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Abstract

In [18), Farrell and Whitehead investigate circulant graphs that are
uniquely characterized by their matching and chromatic polynomials (i.e.,
graphs that are “matching unique” and “chromatic unique”). They de-
velop a partial classification theorem, by finding all matching unique and
chromatic unique circulants on n vettices, for each n < 8. In this paper,
we explore circulant graphs that are uniquely characterized by their inde-
pendence polynomials. We obtain a full classification theorem by proving
that a circulant is independence unique iff it is the disjoint union of iso-
morphic complete graphs.

Keywords: circulant graph, matching polynomial, chromatic polynomial,
independence polynomial, threshold graphs, spider graphs.

1 Introduction

Graph polynomials are an important topic of interest to many combinatorialists.
The coefficients of a graph polynomial encode various combinatorial properties
of a graph, such as the number of independent sets or the number of match-
ings. There are several graph polynomials that are active areas of combinatorial
research, such as chromatic polynomials, matching polynomials, reliability poly-
nomials, Tutte polynomials, and independence polynomials.

Given an arbitrary graph G on n vertices, we can compute a graph polyno-
mial by enumerating the number of occurrences of a particular property. We
see this in the definition of the following three graph polynomials.

Definition 1.1 Let G be a graph. In an independent set of k vertices, no two
vertices are adjacent in G. In a matching of k edges, no two edges share a
common vertexr. In a proper colouring of G with = colours, no two adjacent
vertices receive the same colour.
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The independence polynomial I (G ) i8 Y g5 k", where iy is the num-
ber of independent sets of cardinality k in G.

The matching polynomial M(G,z) is 30;5(—1)*msz"2*, where my is
the number of matchings in G with ezactly k edges.

The chromatic polynomial #(G,z) is the function that gives the number
of proper colourings of the vertices of G using = colours.

For example, we compute each of these three graph polyﬁomids for the
triangle K3 and the 6-cycle Cs.
I(Ks3,z) = 3z+1
M(K3,z) 2% -3z
n(Ks,z) = z(z—1)(z—-2)=2°-32%+22

I(Cs,z) = 22°+9z2+6z+1
M(Cs,z) 28 —62% + 922 — 2
7(Ce,z) = 2°—62°+152% — 202® + 1522 — 5z

Every graph polynomial is well-defined: for example, a graph cannot have
two different independence polynomials. However, does the converse hold? Are
there any graph polynomials that are unique to that graph? In this paper, we
investigate graphs that have a unique independence polynomial, and determine
a necessary and sufficient condition for when a circulant graph has a unique
independence polynomial.

For notational convenience, we introduce the following definition, which
holds for every P-polynomial (where P is replaced by “chromatic”, “match-
ing", “independence”, etc.)

Definition 1.2 An greph G is P-unique if G is uniquely characterized by its
P-polynomial. In other words, P(G,xz) = P(H,z) implies that G is isomorphic
to H.

Much work has been done to characterize graphs that are chromatically
unique [6, 8, 16, 23, 27, 30, 33], in addition to graphs that are Tutte unique [13]
and reliability unique [7]. Since the problem of independence unique graphs was
first posed in [21], very few results have been found [26]. Some work has been
conducted on classifying independence unique graphs for spider graphs [25] and
threshold graphs [32]. However, other than these two specific families of graphs,
not much is known. In the recent survey paper on independence polynomials
[26], these are the only two families of graphs that are discussed.

An independence polynomial I(G, z) of the form 1 + nz + ... corresponds
to a graph G on n vertices. To prove that G is independence unique, we must
theoretically examine all graphs on n vertices and determine their independence
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polynomials. For small values of n, the computation is trivial. However, for an
arbitrary graph, it is NP-hard [19] to compute the independence polynomial.
We remark that although the following recurrence relation is computationally
inefficient, any I(G, ) can be computed with this result.

Theorem 1.3 ([20]) For any vertex v,
I(G,z) = I(G—v,z) + = - I(G — N[v],z),
where the closed neighbourhood N[v] is the set {u: u=v or wv € E}.

We now define the circulant graph Cp s.

Definition 1.4 Given a set S C {1,2,3,...,|3]}, the circulant graph Cn s
is the graph with verter set V(G) = Z,, and edge set

E(G) ={wv:|u—v|, € S},
where |z|, = min{|z|,n — |z|} is the circular distance modulo n.

The generating set S will always refer to a subset of {1,2,3,...,[3]}. In
the literature, S is also referred to as the connection set [2, 14].
For example, here are the circulants C, {1 2} and Cg (3 4}-

Figure 1: The circulant graphs Co (3 23 and Cy,(3,4}-

Note that the circulant C’u. (1.23,...| )} is simply the complete graph K.
Also, C, (1} is just the cycle C,. In general, C, 4y =~ C, for any d with
ged(d,n) = 1.

