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Abstract: In [12] Quackenbush has expected that there should be subdirectly
irreducible Steiner quasigroups (squags), whose proper homomorphic images
are entropic (medial). The smallest interesting cardinality for such squags is
21. Using the tripling construction given in [1] we construct all possible
nonsimple subdirectly irreducible squags of cardinality 21 (SQ(21)s).
Consequently, we may say that there are 4 distinct classes of nonsimple
SQ(21)s, based on the number n of sub-SQ(9)s for n=0, 1, 3, 7. The squags of
the first three classes for n = 0, 1, 3 are nonsimple subdirectly irreducible
having exactly one proper homomorphic image isomorphic to the entropic
SQ(3) (equivalently, having 3 disjoined sub-SQ(7)s). For n =1, each squag
SQ(21) of this class has 3 disjoint sub-SQ(7)s and 7 sub-SQ(9)s, we will see
that this squag is isomorphic to the direct product SQ(7) x SQ(3). For n=0,
each squag SQ(21) of this class is a nonsimple subdirectly irreducible having
three disjoint sub-SQ(7)s and no sub-SQ(9)s. In section 5, we describe an
example for each of these classes Finally, we review all well-known classes of
simple SQ(21)s.
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1. Introduction

A Steiner quasigroup (briefly squag) is a groupoid @ = (Q; *) satisfying the
identities:
x*x=Xx , Xx*y=y*x , x*(x*y)=y.
A Steiner loop (briefly sloop) is a groupoid L = (L; - , 1 ) with neutral element 1
satisfying the identities:
xx=1 , x-y=y-x , x-(x-y)=y.
Notice that both squags and sloops are quasigroups [6, 8].
We use the abbreviations SL(n) and SQ(r) for a sloop and a squag of
cardinality n, respectively. Squags satisfying the entropic (medial) law :
(x*y)*x(z*w) =(x*2)*(*w)

will be called entropic (medial) squags. There is a one to one correspondence
between squags (sloops) and Steiner triple systems [6, 7, 8, 12].
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A Steiner triple system is a pair (P; 7), where P is a set of points and T is a
set of 3-element subsets of P called blocks such that for each two distinct points
P1, p2 € P, there is a unique block b € T with {p,, p,} c b. If the cardinality of
the set of points P is equal to n, the Steiner triple system (P; T) will be denoted
by STS(n). It is well-known that a necessary and sufficient condition for the
existence of an STS(n)is n= 1or3 (mod6)[8, 11, 12].

In [12] Quackenbush proved that the congruences of squags are permutable,
regular, and Lagrangian. A subsquag § of a squag @ is called normal iff S is a
congruence class of a congruence relation on @. In [12] Quackenbush proved
also that if S, and S are two disjoint subsquags of @ and |Q| = 3|S,| = 3|S,|, then
the three subsquags S, S and §; := @ - (S, U $;) form the congruence classes
of a congruence on Q.

An STS is planar if it is generated by every triangle (a three distinct points
are called a triangle if they do not form a block) and contains a triangle. A
planer STS(») exists for each n 2 7 and #n = 1 or 3 (mod 6) [7]. The squag and
sloop associated with a planar triple system are also called planar. In [12]
Quackenbush has shown as in the next theorem that the only non-simple finite
planar squag has 9 elements.

Theorem 1 [12). Let (P; T) be a planar STS(n) and let Q = (P; *)Yand L=(L=
Py {1}; -, 1) be the corresponding squag and sloop respectively. Then either Q
is simple or n=9 and also L is simple or n=1.

Accordingly, we may say that there is always a simple SQ(n) and SL(n+1)
forall n>9 and n=1, or 3 (mod 6). Also, all semi-planar squags and semi-
planar sloops are simple.

A semi-planar squag (sloop) is a simple squag (sloop) each of whose
triangles generates either the whole squag (sloop) or a sub-SQ(9) (a sub-SL(8))
" cf. [2, 12]". The author [4, 2] has given a construction of semi-planar squags
(sloops) of cardinality 3 n (2n +2) for each possible n> 3.

