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Abstract

Let G be a graph with n vertices. The vertex match-
ing polynomial M, (G, z) of the graph G is defined as the
sum of (—=1)"gy(G,7)z""" in which ¢,(G,r) is the num-
ber of 7— vertex independent sets. In this paper, we ex-
tend some important properties of the matching polyno-
mial to the vertex matching polynomial M,(G,z). The
matching and vertex matching polynomials of some im-
portant class of graphs and some applications in nanos-
tructures are presented.
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1 Introduction

Throughout this paper G is a simple graph, that is, G does not
have loops or multiple edges. Let {1,...,n} be the set of vertices
of G and d; = deg(i) denotes the degree of the vertex i. An
edge set A is called independent if there is no vertex in common
between any two edges A. Also if this set has r elements we call
r—edge set to be independent. Matching polynomial of graph
G is defined by the sum of (—1)"g(G, r)z® %" in which ¢(G,r) is
the number of r—edge independent set of G, see [6].

A vertex set B is called independent if there is no edges
between any two vertices in B and if this set has r elements
we call r—vertex independent set. A subset X from V(G)
is called the maximal independent set of V(G) if and only if
X C B C V(G) and B is independent set then X = B. Suppose
¢»(G, r) is the number of r—vertex independent set of G. In this
case, Y _,50 (G, ) is called Fibonacci number (F(G)) of G [9].
Then we define vertex matching polynomial of G by the sum
of (—1)"gy(G,r)z*". We denote this polynomial by M, (G, z)
which (—1)"M,(G, —1) equal F(G). This is an extension of the
matching polynomial of graph [8]. In this paper, some basic
properties of this new matching polynomial of graphs are inves-
tigated. We now introduce some notation which will be kept
throughout. An empty graph is a graph without edges and the
complement of a graph G is denoted by G, where e € E(G) if
and only if e ¢ E(G). It is easy to see that K, is an empty
graph with exactly n vertices. If G is a graph then G — UE_ u;
is obtained from G by omitting vertices u;,1 < i < k.

Suppose G and H are two graphs with disjoint vertex and
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edge sets. The disjoint union of G and H is a graph T such that
V(T) = V(G) U V(H) and E(T) = E(G) U E(H). The join of
G and H is a graph G + H such that V(T) = V(G) U V(H)
and E(T) = E(G)U E(H) U {zy|z € V(G),y € V(H)}. The
line graph G is denoted by L(G) in which V(L(G)) = E(G) and
E(L(G)) = {e,-e,-lei € E(G’),ej € E(G),e,- N ] 75 0}

The Cartesian product G x H of graphs G and H has the
vertex set V(G x H) = V(G) x V(H) and (a,z)(b,y) is an
edge of G x H if a = b and zy € E(H), or ab € E(G) and
z = y. Throughout this paper our notation is standard and
taken mainly from [1-5, 7, 10, 11].

2 The vertex matching polynomial

This section is concerned with the use of algebraic techniques
in the study of vertex matching polynomial of graphs. Some
results of this polynomial are the same as matching polynomial.

Theorem 1. Let G be a (n, m)-graph, n = 2m and L(G) is the
line graph of G. Then M,(L(G),z?) = M(G, z)

Proof. Obviously, q,(L(G),r) = ¢(G,r), since e, and e, are
independent in E(G) if and only if e; and e; are independent
in V(L(G)). Therefore M(G,z) = 3,5,(-1)7q(G,r)z"™* =
Yrro(—1)"a(L(G), r)z?m=% = My(L(G),2?). O

Theorem 2. Let G be a graph with exactly n vertices. If
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M, = M,(G,z) and M, = M,(G — e, z) then we have:

(@M, = zM,(G-u,z)—z*™®M,(G - {u, Ufg;)u,-}, z)
OM; = z2My(G - u - v,7) + 2 MG - {u, UM}, z)
+ 2OHM(G - {v,Ui 0y}, 2) + 29O+-1 01 (G )

i=l

where u,v € V(G), e = wv, G' = G — {Uf%v;, UXy,;} and

UU;, VY; € E(G)