Circulant graphs have been investigated in fields outside of graph theory.
For example, for geometers, circulant graphs are known as star polygons [10].
Circulants have been used to solve problems in group theory, as shown in [2],
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as well as number theory and analysis [11]. They are well-studied in network
theory, as they model practical data connection networks [3, 22]. Circulant
graphs (and circulant matrices) have important applications to the theory of
designs and error-correcting codes [31].

In [18], Farrell and Whitehead investigate circulants that are chromatically
unique and matching unique. They prove that of the 30 non-isomorphic cir-
culants of order at most eight, 23 are chromatically unique, with the seven
exceptions being Cjy (2}, Cg,(2}> Cé,(3}» Cs,{2}s Cs,{4}» Cs,{2,4}, and Cg (1,34}
Then they prove that each of these seven circulants is matching unique, proving
that every circulant on n < 8 vertices is either chromatically unique or matching
unique (or both). While they are unable to verify this conjecture for any n > 9,
they conjecture that this result holds for all n.

Their analysis motivates the equivalent problem for independence polyno-
mials: can we determine some independence unique circulants? If so, can we
characterize them? In this section, we provide a full answer to the uniqueness
problem for independence polynomials: we prove that a circulant is uniquely
characterized by its independence polynomial iff it is the disjoint union of iso-
morphic complete graphs (e.g. Cjg (1,2,3,4) and Caq (36,9,12})- In other words,
many circulants appear to be chromatic and matching unique, but circulants
are independence unique only in a handful of cases. In fact, we will prove that
there are exactly ¢(n) circulants on n vertices, where ¢(n) denotes the number
of positive divisors of n.

Some simple examples of independence unique graphs include K, and K.
To give an example of a graph G that is not independence unique, consider the
complement of a tree. For any tree H on n vertices, let G = H. Then,

I(G,z) =1+ nz+ (n — 1)z
So any complement of an n-vertex tree has the same independence polyno-
mial.
It is shown in [15] that two non-isomorphic trees can have the same inde-
pendence polynomial, as illustrated in Figure 2.

1113 .1l

Figure 2: Two trees with the same independence polynomial.

In the above example,
I(Ty,z) = I(T2,z) = 1 + 10z + 36z + 582> + 4224 + 1225 + 25.

Based on this analysis, we may ask if two non-isomorphic circulants can have
the same independence polynomial. We will answer that question in Section
3. First, we establish our characterization theorem of all independence unique
circulants.
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2 Main Theorem

We will now give a complete characterization of independence unique circulants,
where we prove the surprising result that a circulant G is independence unique
iff G is the disjoint union of isomorphic complete graphs (see Theorem 2.5).
This result will follow quickly from the following key theorem.

Theorem 2.1 Let G = Cy s be a connected circulant graph. Then, G is inde-
pendence unique iff G ~ K,,.

We conclude that circulants are not rich in independence unique graphs,
even though they are rich in chromatically unique and matching unique graphs.
To prove Theorem 2.1, we first require the following definition and lemma.

Definition 2.2 Let G = C, s be a circulant graph. Define
S'={z: |z|. € S}U{0}.

Note that §' = Ng[0), the closed neighbourhood of vertez 0 in G.

For each i € S, the graph H;; is formed by taking G — {0}, creating a new
vertez u, and then joining u to every vertezy € V(G — {0}) for whichy =i+r
(mod n) for somer € §'.

For example, let G = Cg (34, and i = 3. The graphs G and Hj are illus-
trated in Figure 3.

=
—

0 1

5 4 5 3

Figure 3: The graphs G = Cj (3,43 and the corresponding graph Hs.

Lemma 2.8 For each i€ ', I(H;,z) = I(G,z).
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Proof It is clear that H; — {u} = G — {0}. Note that =z € V(G — Ng0]) iff
z¢ S, andy € V(H; — Ny, [u]) if y— i (mod n) ¢ S'.

Letting ¢(z) = z + ¢ (mod n), we see that ¢ is an isomorphism from G —
Ng(0] to H; — Ny, [u]. Therefore, I(G — Ng[0),z) = I(H; — Ny,[u],z). By
Theorem 1.3,

I(Hiﬂ:) = I(H‘—{u},z)+moI(H.-—Nyi[u],z)

I(G - {0},z) + = - I(G — Ng[0], z)
= I(G,z).

