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Abstract. Let H,G be two graphs, where G is a simple subgraph of H. A
G-decomposition of H, denoted by (H,G)-GD, is a partition of all the edges
of H into subgraphs (G-blocks), each of which is isomorphic to G. A large set
of (H,G)-GD, denoted by (H,G)-LGD, is a partition of all subgraphs isomor-
phic to G of H into (H,G)-GDs. In this paper, we determine the existence
spectrums for (AK 5, P3)-LGD and (AKqn,n, P3)-LGD.
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1 Introduction

Let G = (V(G), E(G)) be a graph, where V(G) and E(G) denote the vertex
set and the edge set of G, respectively. For a graph G and a positive integer
), we use AG to denote the multigraph obtained from G by repeating each
edge A times. In this paper, K, is the complete graph on n vertices, Kmn
is the complete bipartite graph with parts of cardinalities m and n, and

Km(n) is the complete multipartite graph with m partite sets, each of which
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has n vertices. A k-cycle Ci = (z1,z2,---,%x) is a graph with k vertices
Z1,%2,-++,Zk and k edges {z1,z2}, {r2,23}, -, {Zk—1,2k}, {Zk,21}. A
k-path Py = [z1,z3,--,zk] is a graph with k vertices z,zs, -, x and
k —1 edges {z,,z2}, {z2, 23}, -+, {Zk-1,2x}. A |V(G)|-cycle (resp. path)
of graph G is called a Hamilton cycle (resp. path) of G. A (|V(G)| — 1)-
cycle (resp. path) of graph G is called an almost Hamilton cycle (resp.
path) of G.

Let H and G be two graphs, where G is a simple subgraph of H. An
(H,G)-GD is a partition of E(H) into subgraphs (called G-blocks), each
of which is isomorphic to G. The (H, G)-GD is named as G-decomposition
(or G-design) of H. A decomposition is said to be simple if it contains no
repeated blocks. For H = AK,, and some simple graphs of G, such as cycle
Ck, path Py, star Sj, k-cube, the graphs with at most five vertices and
some graphs with six vertices, the existence of these G-decompositions has
been solved (see [2] for details).

A large set of (H,G)-GD, denoted by (H,G)-LGD, is a partition of all
subgraphs isomorphic to G of H into (H,G)-GDs. It is easy to see that
every decomposition is simple in a large set.

A Steiner triple system of order n, denoted by ST'S(n), is a pair (X, B),
where X is an n-set and B is a collection of triples (called blocks) on X
such that every pair from X belongs to exactly one block of B. It is easy
to see that an ST'S(n) is actually a (K,,C3)-GD. It is well known that an
STS(v) exists if and only if n = 1,3 (mod 6) and n > 3, see [2]. A large
set of Steiner triple systems LSTS(n) is equivalent to a (K,,C3)-LGD,
existence of which have been completely solved by J. Lu and L. Teirlinck.

Lemma 1.1 (6 7. 8 There exists a (K,,, C3)-LGD (LSTS(n)) if and only

342



ifn=1,3 (mod 6),n>3 andn #7.

There are some other results regarding the existence of (H,G)-LGD. In
[1, 10], the necessary and sufficient conditions for the existence of (AKy, Cn)-
LGD and (MK, P,)-LGD, i.e., large sets of Hamilton cycle and path de-
compositions of AK,, have been given. In (3], Q. Kang and Y. Zhang solved
the existence problem of (AKy,, P3)-LGD.

Lemma 1.2 3 There ezists a (AKy, P3)-LGD if and only if X\|2(n — 2)
and if A odd then n # 2,3 (mod 4).

For odd prime power ¢ > k > 2, Y. Zhang gave a general construction of
((k—1)K4, P¢)-LGD in [9). For any n =0,1 mod 4 and n # 5, (11] proved
the existence of (2Kpn,Cn-1)-LGD. And, [4, 12] determined the spec-
trums for (AKm n, Cm4n)-LGD and (AKo n, Pritn)-LGD, i.e., large sets of
Hamilton cycle and path decompositions of AKp, ». [13] gave the necessary
and sufficient conditions for the existence of (AKm nyCm4n—1)-LGD and
(AKm,n, Pmin—1)-LGD with the possible exception ((2t—1)K3¢,3:—1, Pet—2)-
LGD for t > 2, i.e., large sets of almost Hamilton cycle and path decompo-
sitions of AKy n. In [5], J. Lei determined the spectrum for (Km(n),Cs)-

LGD, i.e., large sets of group divisible designs of type n™.

