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Abstract

The well-known Petersen graph G(5,2) admits drawings in the
ordinary Euclidean plane in such a way that each edge is represented
as a line segment of length 1. When two vertices are drawn as the
same point in the Euclidean plane, drawings are said to be degen-
erate. In this paper we investigate all such degenerate drawings of
the Petersen graph and various relationships among them. A heavily
degenerate unit distance planar representation, where the represen-
tation of a vertex lies in the interior of the representation of an edge,
it does not belong to, is also shown.
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1 Introduction

Let P be the well known Petersen graph G(5,2), see for instance [13]. For
simplicity the vertices of the Petersen graph are labeled by natural numbers
as in Figure 1.
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Figure 1: The vertices of the Petersen graph P are labeled as shown.

Define a representation p of a graph G in a set M as a map py from V(G)
into M and a map pg from E(G) into 2, such that if v is an end-vertex of
an edge e = u ~ v, then py(v) € pg(e) (and py(u) € pg(e)), see [5]. If the
converse is true, namely, that for v € V(G) and e € E(G), if pv(v) € pEe(e)
is true, then v is an end-vertex of e = u ~ v, the representation is called a
realization. If there is no danger of confusion we drop the subscripts and
denote both mappings py and pg by p. Observe, that representations of
edges of G may cross, which is different than in the usual embedding case.

In this paper we consider only representations in the Euclidean n-space,
i.e. (Buclidean) representations that have M = R™ and where edge e =
u ~ v is represented by the line segment between the representations of
its end-vertices. We will mainly consider representations in the Euclidean
plane, which will be called planar, see [5, 12). All graphs in this paper are
assumed to be simple, having no loops and no multiple edges.

If the mapping p is not injective on V(H), where H C G is a subgraph
of a graph G, the representation is called degenerate on H. If the mapping
p is not injective on V(G), it is called degenerate. A representation is called
an immersion if representations of any two edges share only a finite number
of points. In an Euclidean immersion two edges share at most one point
and an Euclidean realization of a graph is always an immersion.

An Euclidean representation is called a unit distance representation if
each edge is represented as a line segment of length 1. A graph is called a
unit distance graph if it has a unit distance planar realization. Again, edges
of unit distance graphs are allowed to cross, thus not every unit distance
graph is a planar graph. For example, the well known Petersen graph is a
unit distance graph, as can be seen in Figure 6(b).

Since each Euclidean realization of a connected graph on at least three
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vertices is non-degenerate, non-degenerate representations that are not re-
alizations have the property that a representation of a vertex lies in the
interior of a representation of an edge. Such degeneracies are sometimes
called non-simplicial or heavily degenerate representations and are not con-
sidered in this paper (e.g., see Figure 8). There are even cases, where
non-simplicial representations are not immersions.

If all continuous motions of the points of the representation p maintain
the distances given by edge constraints, the representation is called rigid
[3]. A representation that is not rigid, is called flerible. The number of
independent coordinates required to define the position and orientation of
an object @ is called the degree of freedom (a.k.a. dof, Do ) [8]. For a planar
representation M, the degree of freedom is given by Gruebler’s Equation,
see [7]. Graphs with pre-described edge length contain only revolute joints,
which are joints that allow only one rotational freedom. Thus, for a graph G
with pre-described edge length, the degree of freedom is given by equation
Dg = 3(n — 1) — 2f, where f = ¥, cy(c) @(v) — 1 and d(u) is a degree of
a vertex u € V(G). Since the Petersen graph has 15 edges and 10 vertices
with degree 3, Dp = 3(15 — 1) —2(10(3 — 1)) = 2.

Sometimes a representation can be over-constrained [7]. For example,
the Wheel graph W5, is rigid in the plane and contains one redundant
constraint. One can remove any edge that connects the hub vertex with
the cycle, and the graph G}, := W7 —r, that is obtained and can be seen in
Figure 3(b), remains rigid in the plane. Application of Gruebler’s equation
on the graph W, would yield a value of Dy, less than zero.

2 Degenerate representations of a graph

A mapping f : V(G) — V(H) from a graph G into a graph H is called
a graph morphism or a graph homomorphism, if f maps vertices of G into
vertices of H, such that « ~ v € E(G) implies f(u) ~ f(v) € E(H) (f
preserves adjacencies). Each graph morphism f : V(G) — V(H) induces a
unique mapping (denoted by the same letter) f : E(G) — E(H), such that
fore =u ~ v, f(e) = f(u) ~ f(v). A homomorphism that is bijective both
on V(@) and E(G), is called a graph isomorphism (see e.g. [6]). We say
that an isomorphism of a graph G onto itself is a graph automorphism.

Each graph morphism f : G — H, surjective on V(G), defines a vertex
set partition, where two vertices u and v are equivalent iff f(u) = f(v).
Since the image graph H is simple, with no loops, the converse is almost
true, see [6].

Theorem 2.1. A vertez set partition © of V(G) arises from a graph mor-
phism, surjective on V(G), if and only if © defines a proper vertex coloring.
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Proof. Let © be a vertex coloring of a graph G, and let K, denote the
complete graph on vertices vy,...,ve. If © is a proper |©|-coloring, then we
can map each color class to one vertex of K|g|, thus there exist the bijective
mapping f : © — K|y, such that f(V;) = v;, 1 <i < |6|. The mapping
9 : G — Kjg defined with g(u) = j iff u € f~!(v;) is well defined graph
morphism and since every part of © is non-empty, g is surjective on V(G).
Conversely, if the partition does arise from a graph homomorphism, then
vertices in the same partition cannot have an edge between them, since the
image graph is loopless. Because the graph homomorphism is surjective on
V(G), © is a proper |8|-coloring. O

For a graph G with a (vertex) coloring ©, define a colored graph as a
pair (G, ©). We say that G is the underlying graph of graph (G, ©).