An extensive study of squags can be found in [6, 8, 12]. In this article, we
will use some basic concepts of universal algebra [9] and some other concepts of

graph theory [10].

We return our attention to squags. It is well-known that all squags of the
classes SQ(n)s for n = 3, 7, 13, 15 and 19 are simple and SQ(9) is the direct
power SQ(3)>. The next admissible order for squags are of cardinality 21
(SQ(21)s). Notice that the SL(22)s associated with SQ(21)s (or STS(21)s) are
always simple. Using computer programs in [11] the authors proved that there
are more than 2000000 STS(21)s consisting of 3 disjoint sub-STS(7)s (so this
class is called Wilson-type STS(21)).
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In general, we divide the class of all SQ(21)s (STS(21)s) into two essentially
classes, nonsimple SQ(21)s and simple SQ(21)s. Other than the direct product
SQ(7) x SQ(3), there are two classes of nonsimple SQ(21)s, one of them has a
proper congruence with congruence class of cardinality 7 (3 disjoint sub-
SQ(7)s) and the another has a proper congruence with congruence class of
cardinality 3 (7 sub-SQ(9)s). Based on the number of sub-SQ(9)s we divide the
class of all nonsimple SQ(21)s with 3 disjoint sub-SQ(7)s in to 4 classes. Each
of these classes has exactly three disjoint sub-SQ(7)s and »n sub-SQ(9)s (for n =
0, 1, 3, 7) This classification supplies us with the following classes:

Nonsimple SQ(21)s:

1. For n=17, we have an SQ(21) containing three disjoint sub-SQ(7)s and 7 sub-
SQ(9)s, we will show that this squag is isomorphic to the direct product
SQ(7) x SQ(3).

2. For n=0, 1, or 3 the SQ(21) contains three disjoint sub-SQ(7)s and n sub-

SQ(9)s.
In [12] Quackenbush has expected that there should be nonsimple subdirectly
irreducible squags, all of whose proper homomorphic images are entropic
(medial) squags. Indeed, all SQ(21)s of these three classes (for n =0, 1, 3) are
nonsimple subdirectly irreducible each of whose proper homomorphic image
is isomorphic to the entropic SQ(3).

3. For n=0, we get SQ(21)s have three disjoint sub-SQ(7)s and no sub-SQ(9)s,
so all SQ(21)s of this class are nonsimple subdirectly irreducible. Indeed,
SL(22)s associated with such SQ(21)s supply us with examples for semi-
planar SL(22)s. Of course, this class of semi-planar SL(22)s are not planar
and have exactly three sub-SL(8)s, but no sub-SL(10)s. It will be convenient
to note at this point that the two smallest well known cardinalities of non-
planar semi-planar sloops are 20 and 28 " cf. [2]".

4. Ifan SQ(21) has 7 sub-SQ(9)s and at most one sub-SQ(7), we will show that
SQ(21) is nonsimple subdirectly irreducible having only one homomorphic
image isomorphic to the SQ(7).

In [1] a tripling construction for Steiner quasigroups (squags) of cardinality 3n
was given for all n>4 and n=1 or 3 (mod 6). By applying this construction,
we may give in section 5 an example for each class of the nonsimple SQ(21)s
with 3 disjoint sub-SQ(7)s.

Simple SQ(21)s:

Finally, we review all well known constructions of simple SQ(21)s. By
applying these constructions given in {3, 4, 5, 7] we get simple SQ(21)s having:
Neither sub-SQ(7)s nor sub-SQ(9)s.
2. 3 sub-SQ(9)s but no sub-SQ(7)s.
3. One sub-SQ(9) and no sub-SQ(7)s.
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4, One sub-SQ(7) and 3 sub-SQ(9)s.
5. One sub-SQ(7) and one sub-SQ(9).
6. One sub-SQ(7) and no sub-SQ(9)s.

