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Abstract

Let G = (V(G),E(G)) be a graph. A set S C V(G) is a
packing if for any two vertices of u and v in S we have d(u,v) >
3. That is, S is a packing if and only if for any vertex v € V(G),
[N[v] n S| < 1. The packing number p(G) is the maximum
cardinality of a packing in G. In this paper, we study the
packing number of generalized Petersen graphs P(n,2) and
prove that p(P(n,2)) = [2] + 28] + 28] (n > 5).
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1 Introduction

We consider only finite undirected graphs without loops or multiple
edges.

A graph G = (V(G), E(G)) is a set V(G) of vertices and a subset
E(G) of the unordered pairs of vertices, called edges.

The open neighborhood and the closed neighborhood of a vertex
v € V are denoted by N(v) = {u € V(G) : wvu € E(G)} and
Nv] = N(v)U{v}, respectively. For a vertex set S C V(G), N(S) =
vtélsN (v) and N[S] = ngN [v). The maximum degree of vertices in
V(G) is denoted by A(G). The distance of two distinct vertices u
and v, denoted by d(u,v), is the length of a shortest path connecting

u and v.

A set S C V(G) is a packing if for any two vertices of » and v in
S we have d(u,v) > 3. That is, S is a packing if and only if for any
vertex v € V(G), |[N[v] N S| < 1. The packing number p(G), is the

maximum cardinality of a packing in G.

In 1993, David C. Fisher (1 studied the packing number of com-
plete grid graph P, , and gave the exact values.

In 1998, David C. Fisher and Sarah R. Beel (4 studied the pack-

ing number of 3-dimensional grids and proved the following result.

Theorem 1.1. Let Gy, be an I x m x n grid graph. If the
packing number of Gimn is P2(Glm,a), then imn/7 < Po(Gimm) <
imn + 2(Py(Gim,1) + Pa(Giin) + PoGrmn)) /7

In 2000, B.L. Hartnell 8] studied the packing and domination
numbers of the Cartesian product of certain graphs and proved the



following result.

Theorem 1.2. Let G and H both be connected graphs, where
Y(G) =m > 2 and y(H) = n > 2, every vertex of V(G) is either a
leaf or is attached by precisely k; leaves and H is a [k, n]—packable
graph. If ky < k3, then k1v(G)v(H) < p(G x H) and ¥(G x H) <

k2 (G)y(H).

The generalized Petersen graph P(n, k) is defined to be a graph
on 2n vertices with V/(P(n,k)) = {v,u; : 0 < i < n — 1} and
E(P(n,k)) = {viviy1, viti, uivirk : 0 < ¢ < n — 1, subscripts modulo

In this paper, we consider the packing number of generalized
Petersen graphs P(n,2) and prove that p(P(n,2)) = | 3] + | &) +
1241 (n 2 5).

2 The packing number of P(n,2)

Let m = |Z], ¢t =n mod 7, then n = 7Tm + ¢. Let S be a packing
of P(n,2) with |S| = p(P(n,2)). And let

{v7iej 1 07 <6}, 0<i<m—1,

{uzig; : 0<j <6}, 0<i<m~—1,

{v7m4j : 0<j<t—1}, if t =0 then V;,, = 0,
{wims+j : 0<j<t—-1}, ift =0 then U, =0,
= SNU;VY), 0<i<m,

= |8, 0<i<m,

]

n
SRR

then,
i=o(Ui U Vi) = V(P(n,2)),
Uuvy)nU;uV;) = 0, 0<i<j<m.
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Let V/(k,z) = {Vk+j,uk+j : 0<j<z-1, (k+7) mod n}, we have

Lemma 2.1. Let S be an arbitrary packing of P(n,2)(n > 7), then
ISNV'(:,7)| < 3(0<i<n—1).

Proof. By contradiction. Suppose that there exists aset V' (3,7)(0 <
i <n—1),say V'(7,7), with SN V'(7,7)| > 4.