Therefore, we conclude that I(H;, z) = I(G, z). o

By this lemma, G is not independence unique whenever we can find i € S
such that H; £ G. So in the above example, G = Cs,(3,4) is not independence
unique.

We require one additional result, which is a straightforward observation.

Proposition 2.4 ([5]) Suppose that the circulant graph C, s has the generat-
ing set S = {81,83,...,8m}. Then C, g is connected iff

d =ged(n, sy, 82,...,8m) = 1.

We now prove Theorem 2.1.

Proof If G =~ K, then I(G,z) = 1+nz. Clearly G is independence unique, as
any graph H with I(H, z) = 1+ nz must have n vertices and satisfy a(H) = 1.

Now suppose that G is independence unique, where G is a connected circu-
lant. By Lemma 2.3, the graph H; satisfies I(H;,z) = I(G,z) for all i € S'.
Since G is independence unique, each H; must be isomorphic to G.

Since G is a circulant, G must be r-regular, for some r. Then the degree
of each vertex in H; must also be r. By definition, G — {0} = H; — {u}. It
follows that 0 and u must connect to the same set of vertices in G ~ {0} and
H; — {u}, respectively, as otherwise degy, (w) # degg(w) = r for some vertex
w. By definition of Hj, this implies that z € S’ iff z + i (mod n) € §’. This
implication is true for all i € S,

Let ¢ be the smallest non-zero element of S’. Then, ki (mod n) € S’ for
all k € N. By the Euclidean Algorithm, there exists an integer k such that ki
(mod n) = ged(3,n) € §’. By the minimality of i, this implies that ged(3, n) = 1,
so iln. If i = 1, then §' = Z,, which implies that S = {1,2,..., 131}, ie,
G~K,.

Now let us assume that i > 1. If S’ only contains multiples of i, then G =
Ch,s is disconnected by Proposition 2.4, which contradicts our given assumption
that G is connected. So we can assume that there is an element j € §’ with
d = ged(4,7) < 4. Since z € S’ implies that = + i (mod n) € ' and z + j
(mod n) € &, it follows that pi + gj (mod n) € S’ for all pairs of positive
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integers (p, ). By the Euclidean algorithm, there exists a pair (p, q) for which
pi+qj (mod n) =d = ged(3, j) < i, which contradicts the minimality of i.

We conclude that if G = C, s is a connected circulant graph that is inde-
pendence unique, then G =~ K. This completes the proof. ]

As a direct result of Theorem 2.1, we now establish that a circulant G = Cy s
is independence unique iff G is the disjoint union of isomorphic complete graphs.

Theorem 2.5 The circulant graph G = C, s is independence unique iff n = dk
and S = {d,2d,3d,...,|§]d} for some positive integers k and d.

Proof Let G = Cp s be independence unique, and let S = {s1, s2,..., sm}. By
Proposition 2.4, Cp, s is connected iff d = ged(n, 51, 52,...,8m) = 1. Ifd =1,
then G = K, by Theorem 2.1. So suppose d > 1, and let n = dk. Then G is the
disjoint union of d isomorphic copies of G’ = Cpns,s+, where n’ = % and s; = %
for each 1 < i < m. If G’ # K, then there exists a graph H’ not isomorphic
to G’ for which I(G’,z) = I(H',z). Letting H be the disjoint union of d copies
of H', we have I(G,z) = (I(G",z))* = (I(H',z))* = I(H,z). In other words,
if G = C, s is independence unique, we must have G’ = Kj, i.e., ' = k and
8" ={1,2,...,1%]}. The desired conclusion follows. m|

We now enumerate the number of independence unique circulants on n ver-
tices, for each integer n > 1. From the above theorem, this question is easily
answered.

Corollary 2.6 Define ¢(n) to be the number of positive divisors of n. Then
there are ¢(n) independence unigque circulants on n vertices, for each n 2 1.

Proof From Theorem 2.5, G = C, s is independence unique iff n = dk for
some ordered pair (d,k) = (d, 3). In this case, the generating set S is uniquely
defined. Therefore, exactly one independence unique circulant exists for each
d|n. The desired conclusion follows. o

3 Further Exploration

We have now proven that other than disjoint unions of isomorphic complete
graphs, circulant graphs are not independence unique. We proved this by con-
structing a non-circulant graph H with I(G,x) = I(H,z). Let us explore this
concept further.

If G and H are both restricted to the family of circulants: must they have
different independence polynomials? A variation of this question is posed in
[32], where it is shown that if T is the family of threshold graphs, then I(G,z) #
I(H,z) whenever G and H are non-isomorphic graphs in I'. If T" is the family of
well-covered spider graphs (i.e., trees having at most one vertex of degree > 3),
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then it is known [25] that I(G,z) # I(H,z) for all G,H € T with G 2 H. In
other words, every graph in I’ has a unique independence polynomial within
these two families. This motivates the following question, for the family of
circulant graphs.