The following notation and theory are used in Section 4. Each vertex set
partition ©, where k = |6, gives rise to the corresponding integer partition
n=mn;+nz+...+ng, where n; > ng > ... > ng, n = |V(G)| and the
i-th part of partition © has cardinality n;. We call each part of the vertex
partition a vertez class. Further on, we will denote the integer partition
n=n;+nz+...+n withnyo

Let G be a graph and S C V(G) If for every pair of vertices u,v € S
holds that u ~ v ¢ E(G), then we call S to be an independent set. Let G be
a graph with n vertices whose maximal independent set has cardinality m.
Then, while looking for all surjective morphisms, only integer partitions of
n whose maximal element has size m have to be considered. Let R[n,m] be
the number of all integer partitions of integer n with the maximal addend
< m. As can be seen in [1], R[n,m| equals to the number of partitions of
n with at most m parts.

Let G be a graph. Degenerate (not necessary planar) unit distance
representation p : G — M can be decomposed into two mappings f :
G — H and p* : H — M, where f is a graph morphism surjective on
both V(G) and E(G), p* is (non-degenerate) unit distance realization and
p = p*of. Thus, to find all degenerate unit distance representations of the
graph G, one has to find all unit distance realizations of all non-isomorphic
epimorphic (on both V(G) and E(G)) images of G. By Theorem 2.1, in
order to find all epimorphic images of the graph G, one has to find all
proper vertex colorings of G.

Let Gp,,  , denote the set of all non-isomorphic colored (labeled)
graphs, that are obtained from G, while coloring it with all proper & col-
orings that give rise to the integer partition n; s . x. Informally speaking,
we can describe Gy, , . as the set of all different n; 5. x colorings of G.
Let G, denote the set of all non-lsomorphm (non-labeled) underly-

n1,2,...,
ing graixfls of graphs from the set Gy, , .. Informally speaking, we can

396



describe Gy, |
G.

Thus, to obtain all unit distance degenerate planar representations of
G, one has to find all unit distance realizations of graphs in set Gy, , | for
every integer partition n12,.. k. When coloring G with colors from the set
{1,...,k} and obtaining corresponding graph epimorphisms, the symmetry
of G and n,5,... x needs to be taken into account.

, as the set of all different n; o, . x drawings of the graph

3 Critical subgraphs of the Petersen graph

The property of being a unit distance graph is a hereditary property of a
graph, see [4]. Hence, if a graph G contains a subgraph H which is not a
unit distance graph, G too is not a unit distance graph.

Let G be a graph, F C E(G) a subset of its edges and e € E(G) an
edge. A graph G with edges from F removed will be denoted as G — F :=
(V(G), E(G)\F) and G — e := G — {e}. Let K, denote the complete graph
on n vertices and C, the cycle on n vertices. The complete bipartite graph
Komn is a graph with two sets of vertices, one with 7 members and one with
m members, such that each vertex in one set is adjacent to every vertex in
the other set and to no vertex in its own set. Let W; be the Wheel graph
on i vertices (the skeleton of the (i — 1)-gonal pyramid), let r be one of its
spokes (a spoke is an edge that connects the hub vertex with one of the
vertices on the cycle) and define W := W, —r.

K, K3 Wg

¥

Figure 2: (a) The complete graph K. (b) The complete bipartite graph
K 3. (c) A planar realization of the graph Wg'.

Theorem 3.1. If a graph G contains K4, K33 or W¢ as a subgraph, then
G is not a unit distance graph.
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Proof. The proof when G contains K, or Ky 3 is straight-forward and it
will be left out (see e.g. [2]). All we have to prove is that W is not a unit
distance graph. Label the vertices of Wy as in Figure 2(c). Define Wg* as
the induced subgraph of the graph Wg on the vertex set {4, B,C, D, E}.
The graph Wg* has only one unit distance planar realization, say p, which
is rigid in the plane. Define a representation p’ of the graph W¢ in such a
way, that p’'(v) = p(v) for each v € V(Wg™*). Since |p'(A)p'(D)| = 2, there
can be only one path of length 2 between points p'(A) and p/(D), but in
the graph Wy there are two, A~ E ~ D and A ~ F ~ D. Thus, p' maps
vertices F' and F into one point p’(F'). Representation p’ is degenerate and
not an immersion, hence it is not a realization. O

G2

Figure 3: (a) A planar realization of the graph Go;. (b) A planar rigid unit
distance realization of the graph G3,, defined as the induced subgraph of
G on the vertex set V(Go1) \ {H}.

The proofs of Lemma 3.2 and Corollary 3.3 will be omitted, since they
can be easily obtained from Figure 3(b).

Lemma 3.2. Let the graph G3; be defined as in Figure 3(b). Then it has
only one rigid unit distance realization in the plane, which maps vertices F
and G into points that are unit distance apart.

Corollary 3.3. Let the graph G3, be defined as in Figure 3(a). A unit
distance planar realization of Gy; does not exist.