Since d(z,y) > 3 for any two vertices of z and y in S, there are
at most two vertices of {u7,ug,u1;1,u13} belong to S and there is at
most one vertex of {ug, u10,u12} belong to S. Hence, there is at least
one vertex of {vr, vs, vg, v10, V11, ¥12, V13} belong to S. By symmetry,

we only need to consider the cases SN {v7,vs,v9,v10} # 0.

Let X; = V'(7,7) — N[N[»])(7 < i < 10), then |S N X;| >
|ISNV'(7,7) — {v;}| = 4— 1 = 3. Notice that S is a packing, for any
vertex v € V(P(n,2)), INv]NS| < 1.

Case 1. Suppose v7 € S, then N[N[v]] N V'(7,7) = V'(7,3), | X7| =
[V'(10,4)] = 8. Since every vertex z € X7 is adjacent to at least two
vertices of X7, we have |X7| > |SNX7|x3>3x3=9>8=|Xy|,
a contradiction(see Figure 2.1 (1)).

Case 2. Suppose vg € S, then N[N[v]] " V'(7,7) = V'(7,4), | Xs| =
[V'(11,3)] = 6. Since u;2 is adjacent to just one vertex of Xg, and
every vertex in Xg — {uj2} is adjacent to at least two vertices of X,
we have [Xg| > 1x 2+2x 3 =8> 6 = |Xsg|, a contradiction(see
Figure 2.1 (2)).

Case 3. Suppose vg € S, then N[N[vw]] N V'(7,7) = V'(7,5), Xo =
V'(12,2). Since d(z,y) > 3 for any two vertices of z and y in S,
there are at most two vertices of Xg belong to S, a contradiction
with |S N Xg| > 3(see Figure 2.1 (3)).

26



Case 4. Suppose vyg € S, then N[N[vyo]]nV'(7,7) = V'(8,5), Xi0 =
V'(7,1)UV'(13,1). Since d(z,y) > 3 for any two vertices of z and y
in S, there is at most one vertex of V'(7,1) belong to S, and there is
at most one vertex of V'(13,1) belong to S, a contradiction with [SN
X10| 2 3(see Figure 2.1 (4)). O

Figure 2.1.

Lemma 2.2. Let S be a packing of P(n,2), if SN{v; : 0<j <
n—1} # 0, then there exists a vertex set V' (k;, t) of V(P(n,2)) with
[V/(ke,t) NS| < | S ] + B2 for 1<t <6

Proof. Let v; € SN{v;:0<j<n—-1}and ki =ky=kz =ky =
ks = kg =1 — 2, then

0, t=1,2,
[V'(ke,t) N S| < 1, t=3,4,5,
2, t=6.
(see Figure 2.2). )
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Figure 2.2.

Lemma 2.3. p(P(n,2)) = [2] + [%] + |24 for 5<n <13
Proof. In Figure 2.3, we show packings of P(n,2) for 5 <n < 13,

where the vertices of S are in dark

p(P(n,2)) 2

<

¢

~

-

-

. Hence we have

o W=

\ )

ie. p(P(n,2)) > 3] + %] + 2] for 5 <n < 13.

Let S be an arbitrary packing of P(n,2). If SN{v; : 0<j <
n—1} =0, then |S| < |3] < (3] + [%52) + (28] TSN {oy:0 <
j <n—1} #0, then by Lemma 2.2, there exists a vertex set V'(k,t)
of V(P(n,2)) with |V/(k,t) N S| < |%*] + |22  for 1<t < 6. We
relabel the vertex v; with v;y7m—k, % With i 7m (0 <i<n—1).
Then s, < ] + |44]. By Lemma 2.1, we have

S| =

.

’

\

sm <1,
sm < 2,
80+ Sm <3+40=3,
sot+sm<34+1=4,
so+8m<3+2=5,

n=>5,

n==06
n="1238,9,
n=10,11,12,
n =13,

ie. [S] < |B] + |28 + | 2] for 5 < n < 13. Hence p(P(n,2)) =
2]+ |28 + 2] for 5<n <13
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Figure 2.3. The packing of P(n,2) for 5 <n <13