Proof. a) To prove the theorem, we first show that
20(G,7) = ¢,(G — u,7) + q,(G — {u, Ufﬁ"l)u,},r -1). (1)

Suppose that X is a r-vertex independent set. Then ¢,(G—u,r)
is the number of r-vertex independent set that are not contain
u. Also g,(G — {u,UX%y;},r — 1) is the number of r-vertex
independent set containing u. Combine these relations to prove

(1). By T = ¢(G — {u,U®y;},r — 1) and we have

i=1
My = ) (-1)g(G,r)z""
>0
= Y (-1)z""q(G—u,r)+ Y (-1)z"T
r20 >0
= z Z(_l)rxn-l—rq(G —u, T) _ xd(u) Z(_l)rxn—d(u)—rT,
>0 r20

which completes the prove.

b) Consider three cases for u and v. If A contains all of
r— vertex independent set containing u and v then we have
Al = ¢,(G — {UXu;, UX)0,},r — 2). Suppose B is the set

of an r— vertex independent set which is not contain » and v.
Then |B| = ¢,(G — {u,v},7). We now assume C contains all
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of r— vertex independent set which is containing one of u or v.
Then

IC] = (G = {w, UXYu}, 7 — 1) + ¢,(G — {v, U wi},m — 1).
Therefore ¢,(G — e,r) = |A| + |B| + |C| and we have

My = Y (-1)q,(G - e,r)a"" =z IM(G, )
r2>0

+ 2M,(G — {u,v},7) + zH M, (G - (U, u}, 7)
+ zd(u)+l MO(G - {U?gl)u‘i: U},IL‘)-

This completes the proof. O

Lemma 3. The quantity ¢,(G,7) is the number of complete
subgraphs G with r vertices.

Proof. A subset A of G is independent if and only if [4] is a
complete subgraph of G.

Corollary 4. The vertex matching polynomial of P, n 2 3,
satisfies the following equation M, (P;,z) = z — 1, My(Ps,z) =
22 — 2z and M,(P,,z) = 2[My(Pa-1,z) — My(Pn—2,7)].

Apply Theorem 1(a), to compute g,(Pn, 7). One easily can
see that gy(Ps,0) = 1,¢,(Pp,1) = n and ¢,(Py,2) = |E(G| =
g—";%"—_a = C(n — 1,2). Suppose r = 3. Then from eq.(1),

(n—3)(n—4)
D) )

@ (Prm, 3) = in(Pm 3) — @y (Pn-1,3) = C(n -2, 3),

n=>5

¢ (Pm,4) = C(m —3,4), @y(Pm,5) = C(m — 4,5).

qv(Pm3) - (P, —1a3) = gy(Pr-2, 2) =
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Therefore by induction ¢,(Pp,7) =C(n—r+1,7),0< r <
2tl]. Now we compute M,(P,,z). With above computation
2

My(Po,z) = YR 1) Cn — 1 + 1, )2

3 Polynomial of Join and Union

In this section, some results related to vertex matching poly-
nomial of join and union of two graphs are proved. We also
compute this polynomial for some well-known graphs.

Theorem 5. Suppose G;,1 < i < k are graphs. Then

x i), v L, 3
a) %z%:fll%z =yr, Mﬁgﬂ—”—l-—(n—l). In particular, M, (kG, z) =
kzE-DIGIM, (G, z) — (n — 1)z*IC!
b) M(G+H,z) = z1¥IM(G, z) + zI°| M (H, z) + M (Kig,a), T) —
9gIGI+H|
Proof. a) Suppose G and H are two graphs and A is a r—vertex
independent set of V(G + H). It is easy to see that A C V(G)
or A C V(H). Thus ¢,(G + H,r) = ¢,(G,7) + ¢,(H,7),7 =
L2,..,|G|+|H| and %,,(G + H,0) = 1. Therefore