The Cartesian product K OH of graphs K and H is the graph with
vertex set V(KO H) = V(K) x V(H) and edge set E(KOH) = {(a,b) ~
(ad) | (a=cAb~dec E(H))V(a~ce E(K)Ab=d)}.

Lemma 3.4. Let the graph G3, be defined as in Figure 4(b) and let p be
its arbitrary unit distance planar realization, if exists. Then, |p(A)p(H)| =

lo(H)p(F)| = 1.
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Figure 4: (a) A unit distance planar realization of the graph K3 K3 with
one degree of freedom. The positions of grey vertices are determined by the
angle between the white vertices. (b) A unit distance planar realization of
the graph G}, with one degree of freedom. The positions of grey vertices
are determined by the angle between the white vertices and the vertex
F. (c) A planar realization of the graph G2z defined with the vertex set
V(G3,) U{W} and the edge set E(G3,)U{B ~W,W ~ H}.

Proof. Let K3 be the equilateral triangle. It is well known that the Carte-
sian product K3 [ K3, which can be seen on Figure 4(a), is a unit distance
graph. The graph G3, is obviously a subgraph of the graph K3 K3, thus
a unit distance graph. Let p be a unit distance planar realization of G3,.
Denote the vertices of the graph G3, as in Figure 5. Let us to simplify
the writing, until the end of this proof, write u instead of p(u), where
u € V(G}) (e.g. we will write A instead of p(A), etc).

Let w represent the sixth root of unity l—'t;J@ Then in the complex
plane, place A at the origin, B at w, and E at 1. Let o denote the unit
vector from B to F, so that F is at point w + c. Since multiplying by
w corresponds to rotation by 60 degrees, C' is at point w + wa. Then D
is defined to be the 4th point of rhombus ABCD, so that, as complex
numbers, C — B = D - A. Solving for D, we get D =wa. Similarly, let G be
defined as the 4th point of rhombus EBFG, so that, as complex numbers,
B—E=F — D, hence G =1+ a. To find the location of H, we observe
that the distance between D and G, being ||D — G|| = ||(1 + &) — wa|| =
13 + a(1 = w)|| < 11| + |lelll]l = wl|| = 2, implies that there are exactly
two points at unit distance from both D and G, unless we have equality in
the previous relation, which occurs when & = w, in which case there is one
point. It is then easy to verify by inspection that ¢ and 1 + wa, are unit
distance apart from both D and G. Thus, H = a or H = 1 + wo. In the
first case, inspection shows that H is unit distance from A and F as well,
completing the proof. O
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Figure 5: A planar unit distance realization of the graph G35, with detailed
notation.

Corollary 3.5. Let the graph Gy be defined as in Figure 4(c). A unit
distance planar realization of Goo does not exist.

Proof. To construct a planar unit distance realization of G22 one needs to
extend a unit distance realization p of G3, with a unit distance realization
of two missing edges, p(B)p(W) and p(W)p(H). As it has been proven
in Lemma 3.4, rectangle p(B)p(A)p(H)p(F) is a rhombus with all sides of
equal length 1. Thus the representation of the path B ~ W ~ H is of
length 2 and must contain either p(A4) or p(F'). Hence, a representation of
a vertex lies inside a representation of an edge it does not belong to. There
is more, a representation is not even an immersion. Thus, it is not a unit
distance planar realization. a



4 Unit distance planar representations of the
Petersen graph

Now we turn to planar unit distance representations of the Petersen graph.
For each such (possibly degenerate) planar unit distance representation
there is an underlying graph. For instance, it is possible to represent the
Petersen graph in such a way, that the underlying graph is the unit dis-
tance triangle K3. Such a graph representation is degenerate and not an
immersion, as can be seen in Figure 6(a). It is also possible to construct a
planar unit distance realization of the Petersen graph, as in Figure 6(b).

{2.4.6}

11.3.9,10}

Figure 6: (a) A degenerate planar unit distance representation of the Pe-
tersen graph. (b) The Petersen graph can be drawn in the plane in a
non-degenerate way with all edges of the same length.

It can be easily observed that for the Petersen graph n = 10, m = 4 .
and R[10,4] = 23. Table 1 lists all different integer partitions (that will
be further on denoted as cases) for the Petersen graph. For the integer
partition ny,2,... x observed in each case, we denote by:

e n; ... the size of i-th vertex class,

e k ... the number of colors used in any of the proper k colorings that
give rise to n12,... .k,

e a ... the number of all graphs in Gy, , _ ;,
e d ... the number of all graphs in G},

n1,2,...,k?

e 7 ... the number of all unit distance graphs in set G’,‘;m e

It can be easily observed that 0 <r <d <L a.
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n1 N2 M3 N4 N5 Ng M7 nNg Ng nio | k a d r

1] 4 4 2 3 0 0 0
2] 4 4 1 1 4 0 0 0
3] 4 3 3 3 1 1 1
4| 4 3 2 1 4 2 1 1
5| 4 3 1 1 1 5 2 1 0
6| 4 2 2 2 4 1 1 0
71 4 2 2 1 1 5 2 2 2
81 4 2 1 1 1 1 6 1 1 1
91/ 4 1 1 1 1 1 1 7 1 1 1
10| 3 3 3 1 4 3 3 2
1] 3 3 2 2 4 4 2 1
121 3 3 2 1 1 5 10 7 2
13} 3 3 1 1 1 1 6 5 5 0
1441 3 2 2 2 1 5 14 5 1
151 3 2 2 1 1 1 6 19 | 15| 4
16} 3 2 1 1 1 1 1 7 7 7 2
17| 3 1 1 1 1 1 1 1 8 2 2 1
181 2 2 2 2 2 5 2 2 0
19 2 2 2 2 1 1 6 1 |10} 1
20 2 2 2 1 1 1 1 7 12 12 1
21| 2 2 1 1 1 1 1 1 8 5 5 1
22| 2 1 1 1 1 1 1 1 1 9 1 1 0
23| 1 1 1 1 1 1 1 1 1 1 10 1 1 1
Total 106 | 85 | 23

Table 1: Vertex set partitions of the Petersen graph.