Lemma 1.3 91 There exists a (Km(n),Cs)-LGD if and only if m(m —
1)n? = 0 (mod 6) and (m — 1)n =0 (mod 2) and (m,n) # (7,1).

A r-factor of a graph G is a r-regular spanning subgraph of G. A
r-factorization of a graph G is a partition of E(G) into r-factors of G.
Obviously, a Hamilton cycle of G is a 2-factor of G. A Hamilton cycle

decomposition of G is a 2-factorization of G. An almost r-factor of a graph
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G is a r-regular spanning subgraph of G\{z} for some = € V(G). An almost
7-factorization of a graph G is a partition of E(G) into almost r-factors of

G. The following results are well-known.

Lemma 1.4 (24 For any positive integer n > 1,
(1) there exists a 1-factorization of Kay;
(2) there ezists an almost 1-factorization of Kopy1;

(3) there exists a Hamilton cycle decomposition of Kony1.

In this paper, we investigate the existence problems of (AKp 5, P3)-
LGD and (AKp(n), P3)-LGD. Finally, we obtain the existence spectrums
for (\Km,n, P3)-LGD and (AK3(n), Ps)-LGD.

Example 1.5 A (K33, Ps)-LGD = {(Z3,Z3, A;) : 0 < i < 2).

Ao A Az
0, 0, 1] [, 0, 2] [T, 0, 2]
0 1, 7] [0, 1, 2] I 13
[0, 2, 1] [0, T, 1) [0, T, 1]

2 (AKmn, Ps)-LGD
For any simple graph G, the following result is trivial.

Theorem 2.1 There exists a (AG, P2)-LGD if and only if A = 1. Espe-
cially, there exists a (AKmn, P2)-LGD if and only if A = 1.

Throughout this section, let Zmy,Zy be the two partite sets of K n.
Define two Ps-block families in K, ,, as follows:
P(m,n) = {[a,y,b]: a# b€ Zn,y€ Zyn);
Q(m,n) = {le,z,d]: c£d € Zp,x € Zy).



It is easy to see that [P| = (?)n = 222=1 Q| = (D)m = ma(-1) And,

Pl +1Q| = M"—‘;L_z)- is just the number of distinct Ps-blocks in K -
It is easy to see that a (AKpm n, P3)-GD consists of -’%‘-’-‘ Ps-blocks, a

(AKm n, Ps)-LGD contains M)"‘—'z pairwise disjoint (AKm n, P3)-GDs. So,

we have

Lemma 2.2 There erists a (AKm n, P3)-LGD only if 2|dmn and A|(m+
n —2).

Therefore, in order to determine the existence spectrum for (AKm,n, P3)-
LGD, it is enough to construct (Kzm,2n, P3)-LGD, (K2m,2n+1, P3)-LGD

and (2K2m+1,2n+1, P3)-LGD for any positive integers m and n.
Lemma 2.3 There exists a (Kam,2n, P3)-LGD for anym >0 and n > 0.

Proof. By Lemma 1.4(1), there exist 1-factorization {f1,f2, ++ fam-1} of
Kb, on Za,, and 1-factorization {?1,72, very Fon—1} of Kon on Zon. Define
A; = {[a,y,b] : {a,b} € fi,y € Zan}, 1 <i<2m -1,
B; = {{e,z,d} : {c,d} E-fj,a: € Zom}, 1<j<2n—-1.
It is easy to verify that each of (Zzm U Zan, A:) and (Z2m U Z2n,B;) is a
(Kam,an, P3)-GD for 1 <i<2m—1 and1<j<2n-1.
Furthermore, the family {4; : 1 < < 2m — 1} just forms a partition of
all Ps-blocks in P(2m, 2n), and the family {B; : 1 < j < 2n—1} just forms a
partition of all P3-blocks in @(2m, 2n). Therefore, {A;, A2, A2m—1, B1, B2,
«++,Bop—1} forms a (Kam,a2n, P3)-LGD on Zom U Zon. [ ]

Lemma 2.4 There exists a (Kam2n+1, P3)-LGD for anym 21, n 2 0.