2. Some properties of subsquags of SQ(3n)s

Consider the 3-element squag J; = ({0, 1, 2} ; ®) withx ® y =2 x + 2 (mod 3),
Wwhere * + “ is the binary operation of the 3-element group Z. Indeed, the triple
system STS(3n) associated with the direct product squag SQ(n) x J; contains
always three sub-STS(n)s, since a squag is idempotent.

In this section, we will show that if an SQ(3n) (STS(3n)) has three disjoint
planar sub-SQ(n)s (sub-STS(n)s), then these three subsquags (subsystems) are
the only subsquags (subsystems) of cardinality n. Moreover, any other subsquag
(subsystem) of SQ(3n) (STS(3n)) is of cardinality 9. These properties can be
generalized in the following two lemmas.

Lemma 2. Let Q be a squag of cardinality 3n and Q has a congruence 0 with
0/6 = {A,, Ay, A3}. Then any subsquag B with B & A; for i = 1,2 or 3 must
satisfies: | B4, [=1Bn4, l=|BnA3 [

Proof. If B N 4, = O, then there is an element a € B N 4, otherwise B c 4;
contradicting that B z 4, fori=1,2 or 3. Buta e BN 4, implies that a * (B N
A3) € BN A;, which contradicts the assumption that B N 4, = &. Therefore, B
N A4;# D for each i . Choosing an element a, € B A4, thena; * (BN 4,) c B
M As. Consider the map S,I(x) = a, * x from the set (B N A4,) to the set BN A4,

so the map 3, is bijective. Hence we may directly say that| B 4,|=| B 451,
Similarly, one can show that| B~ 4, |=| B~ 4, |. This completes the proof. O

The following lemma shows that an SQ(3n) with three simple planar
disjoint sub-SQ(~n) has no more sub-SQ(#n)s.

Lemma 3. Let Q be a squag of cardinality 3n and Q has a congruence 6 with Q
10 = {4y, Ay, As}, in which A; for i = 1, 2 and 3 are three simple planar
subsquags. Then any other nontrivial subsquags of Q must be of cardinality 9
Jor all possible number n>3 andn = 1 or 3 (mod 6).

Proof. Let @ = (P; *) be a squag SQ(3n) and let Q/A; = {4, A3, A3}, in which 4,
are simple planar squags for i = 1, 2 and 3. Suppose Q contains another normal
subsquag B, then if B c 4, for some j, B is a normal subsquag of 4. Thus |B| =
1, or B = 4, Assume B D 4, for some i, hence B is not a normal subsquag of Q,
where the maximal normal subsquag of Q is of cardinality n. According to
Lemma 2, thus B must intersects 4, for each i, and also [B N 4| = |[B " 4,| = |B
NAs|=1,s0|B|=3.

420



On the other hand, if B is a subsquag satisfying A, c B c @, then A4, is normal
in B, which means that B/A; is a squag of cardinality 1 or 3. This means that B =
A, or B=Q.If B is a proper subsquag of 4, then |B| = 1, or 3. According to
Lemma 2, any proper subsquag B with |B| > 3 must intersects 4; for each i. and
also [B N 4] = |B N 43| = [B N 4] = 1 or 3. This means that [B| = 3 or 9.
Therefore, the only possible nontrivial subsquag B of @ is of cardinality 9. This
completes the proof of the lemma. o

Notice that the smallest value n verifying the above Lemma is n = 7.
Moreover, if only one of the subsquags A4, , 4, or 43 is simple planar and B & 4;
for i = 1, 2 and 3, then we get the same result that |B N 4| = [B N 4| = |B N 43
= 1 or 3. This means also that the only possible nontrivial subsquag B of Q is of
cardinality 9. The parallel result of lemma 3 for STS is given as follows:

Corollary 4. Let T be an STS(3n) having three disjoint sub-STS(n) Ty, T and
T; one of them planar, then there is no more subsystems of cardinality n.
Moreover, any other subsystem B z T, for i = 1,2 and 3 of the triple system T is
of cardinality 9.