We have to consider each of 23 cases separately. For each case we
state all different k-colorings of the Petersen graph that give rise to integer
partition n; 5, & observed in that case. We state which of them have a
unit distance realization in the plane, which of them are rigid in the plane
and if not rigid, with how many degrees of freedom Dg are they realizable
with. For those cases that do not have a unit distance planar realization,
an obstruction (a critical subgraph) will be presented. The results will
be shown in a table for each case. The totals for each case are shown in
Table 1. All different unit distance planar representations of the Petersen
graph are shown in Figure 10.

The computer system VEGA [10, 11, 9] was used in order to find good
drawings of graphs, calculate the authomorphisms, calculate all epimor-
phisms and help constructing the posets of the contracted graphs.

In cases 1 through 9, size m of the maximal set of vertices in vertex
partition, is 4. Thus, four vertices of the Petersen graph are colored with
one color and the corresponding surjective graph morphism contracts them
into one, as can be seen on graph shown in Figure 7. Due to the symmetry
of the Petersen graph it has essentially only one independent set of size 4.
We may take it to be {1,3,9,10}.



(1,3,9,10}

Figure 7: The Petersen graph with the vertex set {1,3,9,10} contracted.
It is clearly realizable with two degrees of freedom.

Case 1. (4,4,2) We may rule out case 1. There is no 3-vertex coloring
of P with two color classes having 4 vertices and one color class having two
vertices. If there would be one, we would be able to pick four pairwise non-
adjacent vertices among vertices {2,4,5,6,7,8} in the graph in Figure 7
and color them with the same color. But we can only pick three of them.

Case 2. (4,4,1,1) This case is similar to case 1 and can be ruled out
too.

Case 3. (4,3,3) There is only one distinct vertex colormg of P giving
rise to only one rigid equilateral triangle, as can be seen in Figure 6(a).

case proper coloring realizable | graph [ rig./Dg
3.1 [ {1,3,9,10}, {2,4,6}, {5,7,8} yes G3y1 | yes/O

Table 2: Case 3. (4,3,3)

Case 4. (4,3,2,1) There are two distinct vertex colorings of P, both
giving rise to the same rigid unit distance planar realization.

case proper coloring realizable | graph | rig./Dg
4.1. { 13,9, 0}: {2 4, 6}! {5 7} {8} yes Ga.1 yes / 0
4.2. | {1,3,9,10}, {2.4,8}, {5.6}, {7} yes Ga1 | yes/O

Table 3: Case 4. (4,3,2,1)

Case 5. (4,3,1,1,1) There are two distinct vertex colorings of P, which,
when applied to P, give rise to only one graph. That graph contains K23
as a subgraph. Hence, a unit distance planar realization of it does not exist,
although there exists a unit distance 3-space realization with two degrees
of freedom.
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case proper coloring realizable | graph | rig./Dg

5.1.7[{1,3,9,10}, {2,4,6}, {5}, {7}, {8} no K23
5.2. | {1,3,9,10}, {2,4,8}, {5}, {6}, {7} no Kas

Table 4: Case 5. (4,3,1,1,1)

Case 6. (4,2,2,2) There is only one distinct vertex coloring of P,
which, when applied to P, gives rise to K. As we proved, K, does not
have a unit distance planar realization, but has a unit distance 3-space
realization, which is rigid in 3-space (a regular tetrahedron).

case proper coloring realizable | graph | rig./Dg
6.1. | {1,3,9,10}, {2,4}, {5,6}, {7,8} no K,

Table 5: Case 6. (4,2,2,2)

Case 7. (4,2,2,1,1) There are two distinct vertex colorings of P. In
this case, both of them have a unit distance planar realization, first is rigid
and the other one realizable as a unit distance graph with one degree of
freedom.

case proper coloring realizable | graph rig./'DT
7.1. 1 {1,3,9,10}, {2,4}, {5,6}, {7}, {8} yes Gra yes/0
7.2. | {1,3,9,10}, {2,4}, {5,7}, {6}, {8} yes Gr.2 no/1

Table 6: Case 7. (4,2,2,1,1)

Case 8. (4,2,1,1,1,1) There is only one distinct vertex coloring of P,
which, when applied to P, gives rise to a graph with a unit distance planar
realization, realizable with one degree of freedom.

case proper coloring realizable | graph | rig./Dg
8.1. | {1,3,9,10}, {2,4}, {5}, {6}, {7}, {8} yes Gs.a no/1 |

Table 7: Case 8. (4,2,1,1,1,1)

Case 9. (4,1,1,1,1,1,1) Again, there is only one distinct vertex col-
oring of P, which, when applied to P, gives rise to a graph with a unit
distance planar realization, realizable with two degrees of freedom.

