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Abstract

The distance spectral radius of a connected graph G, denoted by
p(G), is the maximal eigenvalue of the distance matrix of G. In this
paper we find a sharp lower bound as well as a sharp upper bound of
p(G) in terms of w(G), the clique number of G. Furthermore, both
extremal graphs are unique decided.
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1 Introduction

All graphs considered here are connected, simple and have at least one
edge. The vertex set and edge set of a graph G are denoted by V(G) and
E(G), respectively. The set of vertices adjacent to a vertex v is denoted
by Ng(v) and the distance between a pair of vertices u,v is denoted by
dg(u,v). A complete w-partite graph with partition sets V3,V2,...,V, is
denoted by Kjv,|,v4|,...,|v.| and & complete graph of order k is denoted by
K. The clique number w(G) is the number of vertices in the largest clique
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in G. Let D(G) = (di;) be the distance matrix of G, where d; = dg(vi, v;).
The maximal eigenvalue of D(G) is called the distance spectral radius of
G and is denoted by p(G).

The distance matrix is very useful in different fields including the de-
sign of communication networks, graph embedding theory and molecular
stability. In (1] Balaban et al. proposed the use of distance spectral radius
as a molecular descriptor. While in (3] it was successfully used to infer
the extent of branching and model boiling points of alkanes. Recently in
[5] and [9] the authors provided some upper and lower bounds for p(G).
Stevanovic and Ili¢ (7] showed that the broom graph has maximal distance
spectral radius among all trees with fixed maximum degree. Ili¢ [4] deter-
mined the tree which attains minimal distance spectral radius among all
trees with given matching number. Zhang and Godsil [8] characterized the
extremal graphs with minimal distance spectral radii among all connected
graphs with given number of cut vertices or cut edges.

This paper investigates the relationship between the distance spectral
radius and the clique number of a graph. Let Ty, ,, be the w-partite Tursn
graph on n vertices and K2~ be the graph obtained from an w-clique by
attaching a path of length n — w to a vertex of the clique. It is showed
that p(T,w) < p(G) < p(K2~*) for any graph G on n vertices with clique
number w. Furthermore, the left equality holds if and only if G 2 T, ,, and
the right equality holds if and only if G = Kn—v,

2 Lower bound on distance spectral radius

Since D(G) is an irreducible nonnegative matrix for any connected
graph G, by the Perron-Frobenius theorem, p(G) is simple and there exists
a positive unit eigenvector X associated with it, where X is called the
Perron vector of D(G). And by the Rayleigh-Ritz theorem,

p(G) = max Y'D(C)Y = XTD(G)X =} diyziz;.
= i’j

Let uv be an edge of a graph G such that G —uwv is still connected. Clearly,
dG—uv(vi,v5) > dg(vi,v;) for any pair of vertices v;,v; and dg_yy(u,v) >
dg(w,v). This implies that p(G — uv) > p(G).

Let G(|C11,|C3], .. .,|Cu|) denote the graph obtained from an w-clique
C = {v,va,..., v} and an (n — w)-clique ¢’ = C; UC;...UC, (see
Figure 1) by joining v; with each vertex of C'\Cj for k = 1,2,...,w,
where |C1] < |Co| < ... < |Cu], Yk-; |Ck| = n — w and some Cj’s may
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be empty. In fact, the complement of G(|C}|,|Cx|,...,|C.|) is isomorphic
to the disjoint union of K |c,),K1,)c,05---1K1,|c,- And it is clear that
G(o,o0,...,0,1,1,...,1) = T, , whenw > 5.

' . o . Kn_w
Cl CZ Cw

Figure 1 An w-clique and an (n — w)-clique in G(|C1|,|C2|, ..., [Cul)-

Theorem 2.1 Let G be a graph on n vertices with cligue number w. If
w > 2, then p(G) 2 p(Tn,u) and the equality holds if and only if G 2T, ..

Proof. Let C = {v;,vs,...,v,} be aclique of G and C' = V(G)\C. Then
any vertex of C’ has at most w — 1 neighbors in C. This implies that under
graph isomorphism G is a spanning subgraph of G(|C1),|Ca|, .. .,|Cu|) for
some partition Cy,Cs, ..., C,, of C'. Therefore, p(G) > p(G(|C:|,|Ca,- .-,
|Cul)). Let

Gnw = {GUC1LCo]s- ., [CDI D IOk =n—w,|C1] < [Cof < ... £ |Cul}-
k=1

and G* = G(|C1),|C%|, - - -, |Cu]) be an extremal graph in Gy, ,, with minimal
distance spectral radius. Although all graphs in G, ., but G(0,0,...,0,1,1,

...,1) have clique number greater than w, it suffices to show that G* =
G(0,0,...,0,1,1,...,1).