Lemma 2.4. p(P(n,2)) > 2] + 2] + |2 |(n > 14).
Proof. Let

([ {uzi,vni43,unigs : 0<i<m—1}, £=0,
{uzi, vrig3, urigee 1 0< i <m—2}
U{u7m—7, Vim—4, WTm}, t=1,
{wri, vrig3,uripe 1 0<i<m—1}, t=2,
{uzi,vriq3,uziq6 * 0<3<m -2}

S= U{urm—7, V7m—4, Vim—1, UTm+2 }, t=3,
{uzi, vrigs, urips : 0<i<m —2}
U{utm—7, V7m—a, VIm—1, UTm+3}, t=4,
{uri,v7i43,u7i46 * 0 < i <m—1}
U{vrm+2}, t=5,
{uri,vrig3, urige : 0<i<m—1}

| U{v7m+2, urmas ), t =6,
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then, for any two vertices of z and y in S, we have d(z,y) > 3(see
Figure 2.4 (1)-(7)). Hence S is a packing of P(n,2) for 0 <t < 6
with |S] = 3m + | 51| + |84]=3] + (2] + |2*]. Hence

n n+1 n+4
P(P(n,2))2|."7j+|.7J+|.7J- o
e uy | trmar uo
NA0ASARNAA0AAD
e vr | Vtumt w
mt=o0 :
uo uy ] tiant tymf Y0
!
L
" v (2) =1 9ty ¥7mf YO
uo ur | U7 ure N0
1
w vy Evr...-v Ut | %0
@t=2"
uo uy | urm-7 Uy ug
. o !
w v sw--v VT w
4)t=3
w vr ;vv..-v Vim vo
6B)t=4
o uy § UTma? {570 ug
o o o ! ! i i i i i i I
L 1
w vr | Y7m-1 ¥ Y
6)t=5
va uy | WPt 6 e uo
L
™Y vr | Vime=v T vo
T Mt=6
Figure 2.4.

Lemma 2.5. Let S be a packing of P(n,2) with |S| = p(P(n,2)),
then SN{v; :0<j<n—1}#0 forn > 14.

Proof. By contradiction. Assume S C {u; : 0 < j < n — 1}, then
15| < 15] = |™5*] = 2m + | ™). By Lemma 2.1, |S| 2 |3] +
L2 + (28] = (T3] + |24 4 | T = 3m o+ (S +
(52

Since n > 14, m = | %], we have m > 2. If m > ¢, then |S] £
2m + |ZH] < 2m + |B2) < 3m < 3m 4+ [H] + 2] < S, 2

contradiction. Since t =7 mod 7, we have 2 <m <t < 6.
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Ift =3, then |S| < 2m+ B ] =2m + 1+ |B]| <3m+1=
3m+ |H1] + | &4 < |S|, a contradiction.

Ift = 4, then S| < 2m + |ZH] <2m+2<3m+1=3m +
|2 + |44] < |S], a contradiction.

Ift=5and m =2, then S| < 2m + || =6 <7 =3m+
42 + |4] < |S|, a contradiction.

Ift = 5and m = 3,4, then [S| < 2m + || < 2m +3 <
3m+1=3m+ || + |44] < |9, a contradiction.

Ift =6, then S| <2m+ |2 | =2m+2+ B <3m+2=
3m+ |4 ] + |H4) < |9), a contradiction.

Hence SN{v; : 0 < j <n—1} # @ forn > 14. a

By Lemma 2.2 and Lemma 2.5, there exists a vertex set V' (k, t)
of V(P(n,2)) with [V'(k,t) N S| < |42] + [] for 1 < ¢t < 6,

n > 14. We relabel the vertex v; with vi17.,_k, u; With ;7,1 (0 <
i <n—1). Then s, < [H1] + [44].

Lemma 2.6. p(P(n,2)) < |2]| + 2] + (2 ](n > 14).
Proof. Let S be an arbitrary packing of P(n,2), then by Lemma

24,18 = T sitsm < 3xme| B+ B | = |Imtt | 4 | Imesd |
+ ) = (3] + 12 + [%54). Hence p(P(n,2)) < [3] +
L2 + 124 (n 2 19). o

From Lemmas 2.3-2.4,2.6, we have

Theorem 2.7. p(P(n,2)) = [2] + 2] + 2| (n > 5). D
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