil \leq \lambda_i^*$. On the other hand, the least possible frequency of blocks is 1. This gives at most λ_i occurrences of an *i*-set in D^* . Also the maximum number of times that an *i*-set occur in D^* is just the maximum number of blocks that could be made by a specified *i*-set which is clearly equal to $\binom{v-i}{k-i}$. Therefore $\lambda_i^* \leq \min\{\lambda_i, \binom{v-i}{k-i}\}$.
- (ii) The first equation in this system is obtained by computing the total number of "occurrences" of *i*-sets that appear in the support. The second equation is obtained by computing the total number of *i*-sets that appear in the support.

Remark. If we apply the above proposition to study a special subset of D^* , then the values of the right sides of the above equations and the ranges of λ_i^* may change.

Application. One can build a method from the above theorems to search for the existence of support sizes near the b_0 . The following are a few examples:

- **2-(9,3)** designs. It is proved that the support sizes $b^* = 13, 14, 15, 16, 17$ and 19 do not exist. A design with the support size $b^* = 18$ is also presented [2].
- 2-(13,3) designs. It is shown that the support sizes $b^* = 27, 28, 29, 31$ do not exist. A design with the support size $b^* = 30$ is also given [1].
- 2-(15,3) designs. It is shown that the support sizes $b^* = 36, 37, 38, 40$ do not exist. A design with the support size $b^* = 39$ is also given [1].
 - 2-(11,5) designs. It is shown that the support sizes $b^* = 12, 13, 14, 15$

do not exist [1].

4-(11,5) designs. There is no design with the support sizes $b^* = 67,68,69$, for we have $\lambda_0 = 1$ and $b_0 = 66$, now the corollary 3 yields the claim[3].

3-(8,4) designs. There is no design with the support sizes $b^* = 15, 16, 17$. For we have $\lambda_0 = 1$ and $b_0 = 14$, now the corollary 3 yields the claim[3].

3-(10,4) designs. There is no design with the support sizes $b^* = 31, 32, 33$. For we have $\lambda_0 = 1$ and $b_0 = 30$, now the corollary 3 yields the claim[3].

References

- [1] M. Ariannejad, On the Structure of Support in BIB Designs, M.S. Disertation, Department of Mathematics, University of Tehran, 1987.
- [2] M. Ariannejad, M. Emami, Notes on the Structure of Support in BIB Designs, Australasian Journal of Combinatorics, Vol. 32 (2005) 313-322.
- [3] C.J. Colbourn and J.H. Dinitz, Handbook of Combinatorial Designs, Chapman and Hall/CRC, 2nd Edition, 2007.
- [4] C.J. Colbourn and A. Rosa, Triple Systems, Oxford Mathematical Monographs, Oxford University Press, 1999.
- [5] A.S. Hedayat, I. Landgev and V. Tonchev, Results on the Support of BIB Designs, Journal of Statistical Planning and Inference, 22 (1989) 295-306.
- [6] A.S. Hedayat, The Theory of Trade-off t-Designs, in: D. Ray-chaudhuri (ed.), Coding Theory and Designs Theory, Part II, Design Theory IMA Vol. Appl. 21, 101-126, Springer, New York, 1990.
- H.B. Mann, A Note on Balanced Incomplete Block Designs, Annals of Mathematical Statistic, 40 (1969) 679-680.