In the following two lemmas we study the relations between the sub-SQ(9)s
contained in an SQ(21).

Lemma 5. Let Q = (P, *) be an SQ(21), and A be a sub-SQ(9) (or a sub-SQ(7))
and B be a sub-SQ(9), then A and B intersects in a sub-SQ(3). Moreover, if A is
a sub-SQ(9), then there is always a third sub-SQ(9) passing through A N B.

Proof. Assume that A " B= {x} or @. Fora € A— {x} we have a* BNB=J
anda*BNA={a*x}orD,otherwiseifa*b=5bora*b=a"#a*x, then
a=b*b"ora*a" = b contradicting that 4 and B are subsquags. Moreover, la
* B|=| B, which implies that Q contains at least,| BUA|=9+9-1(or9+7-
1)and |la*B-(Bu4d) | =9 - 1 elements contradicting that @ is of cardinality
21. Therefore, the intersection of a sub-SQ(7) and a sub-SQ(9) or of two sub-
SQ(9)s is always a sub-SQ(3).

Letd = {xsy, 2,41, Ay, --- a6} = {x»}', Z} V4, B= {x:yx 2, bl, b25 cee s b6} = {x’
y,2z} U B,and C, = {cy, ¢, ... , ¢6} = P — (4 U B). We want to prove that C,
generates a sub-SQ(9) passing through {x, y, z}. Now, we have b;* 4, = C, for i
=1, ..., 6 (or equivalently B, * 4, = Cy), otherwise if b, * a; = ay, then g; * a, =
b, contradicting that 4 is a subsquag and B N 4 = {x, y, z}. We get the same
contradiction if we assume that b; * = b;. So we have 4, * C, = B,. To show
that C = {x, y, z} U C, forms a sub-SQ(9), we have w * ¢; € C, for each w €
{x, y, z} and ¢; € C,. Otherwise, if w * ¢;=a; for w e {x,y,z} ,thenw * q; =
¢; € A contradicting that A4 is subsquag. Also ¢, * ¢; € C, otherwise if ¢; * ¢; = a,
then ¢; * @; = ¢; contradicting that 4, * C, = B,. We get the same contradiction if
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we assume that w * ¢, = b;. Therefore, the subset C = {x, y, z} U C, forms a sub-
SQ(9) passing through the intersection B 4 = {x, y, z}. 0

According to this Lemma, if a squag SQ(21) contains more than one sub-
SQ(9), then it must contain at least three sub-SQ(9)s. Also, each three sub-
SQ(9)s are passing through a common sub-SQ(3).

The next lemma shows that if a squag SQ(21) contains more than three sub-
SQ(9)s, then it must contains exactly 7 sub-SQ(9)s.

Lemma 6. Let A, B, and C be three sub-SQ(9)s of an SQ(21) = Q passing

through the sub-SQ(3) = {x, y, z}. Then each other sub-SQ(9) intersects each of
A, B and C in a block (sub-SQ(3)) parallel (not intersect) to {x, y, z}. Moreover,

any SQ(21) contains at most 7 sub-SQ(9)s.

Proof. Consider as in the above lemma 4 = {x,y,z, a), a;, ... , as} = {x,,z} U
Al’ B= {X,y, 2, bl! bz, ser sy b6} = {x’y’ Z} UBIs C= {xsy; Z} v {cls €2 -.0 s cﬁ} =
{x.y.z} UCiand Q= {x,y,2} U4, UB, U C,. Assume that D be a sub-SQ(9)
and DN A4 = {x, a, a;} ; i. e, D N A is not parallel to {x, y, z}. So D - {x, a, a;}
CBUC-4,butBUC-A=B,UC= {b1, by, ... b} L {c1, 3y ... , C6}. SO D
- {x, a;, a;} is a 6-clement subset ¢ B, U C, , then each of D - {x, a; a} N B,
and D - {x, a;, a}} N C, is a 3-element subset. These two 3-element subsets form
two blocks lying in each of B, and C,, respectively. Otherwise, D=Bor D =C.
This implies that each of D N B and D N C contains more than three elements,
which is impossible. Therefore, D N 4 = {a;, a;, a} and {a, a,atN{x,yz} =
@. In general, we may say that D intersects each of 4 , B and C in three parallel
blocks (sub-SQ(3)) to {x, y, z}.