Case 10. (3,3,3,1) There are three distinct vertex colorings of P,
which, when applied to P, give rise to three graphs. First and second have
a unit distance planar realization, first is rigid and the other one realizable



case proper coloring Tealizable | graph | rig./Dg
9.1. {1, 3,9, 10}: {2}) {4}$ {5}» {6}’ {7}1 {8} yes Go.1 n°/2

Table 8: Case 9. (4,1,1,1,1,1,1)

with one degree of freedom. The third coloring, which, when applied to P,
gives rise to K4, does not have a unit distance planar realization.

case proper coloring realizable | graph | rig./Dg
10.1. | {1,3,7}, {(2,4,6}, {5,8,9}, {10} yes Ga. yes/0
10.2. | {1,3,9}, {2,4,6}, {5,7,8}, {10} yes Gio.2 no/1
10.3. | {1,3,10}, {2,4,6}, {5,8,9}, {7} no Ky

Table 9: Case 10. (3,3,3,1)

Case 11. (3,3,2,2) There are four distinct vertex colorings of P, which,
when applied to P, give rise to four graphs. First three are isomorphic to
K, which does not have a unit distance planar realization. The last one
has a rigid unit distance planar realization.

case proper coloring realizable | graph | rig./Dg
1.1 | {1,3,7), {2.4,6}, {5,8}, {9,10} no Ky

11.2. | {1,3,7}, {2,4,8}, {5.6}, {9,10} no K,

11.3. | {1,3,10}, {2,4,6}, {5,7}, {8,9} no K,

11.4. {1’4: 8}) {2a 9, 10}! {3! 5}1 {6' 7} yes Gaa y%/o

Table 10: Case 11. (3,3,2,2)

Case 12. (3,3,2,1,1) There are ten distinct vertex colorings of P,
which, when applied to P, give rise to seven non-isomorphic graphs. Only
four of them are unit distance graphs, first three are rigid and the other
one realizable with one degree of freedom. All other six graphs that are not
realizable, contain K33 as a subgraph.

Case 13. (3,3,1,1,1,1) There are five distinct vertex colorings of P,
which, when applied to P, give rise to five different graphs. All of them
contain K2 3 as a subgraph, thus are not realizable with unit distances in
the plane.

Case 14. (3,2,2,2,1) There are 14 distinct vertex colorings of P, which,
when applied to P, give rise to five different graphs. Only one of them has a
rigid unit distance planar realization. Among the other four, three contain
K3 3 and one Kj.

Case 15. (3,2,2,1,1,1) There are 19 distinct vertex colorings of P,
which, when applied to P, give rise to 15 different graphs. Only four of
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case proper coloring realizable | graph | rig./Dg
121 | {1,5,7), (2,46}, (58], BF, {I0f | ves | Gri | yes/0
12.2. | {1,3,7}, {2,4,6}, {5,9}, {8}, {10} no K23
12.3. | {1,3,7}, {2,4,8}, {5,6}, {0}, {10} no Kas
124. | {1,3,7}, {2,4,10}, {5,6}, {8}, {9} no Kas
12.5. | {1,3,9}, {2,4,6}, {5,7}, {8}, {10} no Kaa
12.6. | {1,3,10}, {2,4,6}, {5, 7}, {8}, {9} yes Gra yes/0
12.7. | {1,3,10}, {2,4,6}, {5, 8}, {7}, {9} yes Gr.q yes/0
12.8. | {1,8,10}, {2,4,6}, {5,9}, {7}, {8} no Kags
12.9. | {1,4,8}, {2,9,10}, {3,5}, {6}, {7} yes Gi2.9 no/1
12.10. | {1,4.10}, {2,8,9}. {3.5}. {6}, {7} no Ko
Table 11: Case 12. (3,3,2,1,1)
case proper coloring realizable | graph | rig./Dg
131, | {1,3,7), {2,4,6}, {5}, {8}, {9}, {10} o Kas
13.2. | {1,3,7}, {21 4, 8}’ {5}! {6}' {9}1 {10} no Ka,3
13.3. | {1,3,9}, {2,4,6}, {5}, {7}, {8}, {10} no Kaa
13.4. | {1,3,10}, {2,4,6}, {5}, {7}, {8}, {9} no Kas
13.5. | {1,4,8}, {2,9,10}, {3}, {5}, {6}, {7} no Kaa
Table 12: Case 13. (3,3,1,1,1,1)
case proper coloring realizable | graph | rig./Dg
141 [ {1,3,7), 12,4}, (5,6}, {8,9], {10} 1o K23
14.2. | {1,3,7}, {2,4}, {5,6}, {9,10}, {8} no Kas
14.3. | {1,3,7}, {2.4}, {5,8}, {6,10}, {9} no Kas
14.4. | {1,3,7}, {2,4}, {5,9}, {6,10}, {8} yes Gr1 | yes/o
14.5. | {1,3,9}, {2,4}, {5.6}, {7,8}, {10} no Ko
14.6. | {1,3,9}, {2,4}, {5,7}, {6,10}, {8} yes Gri | yes/O
14.7. | {1,3,9}, {2 4}, {5, 8}, {6,10}, {7} no Ka3
14.8. | {1,3,10}, {2,4}, {5,6}, {7.8}, {9} no Ka3
14.9. | {1,3,10}, {2,4}, {5,6}, {8,9}, {7} no Kaa
14.10. {lr 3, 10}! {2: 4}: {5’ 7}1 {8! 9}! {6} no K4
14.11. | {1,3,10}, {2,4}, {5,9}, {6,7}, {8} no Kaa
14.12. | {1,3,10}, {2,4}, {6, 7}, {8,9}, {5} no Kas
14.13. | {1,4,10}, {2,6}, {3,7}, {8,9}, {5} no K
14.14. | {1,4,10}, {2,6}, {3,9}, {7,8}, {5} no Ky