IGI+|H

My(G+H,z) = Y (-1)'q(G + H,r)zlCl+HI-r

r=0

1G]
- zlGH'lHl + mIHI Z(_l)rqv(G’ r)xlal-r

r=1
1H|

+ =Y (-1)"gy(H,r)z!HI-r
r=1
ISl 1H]

= Y7 (~1)74,(G, r)2!C1-" 4 2161 > (-1) g (H, )2t~
r=0 r=0

— gl = gH1 0 (G, ) + 2161 M, (H, 3) — £l OHAT,

Thus Me{CtEa) Mol&) 4 Mo(A7) _ 1 and by induction the
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assertion is proved .

b) The same argument as part (a) shows that ¢(G + H,r) =
¢(G,r)+q(H,7)+q(Kigyuy7),7 = 1,2,..., |G| +|H| and ¢,(G+
H,0) = 1. Thus M(G + H,z) = =¥\ M(G,z) + zI°\ M (H,z) +
M (K\gjya), T) — 2z!CIH1H1. This completes the proof. O

Corollary 6.The following results on proper graphs are hold
My(Kn, z) = nz®™=D(z—1)—(n—1)z" and M, (K, z) = (z—1)".

Proof. We notice that g,(Kn,7) = C(n,r), K, = nK;. Then
the previous theorem, completes the proof. 0

Theorem 7. Suppose G;,1 < i < k are graphs. Then we have
Mv(Uf=lGi! :L') = Hf:l Mv(Gi’ z).
Proof. By ¢,(GU H,7) = Y 1_0%(G, k)g,(H,r — k) and defi-

nition the proof is straightforward. O

Theorem 8. The vertex matching polynomial of the Hamming
graph H,, , are computed as follows: 3°,4(-1)"C(m,r)P(n,r)z™""".

Proof. it is well-known that H, , = K, x K, and

mn(m—1)(n-1)..(m—-r+1)(n—7+1)
r!

go(Km X Ky, r) =

_ P(m, 12|P(n, r),r >1.

Thus Mv(Km X Kn,x) == Erzo(_l)TC(m, :,-)P(,n’ ,,.)a’.mn—-r. O

4 Applications to Nanostructures

In this section, we obtain the maximal and maximum vertex
independent set of some well-known graphs. For example, the
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Figure 1: The Independent Vertex Set with Maximum Number of
Vertices.

L

Figure 2: The Independent Vertex Set without Maximum Number
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Figure 4: The Maximum Independent Vertex Set of Dendrimers.

of Vertices.

Figure 3:

path P,, the hexagonal graph and some denderimers.
Example 9. Suppose M,(P,) is the number of maximal vertex
independent set of P,. Then M, (P,) = 1, M,(R,) = 2, M,(B;) =
2, Mu(Pn) = Mv(Pn—2) + Mv(Pn-3)'

Theorem 10. Let G be a catacondensed benzenoid graph[10].
Then the size of the maximum vertex independent set of G is
2n + 1, where n is the number of hexagons. In particular if G
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is a catacondensed benzenoid chain then

M,(G,z) = zVOI - |yV(G)|z!VOI-1
+ |E(G)|zVON2 ¢ 4 2V@l-20-1

Proof. consider Figure 1 and assume that the independent
vertices of G are the form of Figure 1. Then the number of
these independent vertices are 2n. But if these vertices are the
form of Figur2. In other words, one of two vertices of common
edge is choosed . Then the number of these vertices are 2n + 1.
Therefore maximum is 2n+1. Now we compute ¢,(G, 2n+1). If
G is a catacondensd chain by n Hexagoe. Thus ¢,(G,2n+1) =2
and (G, z) = VO — |V(G)|zlVOI-1 + |E(G)|zlV N2 + ... -
97IV(G)|-2n—1_ O
Example 11. If n = 2P — 1. Then Figure 4 shows size of maximum
vertex independent set in this denderimers are 2%=L or 2Z5! for

p = 2k — 1 or p = 2k, respectively, see Figure 4 for details.
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