Assume to the contrary that G* % G(0,0,...,0,1,1,...,1). Let i be
the minimal index such that |C;] > 2, 7 be the maximal index such that
C; = ® (Such j does exist, since 3, |[Ck| = n —w < w) and G’ =
G(Ci|,IC5l,- - -,1CL)), where Cf = C; \ {u} for some vertex u € C;, C} =
{u} and Ci, = Cy for else k (see Figure 2). Then G’ € G, . We now get a
contradiction by proving that p(G*) > p(G").
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Uj v
={u} Ci=Ci\{u} C;=0 C,

Figure 2 The local transformation from G’ to G*.

Let X be the Perron vector of D(G’) with component z,, correspond-
ing to vertex v for k = 1,2,...,w. By symmetry, all the vertices of C},
have the same Perron component; and we may use z}, to denote the Perron
component of the vertices in C} for k = 1,2,...,w. Since dg-(u,v;) =
dor(u,v;) +1 =2, dg-(u,v;) = da:(u,v,-) - 1 = 1 and dg-(s,t) = dg/(s,t)
for any else pair of vertices s and t, we have

p(G*) — p(G") 2 XT[D(G*) - D(G")|X = 2 (zy; — T;)-
Further,
p(G’)(:c.,i - x"j) = (z”j - x".') + (ICz,Iz: - m;) 2 (x”j - xw) + (z: - z_l'p)

and p(G')(z} — z}) = («} — z) + (v, — Tv,).” This implies that (p(G’) +
1- (G}Hl)(x,,, z,;) 2> 0 and hence p(G*) > p(G’). Now assume that
p(G*) = p(G’), then z,, = z,; and X is also the Perron vector of D(G*).
Therefore, p(G*)(zy; — zv;) = (a:,,_,, Zy;) + |Cilz} > 0, a contradiction.

Thus p(G*) > p(G’) and the proof is completed. O

The following lemma is known as Turén’s theorem (see [2]).
Lemma 2.2 Let G be a graph on n vertices without (w + 1)-clique. Then

e(G) < e(Tn,w) and the equality holds if and only if G 2 T,, ,,, where e(G)
is the number of edges in G.

Let W(G) denote the Wiener index of a graph G, that is, the sum of
the distances between any two vertices of G.

Lemma 2.3 ([5, 9]) Let G be a graph on n vertices. Then p(G) > J—l
and the equality holds if and only if G is distance regular, i.e. the row sums
of D(G) are all equal.
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Theorem 2.4 Let G be a graph on n vertices with cliqgue number w. If
w | n, then p(G) = p(Tnw) and the equality holds if and only if G = T, ..

Proof. It is obvious that G has e(G) vertex pairs at distance one and
(3) — e(G) vertex pairs at distance equal to or more than two. Suppose
that G 2 T, ... According to Lemma 2.2,

W(G) > e(G) + 2[(’2’) —e(G)] > 2(’2') — e(Tn ) = W(Tn)-

And by Lemma 2.3, p(G) 2> 2Wn(G) > 2W(Z“'“‘). On the other hand, since

D(T, ) is distance regular when w | n, we have p(Thw) = MI—"——“’) So
p(G) > p(Tnw). O

The following result provides the relationship between chromatic num-
ber and distance spectral radius.

Lemma 2.5 Let G be a graph onn vertices with chromatic number x(G) =
w. Then p(G) > p(Tu,w) and the equality holds if and only if G = Th .

Proof. We may assume that G has minimal distance spectral radius
among all graphs on n vertices with chromatic number w. It suffices to
show that G 2 T, . Since the adding of an edge decreases the distance
spectral radius, G is a complete w-partite graph. Let Vi, Va,..., V., be the
partition of V(G) (that is, G 2 Ky, \v4,...v.1)- I IIVil = Vil < 1 for
any 1 < i,j < w, then G & T, ,,. Now assume without loss of generality
that [V3| < |Vz| — 2. Similarly as the proof of Theorem 2.1, one can get
p(G) > P(KIVI|+1,|V2|—1,|V3|,...,|V..,|), a contradiction. O

Lemma 2.6 ([6]) Let G be a graph on n vertices with w(G) < w. If
x(G) > w and w < 3§, then ¢(G) < e(Tnw) — 2] + 1.

Theorem 2.7 Let G be a graph on n vertices with clique number w. Then
p(G) > p(Tnw) and the equality holds if and only if G = Th ..