Problem 3.1 Let G and H be circulants. If I(G,z) = I(H,z), then must this
imply that G ~ H?

We prove that the answer is no. The following is the minimum counterex-
ample (i.e., counterexample with the fewest number of vertices).

Proposition 32 Let G = CB,{1,2,4) and H = Cg'{l.g'q}. Then, I(G,J-') =
I(H,z) but G £ H.

Proof It is easily checked that I(G,z) = I(H,z) = 1 + 8z + 8z%. To prove
that G % H, it suffices to show that G % H. But this is clear, since G = Cs, (3}
is isomorphic to Cs, and H = Cg (2} is isomorphic to two disjoint copies of Cj.
O

To give another example, G = Cy3 12,4y and H = Ci3,{1,3,4) are graphs
satisfying I(G,z) = I(H,z) and G % H. The non-isomorphism of G and H is
verified by noting that the 5-wheel W is an induced subgraph of G, but not of
H.

Proposition 3.2 can also be proved by comparing the sets of eigenvalues of
G and H, and showing that they are different. To compute the eigenvalues of a
graph, we find its adjacency matrix A, and then the eigenvalues correspond to
all scalars A such that Az = Az for some non-zero vector z.

In a circulant G = C,, g, each row of the adjacency matrix A is a cyclic
permutation of every other row. Let a = [ao,ay,...,a,—1] be the first row of
A, where a; = an—; = 1iff i € S. Several papers and books have been written
on circulant matrices and their properties [4, 9, 12, 24, 31]. In all of these
works, the eigenvalues of these matrices are studied. Here is the formula for the
eigenvalues of C,, s.

Theorem 3.3 ([9]) If n is odd, the eigenvalues of G are
(n-1)/2 (n—-1)/2

Ao = g 2ak, Aj=Apoj= ,;Zd 2ay cos (23;’:”) forl<j< nT—l
Ifn is even, then for all1 < j < B,
n/2-1 ‘ n/2-1 9k
Ao =ansp+ g 2ar, Aj = An-j = anspcos(jm) + ,; 2akcos( - ) .
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We can manually verify that the set of eigenvalues of G = Cg (12,4} is dif-
ferent from those of H = Cg (13,4). Hence, we must have G % H.

Therefore, we conclude that there are pairs of non-isomorphic circulants
that have the same independence polynomial. There are several techniques to
verify that two circulants are (not) isomorphic. For example, the techniques
discussed in Proposition 3.2 and Theorem 3.3 are straightforward, but tedious.
Is there a simpler method to determine whether two circulants Cy, s and Cp 1
are isomorphic?

The following lemma. provides a simple sufficient condition for isomorphism.

Lemma 3.4 ([28]) Let S be any subset of {1,2,...,|3]}. For each integer
r > 1, definerS = {|rs|n : s € S}. If T = rS for some integer r (with
ged(r,n) = 1), then T is a multiplier of S.

If T =rS is a multiplier of S, then Cn s ~ Cy 7.

In [1], Ad4m conjectured that Lemma 3.4 is also a necessary condition. This
was later disproved [17). To give one counterexample, Cig (1,2,7} = Ci6,{2,3,5}>
yet there is no = for which {2,3,5} = {r,2r,7r} (mod 16). It is known that the
conjecture is false if n is divisible by 8 or is the square of an odd prime [28].
However, Addm’s conjecture is true whenever n is square-free, i.e., there is no
integer d > 1 with d?|n.

Theorem 3.5 ([28]) If n is square-free, then Cp s =~ Cn,r iff there ezists an
integer r with ged(r,n) = 1 such that T =78,

By Theorem 3.5, we immediately have another proof that Ci3 (1,24} #
Ci13,{1,3,4}-

A complete solution to the isomorphism problem for circulant graphs was
recently given by Muzychuk [29]. The results are developed in the context of
Schur rings, and an efficient algorithm is given for recognizing isomorphism
between two circulant graphs.

4 Conclusion
We conclude the paper with three open problems.

Problem 4.1 We proved that a circulant graph is independence unique iff it is
the disjoint union of isomorphic complete graphs. Determine if a full charac-
terization of independence unique graphs can be found for the set of all graphs.

Problem 4.2 FEzxtend the analysis of Farrell and Whitehead [18] by classifying
all circulant graphs that are chromatic unique.

Problem 4.8 Eztend the analysis of Farrell and Whitehead [18] by classifying
all circulant graphs that are matching unique.
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