Proof. By Lemma 1.4(1)(2), there exist 1-factorization {f1, f2,**, fam-1}

of Koy, on Zom, and almost 1-factorization {ForF1+++» fan} Of Kong1 on
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Zan41, where f; not contains vertex 7, 0 < i < 2n. Define

Ai ={[a,y,8 : {a,b} € fi,y € Z3ap1}, 1 Si<2m -2

Bj = {le,z,d] : {c,d} € F;,z € Zam}, B? = {[a,7,] : {a,b} €
fam—1}, 0< 5 < 2n.

It is easy to verify that each of (Z2mUZ2n+1,4:) and (Z2mUZ2n41, BluB?)
isa (Kam,2n41, P3)-GD for 1 <i < 2m—2and 0 < j < 2n.

Furthermore, the family {4; : 1 < i < 2m -2} {B2 : 0 < j < 2n}
just forms a partition of all Ps-blocks in P(2m,2n + 1), and the family
{Bj : 0 < j < 2n} just forms a partition of all P;-blocks in Q(2m,2n +1).
Therefore, {A1,As,:-*,A2m—2,B0,B82,++,B2,} forms a (Kom,2n+1, Ps)-
LGD on Z3,, U Z3p 4. [ |

Lemma 2.5 There exists a (2Kam41,2n41, P3)-LGD for anym > 0,n >0

andm+n>0.

Proof. By Lemma 1.4(3), there exist Hamilton cycle decomposition { f1, fa,
*++, fm} of K2;m+1 on Zam1 and Hamilton cycle decomposition {7, fa, -,
}",,} of Kon41 0n 72n+1. Cyclically orient the edges of each Hamilton cycle
so that each vertex appears once as the head of an arc and once as the tail
of another arc in each Hamilton cycle. Define

Ai ={[a,v,b] : (a,b) € fi,y € Zopy1}, 1 <i<my

B; ={le,z,d]: (c,d) € F;,T € Zamp1}, 1 << .
It is easy to verify that each of (Z2m+1UZ2n41, A;) and (Zam+1UZ2n+1, B;)
is a (2K2m41,2n41, P3)-GD for 1 <i<mand1<j<n.

Furthermore, the family {4; : 1 < i < m} just forms a partition

of all Ps-blocks in P(2m + 1,2n + 1), and the family {B; : 1 < j <
n} just forms a partition of all Ps-blocks in Q(2m + 1,2n + 1). There-
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fore, {A1, A2, ++, Am, B1,Bz,- -+, By} forms a (2K 41,2041, P3)-LGD on

Zom+1 Y Zony1- u

Theorem 2.6 There exists a (AKp n, P3)-LGD if and only if 2|Amn and
Al(m +n—2).

Proof. By Lemma 2.2, we only need to prove the sufficiency.
If 2jmn, there exists & (Kumn, P3)-LGD = {(Zm,Zn, As) 11 <4 <
m+n — 2} by Lemmas 2.3 and 2.4. Define

(k+1)A
Bk= U A‘uosksm%_—z—lr

then {(Zm,Zn,Bx): 0<k< -"L‘i"\l‘—?- —1} is a (AKm,n, P3)-LGD.
If2 fmn, then 2|\ and there exists a (2Kmn, P3)-LGD = {(Zm,—Z—ﬂ, Ai):
1 < i< m42=2} by Lemma 2.5. Define

(k+1)2
Bi= U A, 0<kgmip=2_q,
i=k3+1

then {(Zm UZn,Br): 0< k< 22=2 _ 1} isa (AKmnn, P5)-LGD. W

3 (/\K3 (n), P3)-LGD

Throughout this section, three partite sets of K3(n) = Kn,n,n are
Xo = {000,001, ++,00n-1},
X;1={2:0<i<n-1},Xp={2+1:0<i<n-1}
Obviously, Xo U X3 U X2 = Zan U {000,001,++,00n-1}. The P3-block
[z, ¥, 2] in K3(n) belongs to two types respectively:
A-type — z,7, z belong to three different partite sets;
B-type — z, z belong to the same partite set.
Define six Ps-block families in K3(n):