Table 13: Case 14. (3,2,2,2,1)

them have a unit distance planar realization, three out of four are rigid and
one is realizable in the plane with one degree of freedom. Ten of eleven
graphs, that are not realizable, contain K3 3 as a subgraph and one contain
K4 as a subgraph.

Case 16. (3,2,1,1,1,1,1) There are seven distinct vertex colorings of
P, which, when applied to P, give rise to seven different graphs. Only two



case proper coloring realizable | graph | rig./D.
15.1. | {1,3,7}, 12,4}, (5,6}, {8}, {9)» {10} no K23
15.2. | {1,8,7}, {2,4}, {5,8}, {6}, {9}, {10} no Ks3
15.3. | {1,3,7}, {2.4}, {5,9}, {6}, {8}, {10} no K3
15.4. | {1,3,7}, {2,4}, {6,10}, {5}, {8}, {9} no K23
15.5. | {1,3,9}, {2.4}, {5,6}, {7}, {8}, {10} no Ka3
15.6. | {1,3,9}, {2,4}, {5,7}, {6}, {8}, {10} yes Gis.6 no/1
15.7. | {1,3,9}, {2,4}, {5,8}, {6}, {7}, {10} no Ka3
15.8. | {1,3,9}, {2,4}, {6,10}, {5}, {7}, {8} no Ko 3
15.9. | {1,3,10}, {2,4}, {5,6}, {7}, {8}, {9} no Ka3
15.10. | {1,3,10}, {2,4}, {5.7}, {6}, {8}, {9} no K3
15.11. | {1,3,10}, {2,4}, {5,9}. {6}, {7}, {8} no K23
15.12. | {1,3,10}, {2,4}, {6,7}, {5}, {8} {9} yes Gi5.12 yes/0
15.13. | {1,3,10}, {2,4}, {8,9}, {5}, {6}, {7} no K3
15.14. | {1,3,10}, {2,9}, {4,8}, {5}, {7}, {8} 1o Kag
15.15. | {1,3,10}, {2,9}, {4, 7}, {5}, {6}, {8} yes G15.15 yes/0
15.16. | {1,4,10}, {2,6}, {3,7}, {5}, {8}, {9} no Ka3
15.17. | {1,4,10}, {2,6}, {3,9}, {5}, {7}, {8} no Ky
15.18. | {1,4,10}, {2,8}, {3,6}, {5}, {7}, {9} no Ka3
15.19. | {1,4,10}, {2,9}, {3,6}, {5}, {7}, {8} yes Gi15.19 no/1

Table 14: Case 15. (3,2,2,1,1,1)

of them have a unit distance planar realization, first is rigid and the other
realizable in the plane with one degree of freedom. All other five graphs
that are not realizable, contain K33 as a subgraph.

case proper coloring realizable | graph [ rig./Dg
16.1. {1» 3, 7}1 {2!4}1 {5}: {6}1 {8}t {9}! {10} yes Gie.1 yes;O
16.2. {lr 3, 9}$ {2:4}t {5}v {6}) {7}! {8}' {10} no K2.3

163, | {1.3,9}, {2,10}, {4}, {5}, {6}, {7}, {8} | mo Kos

164, | {1.3.10}, (2,4}, {5}, {6}, {7}, (8}, {9} | o Kas

165, | {1.4.8}, (2,9}, (3}, {5}, (6}, {7}, {10} | yes | Gies | mo/1

16.6. | {1,4,10}, {2,6}, {3}, {5}, {7}, {8}, {9} no Ko 3

16.7. | {1,4,10}, {2,8}, {34 {5}, {6}, {7}, {9} no Ka,3

Table 15: Case 16. (3,2,1,1,1,1,1)

Case 17. (3,1,1,1,1,1,1,1) There are two distinct vertex colorings
of P, which, when applied to P, give rise to two non-isomorphic graphs.
First one has a unit distance planar realization, which is realizable with
one degree of freedom. The second one contains Ka3 as a subgraph, thus
it is not realizable in the plane. Note that the application of the Gruebler’s
equation for case 17.1 would yield Dg = 0, because of a redundant spoke.