' /M

f Proof. According to Theorems 2.1 and 2.4, the claim holds for w > %
or w | n. And by Lemma 2.5, the claim holds if x(G) = w(G) = w.
Next suppose that w < %, w { n and x(G) > w. It suffices to show that
p(G) > p(Tn,)- First we give the value of p = p(Tn,o). Set k = | 2], then
k > 2. Note that T}, ., has n—kw partition sets of size k+1 and (k+1)w—n
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partition sets of size k. Let X be the Perron vector of T}, ,, with component
x; corresponding to the vertices of degree n — k — 1 and z» corresponding
to the vertices of degree n — k. Since pX = D(T}, ,)X, we have

pry = 2kz1 + (n — kw — 1)(k + 1)z; + [(k + 1)w — nlkz, (1)
and
pz2 = 2(k — 1)z + [(k + 1)w — n — 1}kz2 + (n — kw)(k + 1)z;.

Therefore, p(z1 — z2) = (k — 1)z — (k — 2)x3, that is, z; = %22.
Applying it to (1), we have

[o— 2k — (n — kw — 1)(k + 1))(p — k +2) = [(k + 1)w — nJk(p — k + 1).

Straightforward calculation shows that

1
P(Tnw) = 5l(n+2k - 3) + V(n+2k+1)2 —dk(k+1)(w+1)]. (2)
On the other hand, by Lemmas 2.3 and 2.6, we have

0(G) > W(G) , 202(3) —e(G)]  202(3) — e(Tnw) +k— 1
- on T n - n

It is known that

n—k k+1
e(T,w)—< 9 )+(w—1)( 9 )
Thus we have

w0 2 2e(3)-("3")-e-n(*; ) + -

= (n+2%-1)- %[k(k+1)w—2(k-1)]. (3)

To show p(G) > p(T, ), it suffices to show that the right side of (3) is
more than that of (2). That is, we have to show that
[k(k + 1w — 2(k — 1)]?
n2
(n+ 2k + 1)[k(k + 1)w — 2(k — 1))

n
Simplifying (4), we have

2(k — 1)[(k + 1)(n — kw) + k(n — kw — w) +n? + 2(k — 1))
> —k(k+1)(n - kw)(n — kw — w). (5)

~ k(k + 1)(w + 1). (4)
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Let n = kw + ko, then 0 < ko < w. To obtain (5), it suffices to show
2(k — 1)(n? — kw) > k(k + 1)kow.
Note that
2(k — D)n? > 2(k — 1)(k?w? + 2kkow) > 2(k — 1)kw + (k + 1)kkow

for k > 2. The proof is completed. O

3 Upper bound on distance spectral radius

In this section, we give a sharp upper bound of distance spectral radius
for the graphs with given clique number.

Lemma 3.1 ([7]) Let Gp 4 be a graph obtained from G by attaching two
pendent paths of length p and q at a vertex of G. Ifq 2 p 2 1, then

P(Gp—1,g+1) > p(Gp,g)-

Lemma 3.2 ([8]) Let G be a graph with uv € E(G) and Gp q(u,v) be the
graph obtained from G by attaching a pendent path of length p at u and
a pendent path of length q at v. If ¢ > p > 1, then p(Gp-1,4+1(1,v)) >
P(Gp,a(w,v)). If g =p 2 1, then either p(Gp1,4+1(4,v)) > p(Gp,q(u,v))
or p(Gp+1,4-1(4,)) > p(Gp,q(u,v))-

Theorem 3.3 Let G be a graph on n vertices with cligue number w. Then
p(G) < p(K2~") and the equality holds if and only if G = K™*.

Proof. The claim is trivial for n = w. Now let n > w. We may assume
G is an extremal graph which attains the upper bound of distance spec-
tral radius and prove that G & K2~*. Let C be an w-clique of G and
G4,Gs,...,Gy (k > 1) be the components of G — C. Since G is connected,
for each G; there exists an edge connecting a vertex from G; and a vertex
from C. Moreover, since p(G — e) > p(G) for any edge e which is not a
cut edge, we can conclude that each G; is a tree and for each G; there is
exactly one edge from it to C. We now give two claims on the structure of
G.

Claim 1 Each G; is a path with an endpoint adjacent to some v; € C.

In fact, the above discussion implies that V; = V(G;)U{v;} also induces
a tree for each i. It suffices to show that each V; induces a path. Assume
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to the contrary that for some i, u; is a branching vertex (i.e. a vertex of
degree more than two) of G; which has the longest distance to v;. Then the
subtree of u; consists of several paths rooted by u;. According to Lemma
3.1, we can get a graph G’ on n vertices with clique number w such that
p(G’) > p(G), which contradicts the maximality of p(G).

Claim 2 There is a unique path G;.

Suppose to the contrary that G; and G; are two such paths. If G; and
G; are rooted by the same vertex of C, then by Lemma 3.1, we can get
a graph G’ with p(G’) > p(G), a contradiction. Now assume that their
roots v; and v; are distinct. Let p; be the length of the path G;. Since
v;v; € E(G), by Lemma 3.2, we can get a graph G’ with p(G’) > p(G),
also a contradiction.

Claim 1 and Claim 2 imply that G & K*~*. This completes the proof.
(m}
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