347



Pl ={la,y,b] :a # b€ Xi, y € Xita}, P? = {la,y,b] :a #£ b €

Xit1, y€ Xi}, i € Za.
It is easy to see that P}, P2, Pi, PZ, P}, P? form just a partition of all B-
type’s Ps-blocks, and each |P7| = (3)n, i € Z3,j = 1,2. Further, for even
n, define two P3-block families in K3(n):

P(n)={[oos,y+i,—y—1+4]:0<i,y<n-1};

Qn)={lz+n+i,00;,2n-1-2+414]:0<i<n—-1,0<z < 2-1}.
Since (y+1)+(—y—1+14) = 2i—1is odd, so y+i and —y—1+i belong to X;
and X respectively. Since (2+n+i)+(2n—1—2+414) =3n+2i—1is odd
for even n, s0 z+n+14 and 2n — 1 — 2+ belong to X; and X5 respectively.
This means that the P3-blocks in P(n) U Q(n) are all A-type’s. Under the
action of the automorphic group Z3,, all A-type’s Ps-blocks in K3(n) are
separated into (2n2 + n%)/(2n) = i’-’; equivalent classes, named A-orbits,
each with length 2n. Obviously, |P(n)| + |Q(n)| = n® +n2/2 = 222 We

have

Lemma 3.1 The Ps-blocks in P(n) U Q(n) belong to distinct A-orbits in
Ka(n).

Proof. Forgiveni€ Z, and 0<y#y' <n—-1,0<z2#2 <3 -1,let
B = [o0i,y +1%,—y — 1 +1], B' = [00s,y' +i,—y — 1 +1];
C =[z+n+i,00;,2n—1—2z+1], C' =2’ +n+i,004,2n—1—2' +i].
If B and B’ belong to the same orbit, then y' —y =y — ¢/, i.e., 2y’ = 2y
mod 2n, which is impossible since 0 <y #y' <n—1. And, if C and C’
belong to the same orbit, then
Z—2=z-2 or Z+z—-n+1=n—-1-2'—2mod 2n.

The former is impossible. The latter implies 2(2’ 4+ 2) = 2n — 2 mod 2n,
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i, z4+2 =n—1mod n, a contradiction by 0 < z # 2/’ < 5 — 1. m

Note that | L2J (PruP2)|+2n(|P|+|Ql) = 6(’2‘)n+2n§12‘3 =3n%(n-1)+
3n® = 3n?(2n i=(1)) is just the number of all P3-blocks in K3(n). It is easy
to see that a (AK3(n), P3)-GD consists of Q—z’ﬁ Ps-blocks, a (AK3(n), Ps)-
LGD contains AZ"T"Q disjoint (AK3(n), P3)-GDs. We have

Lemma 3.2 There ezists a (AK3(n), Ps)-LGD only if 2|An2, A]2(2n—1).

Therefore, in order to determine the existence spectrum for (AK3(n), Ps)-
LGD, it is enough to construct (K3(2n), Ps)-LGD and (2K3(2n + 1), Ps3)-

LGD for any positive integer n.
Lemma 3.3 There exists a (K3(2n), P3)-LGD for any n > 0.

Proof. By Theorem 2.6, for each i € Z3, there exists a (Kon,2n, Py)-
LGD = {(Xi,Xiy1,B7) : 1 £ j < 2(2n — 1)}. Obviously, the family
{Bf .1 € Z3,1 < j < 4n— 2} just forms a partition of all B-type’s Ps-block
in K3(2n). Let Aj1an_1 = B3 UB] U B}, then each (Xo, X1, X2, Aj+4n—1)
is a (K3(2n),P3)-GD for 1 < j <4n-—2.