Case 18. (2,2,2,2,2) Again, another case where there are two distinct
vertex colorings of P, which, when applied to P, give rise to two non-



case proper coloring realizable | graph | rig./Dg

1711 {1,3,7}, {2}, {4}, {5), (6}, {8}, {9}, {10} |  ves Giz1 | no/1 |
17.2. | {1,3,9}, {2}, {4}, {5}, {6}, {7}, {8}, {10} no Kaa

Table 16: Case 17. (3,1,1,1,1,1,1,1)

isomorphic graphs. Both contain K 3 as a subgraph and are not realizable
in the plane.

case proper coloring realizable | graph | rig./Dg
18.1. | {1,3}, {2,4}, {5,6}, {7,8}, {9,10} no K3
18.2. | {1,3}, {2,10}, {4,7}, {5,6}, {8,9} no Ka3

Table 17: Case 18. (2,2,2,2,2)

Case 19. (2,2,2,2,1,1) There are eleven distinct vertex colorings of P,
which, when applied to P, give rise to ten non-isomorphic graphs. Only one
among them is realizable in the plane with one degree of freedom. Other
nine contain K33 as a subgraph, thus they are not realizable in the plane.

case proper coloring realizable | graph | rig./Dg
19.1. [ {1,3}, {2,4}, {5,6}, {7,8}, {9}, {10} no Kz
192. | {13}, {2,4}, {5.6}. (8.9}, {7}, {10} | no Kos
19.3. | {1,3}, {2.4), {5,6}, {9, 10}, {7}, {8} no K2a
19.4. {1,3},{ }, {5 7} {s,10}, {8}, {9} no K23
195. | {1,3}, , {6,7}, {9}, {10} no Ka2s
196. | {1,3}, { }, {5 8}, {610}, {7}, {9} no K3
19.7. | {1,3}, { }» {6,7}, {8,9}, {5}, {10} no Ka3
19.8. | {1,3}, {24}, {6,7}, {9, 10}, {5}, {8} no Kas
199. | {1.3}, {2 9}, {4,6}, {5,7}, {8}, {10} no K23
19.10. | {1,3}, {2,9}, {4,6}, (5.8}, {7}, {10} | yes | Gio10 | mos1
19.1. | {1.3), {2.10}, {4,7}, (5,6}, (8}, {9} | 'mo Kos

Table 18: Case 19. (2,2,2,2,1,1)

Case 20. (2,2,2,1,1,1,1) There are twelve distinct vertex colorings of
P, which, when applied to P, give rise to twelve non-isomorphic graphs.
Only one among them is realizable in the plane with two degrees of freedom.
Ten of other eleven graphs, that are not realizable in the plane, contain K> 3
as a subgraph, and the other one contains K, as a subgraph.

The graph Ggp.11 has two degrees of freedom. It is not so obvious, but
a non-simplicial representation of Ggp,1; exists and can be seen in Figure 8.

Case 21. (2,2,1,1,1,1,1,1) There are five distinct vertex colorings of
P, which, when applied to P, give rise to five non-isomorphic graphs.



case proper coloring realizable | graph | rig./Dg
20.1. | {1,3}, {2,4}, {5,6}, {7}, {8} {9}, {10} no Ka3
20.2. | {1,3}, {2,4}, {5,7}, {6}, {8}, {9}, {10} no K23
20.3. | {1,3}, {2,4}, {6,7}, {5}, {8}, {9}, {10} no K3
20.4. | {1,3}, {2,4}, {6,10}, {6}, {7}, {8}, {9} no Ko 3
20.5. | {1,3}, {2,4}, {7, 8}, {5}1 {s}, {9}7 {10} no Ka,3
20.6. | {1,3}, {2,9}, {4,6}, {8}, {7}, {8}, {10} no K23
20.7. | {1,3}, {2,9}, {4,10}, {5}, {6}, {7}, {8} no Ka3
20.8. | {1,3}, {2,10}, {4,6}, {6}, {7}, {8}, {9} no Ka3
20.9. | {1,3}, {2,10}, {4,7}, {5}, {6}, {8}, {9} no K4
20.10. | {1,4}, {2,8}, {9,10}, {3}, {5}, {6}, {7} no Ka 3
20.11. | {1,4}, {2,9}, {3,6}, {5}, {7}, {8}, {10} yes G20.11 no/2
20.12. | {1,4}, {2,10}, {3,6}, {5}, {7}, {8}, {9} no K2,3

Table 19: Case 20. (2,2,2,1,1,1,1)

Figure 8: A heavily degenerate unit distance representation of the graph
Gg0.11, which is obtained from the Petersen graph.

In case 21.2, the graph G3;, which can be seen in Figure 3(a), is ob-
tained. As it was stated in Corollary 3.3, a planar unit distance realization
of G9; does not exist.

Only one among five non-isomorphic graphs is realizable in the plane
with one degree of freedom. Three out of four other graphs, that are not
realizable in the plane, contain K, 3 as a subgraph, and the fourth one is
the graph G2;. Note that the application of the Gruebler’s equation for
case 21.1 would yield d = 0, because of a redundant constraint (the lower
right link of the top most triangle in the representation of the graph Ga;.1
in Figure 10 is, following Lemma. 3.4, redundant).

Case 22. (2,1,1,1,1,1,1,1,1) There is only one vertex coloring of P,
which, when applied to P, gives rise to the graph G2z, which can be seen
in Figure 4(c). As it was stated in Corollary 3.5, a planar unit distance
realization of G332 does not exist.