Furthermore, define Ag = P(2n)U Q(2n) and A; = Ao +x for £ € Zyn.
By Lemma 3.1, the family {A; : € Zsn} just forms a partition of all A-
type’s Ps-block in K3(2n). Finally, we assert that Ag is a (K3(2n), P3)-GD,

so each A, is also for € Z4,. In fact, we have

(1) | Ao|=|P|+|Q| = 3n?/2 is just the number of P3-blocks in a (K3(2n), Ps)-

GD.

(2) {y:0 <y < 2n—1}U{z+2n,4n—1—-2:0 < z < n—1} = Z4n implies
{y+i:0<y<2n-1}U{z+2n+i,dn—1-24+i:0<2< n—1} = Z4n
for each i € Zon. Thus, Ps-blocks in Ap covers all edges between Xo and
Xy fors=1,2.
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(3) When y runs over Z,,, the directed differences y— (~y-1)=2y+1
takes all odd numbers of Zy,. Thus, {{y+i,—y—1+i}:0<i<2n—-1,0<
y < 2n — 1} covers all edges between X; and X,.

Therefore, {(Xo, X1,X2,4:):0<i<8r—3}isa (K3(2n), P5)-LGD.
For convenience, we denote (K3(2n), P3)-LGD* = {(Xo, X1, X2,4;) i €
Zyn}- n

Example 3.4 A (K3(2),P3)-LGD = {({000,001}, {0, 2},{1,3}, Ai):0<
i <5).

Ao Ay Az As Ay As
[000, 0, 3] [000, 1, 0] [000, 2, 1] [Ooo, 3, 2] [000,0,001] [0, oQp, 2]
[000, 1, 2] [000, 2, 3] [000, 3, 0] [000,0, 1] [000,2, 001] [0, 001, 2]
[2, o0, 3] [3, 000, 0] [0, 000, 1] [1,000,2] [0, 1, 2] [1, O, 3]
[001, 1, 0] [001, 2, 1] [001, 3, 2] [001,0,3] [0, 3, 2] [1, 2, 3]
[001, 2, 3] [o01, 3, O} [001, O, 1] [001,1,2] [1, 000, 3] [000,1,00y)
[3, 01, 0] [0, 001, 1] [1, 001, 2] [2, 001,3] [1, o0y, 3] [000,3, 001]

Lemma 3.5 If there ezists a (K3(n), C3)-LGD, then there exists a (2K3(n), P3)-
LGD.

Proof. It is easy to see that a (2K3(n), P5)-GD consists of 3n? Ps-blocks,
a (2K3(n), P3)-LGD contains 2n — 1 pairwise disjoint (2K3(n), Ps)-GDs.

By Theorem 2.6, for each i € Z3, there exists a (2K, , P3)-LGD =
{(Xi, Xi41,B]) : 0 < j < n—2). The family {B! :i€ Z3,0<j<n—2}
forms just a partition of all B-type’s P3-blocks in K3(n). For 0 < j < n—2,
let A; = B U BJ U B}, then (Xo, X1, X2, 4;) is a (2K3(n), P3)-GD. The
n — 1 GDs are pairwise disjoint.

By assumption, there exists a (K3(n),C3)-LGD={(Xo, X1, X2,B;) :
0 <i<n-1} For0<i<n-1,define Aiyn1 = {[z,9,2], v, 2, 7], [2,2,9] :
(z,9,2) € B;}, then (Xo, X1, X2, Aiyn—1) forms a (2K3(n), P;)-GD. The
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n GDs are pairwise disjoint. The family {A;4n-1 : 0 < i < n — 1} forms
just a partition of all A-type’s Ps-blocks in K3(n).

So, {(XoU X1 U Xy, A;):4 € Zon—1} forms a (2K3(n), P3)-LGD. W
Lemma 3.6 There exists a (2K3(n), P3)-LGD for any n > 0.
Proof. By Lemma 3.5 and Lemma 1.3, where m = 3. [ |
Theorem 3.7 There exists a (AK3(n), P3)-LGD if and only if 2|An? and
Al2(2n —1).

Proof. By Lemmas 3.2, 3.3 and 3.6, the proof is similar to that of Theorem
2.6 [ ]

Remark. For (AK,(n), P3)-LGD m > 3, there are many problems to

research.
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