The unit distance planar realization of the graph G3, with one degree
of freedom (the angle ¢, that is labeled in Figure 5) exists and can be seen
in Figure 4(b).



case proper coloring realizable | graph | rig./Dg
21.1. | {1,3}, {2,4}, {5}, {6}, {W}v {9}, {10} yes Ga1a no/1

21.2. | {1,3}, {2,9}, {4}, {5}, {6}, {7}, {8}, {10} no Ga1
21.3. | {1,3}, {9,10}, {2}, {4}, {5}, {6}, {7}, {8} no K23
2L4. | {1,4}, {2,8}, {3}, {5}, {6}, {7}, {9}, {10} no Ka3

21.5. | {1,4}, {2,9}, {3}, {5}, {6}, {7}, {8}, {10} no K23

Table 20: Case 21. (2,2,1,1,1,1,1,1)

case proper coloring real. | graph | rig./Dg
22.1. {1t3}n7.2-}» 14}, {5}, {6}, {7}, {8}, {9}, {10} no G2

Table 21: Case 22. (2,1,1,1,1,1,1,1,1)

Case 23. (1,1,1,1,1,1,1,1,1,1) Every vertex is colored with different
color, thus, the graph morphism is the identity. One of the most sym-
metrical unit distance realizations of the Petersen graph can be seen in
Figure 6(b).

The regular pentagon 12345 in Figure 6 has two degrees of freedom,
£234 and £ 345. There are at most two representations of vertex 1. An-
other parameter, the angle Z516, determines the representation of vertex
6. There are at most two possible representations of vertex 9, determined
by the pair of vertices {4,6}. Similarly, there are at most two possible rep-
resentations of vertices 7, 10, 8, determined by the pairs of vertices {2,9}
and {5,7} and {3,10}, respectively. The graph G3; := rank — {6,8} is
flexible with 3 degrees of freedom. The constraint that is determined by
the unit length of the edge {6,8} fixes one degree of freedom. Thus, the
Petersen graph has a unit distance planar realization, that is flexible with
2 degrees of freedom.

case proper coloring real. | graph | rig./Dg
23.1. | {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10} | yes | Gz3a | no/2

Table 22: Case 23. (1,1,1,1,1,1,1,1,1,1)

Hence, there are 23 (degenerate) unit distance representations of the
Petersen graph, if the numbers of identified vertices are taken into account.
Graphs G4.; and Gy, are obtained from integer partitions {4, 3,2,1}, {3,3,
3,1}, {3,3,2,2} and {4,2,2,1,1}, {3,3,2,1,1}, {3,2,2,2,1}, respectively.
If we distinguish the representations by the images of the vertices, then the
underlaying graph G4.; occurs in three cases, which can be seen in Figure 9.

Each of other seventeen unit distance representations is defined by the
integer partition that raises it. Thus, there are exactly eighteen different
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Figure 9: Three different degenerate unit distance planar representations
of the Petersen graph, regarded to representations of the vertices.

degenerate, and one non-degenerate unit distance drawings of the Petersen
graph, see Figure 10. Thirteen unit distance representations are flexible,
three with Dg = 2.

5 Relationships among the representations of
the Petersen graph

When we consider the epimorphic images of the Petersen graph, they form a
ranked poset (rank being the number of vertices) in which the cover relation
corresponds to elementary vertex identification (when we identify two non-
adjacent vertices).

Identifying two non-adjacent vertices of the Petersen graph Gg31 with
rank 10 does not provide a unit distance graph, since the only possibility
would be the graph G with rank 9, which is not a unit distance graph.
Thus at least two steps of identifying non-adjacent vertices are necessary
to obtain a unit distance realization from Ga3 1, either Ga.1 or G17.1. Sim-
ilarly, the graph Gao.11 with rank 7 is obtained from Gaa.1 (with rank 10).
Hence, the interesting question arises: For a given unit distance representa-
tion, which unit distance representations are obtained in one or more steps,
if only vertex identification is allowed? The answer for the Petersen graph
can be seen in Figure 11(b), which is drawn in such a way, that all arcs
point downward eliminating arrowheads. Note, that the poset of the iso-
morphism classes of epimorphic images of the Petersen graph restricted to
the cases that are realizable as unit distance graphs, is not a ranked poset,
since the unit distance representation Gs.; can be obtained from the unit
distance realization Go3.1 in two distinct ways, one following a path that
goes through the unit distance representation Gg; or the other, following a
path that visits three graphs that do not have unit distance representations.
Both restricted paths can be seen in Figure 11(a).
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Figure 10: All distinct (degenerate) planar unit distance representations of
the Petersen graph P.
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Figure 11: (a) Two distinct paths between the unit distance realization
Gs3.1 and the unit distance representation Gs 1, one contains only graphs
without unit distance representation, where the other one visits the unit dis-
tance representation Go,;. (b) Hasse diagram of the poset of the Petersen
graph restricted to the cases that are realizable as unit distance graphs.

We can formulate several interesting problems: Given a graph G, what
are all possible unit distance representations of G (including degenerate
and highly degenerate ones) and what are their symmetries? What are
all possible unit distance realizations of G? Find all subgraphs that are
not unit distance embedable in R2. More generalized problem states: For
an arbitrary graph G find a non-singular representation in R? minimizing
the number of vertex orbits or edge orbits. Another interesting problem
is to find an algorithm that embeds a graph with unit distances into the
Euclidean plane (space) or answers that a graph can not be embedded with
unit distances into given space.

6 Conclusions

In the paper we found all degenerated unit distance representations of the
Petersen graph and for each observed its rigidity / flexibility. We con-
sidered labeled epimorphic images that are unit distance realizable in the
Euclidean plane. We observed the unit distance drawings of the Petersen
graph regardless to representations of the vertices. We presented a heavily
degenerated unit distance representation of the Petersen graph. We pre-
sented the interesting portion of the poset of the isomorphism classes of
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unit distance planar representations of the Petersen graph.
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