Accordingly, if an SQ(21) has more than three sub-SQ(9)s {4, B, C}, then the
fourth sub-SQ(9) D intersects A, B and C in three parallel distinct blocks (sub-
SQ(3)s) D " A, D n B and D n C. These blocks are different from the
intersection block 4 N B N C. Again, according to Lemma 5 there are three
times three sub-SQ(9)s {4, D, D,}, {B, D, Dg} and {C, D, D¢}, each passing
through a blocks (sub-SQ(3)s) P N 4, D N B and D N C, respectively.
Therefore, this SQ(21) contains 7 sub-SQ(9)s 4, B, C, D, D,, D and D . Also,
there are 7 parallel sub-SQ(3)s ANBNC,ANDNDyBADNDs, CAD
NDc,ANDzN D¢, BN Dy De and C N Dy Dy, and three sub-SQ(9)s are
passing through each of them. If we assume that an SQ(21) contains more than 7
sub-SQ(9)s; i. e., assume that E is another sub-SQ(9), then E must intersect
each sub-SQ(9) of the 7 sub-SQ(9)s in an sub-SQ(3). This needs more than
three parallel sub-SQ(3)s in the sub-SQ(9), which is impossible. 0O

Notice that the direct product SQ(7) x SQ(3) has exactly 7 sub-SQ(9)s.
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Clearly, we know that if an SQ(21) has a congruence 6 with a homomorphic
image = the SQ(7), then the SQ(21) has 7 sub-SQ(9)s. In the next theorem we
will show that the inverse is also true.

Theorem 7. Let Q be an SQ(21) having 7 sub-SQ(9)s. Then it has a
congruence with a congruence class of cardinality 3.

Proof. According to the proof of Lemma 6, we may consider the 7 sub-SQ(9)s
A, B,C, D, D,, Dy and D¢ in which each 3 sub-SQ(9)s of the 7 sub-SQ(9)s
intersect in a sub-SQ(3). These sub-SQ(3)s supplies us with a 7 sub-SQ(3)s
forming a partition of the SQ(21). The 7 sub-SQ(3)s are:

S =A4 NBNC, S$=AnDnD, S;=BNDn Dpg, ,83=CnNnDnN Dg,
Ss=AnNnDgn D, ,S5=B("\DA('\DC 8= CNnDN Dp.

Moreover, each sub-SQ(9) consists of 3 of these sub-SQ(3)s and each two sub-
SQ(3)s of them S; and ; ly exactly in one sub-SQ(9) whose elements are §; U S;
U S} Le., each two S; and §; sub-SQ(3)s there is a sub-SQ(9) and a sub-SQ(3)
S, satisfying that sub-SQ(9) = S, L §; U S;.

Now, the set of 7 sub-SQ(3)s forms an equivalent relation on Q. Let (xy, x2) €
S2and (v, y2) € S7. Then there is a sub-SQ(9) = S, U S; U S; satisfying that
(61 Y1, X2 y2) € SZ. This implies directly that 7 sub-SQ(3)s forms a congruence
relation on Q. 0

In the following section we will study some properties of subsquags of the
tripling construction given in [1] .

3. Construction of SQ(3n) = [Q), 0>, Os; F(Q), @), o] [1]

In [1] the authors have given a tripling construction of finite squags denoted by
[, O, Os; F(Qy, Q,), o] of cardinality 3n for all n= 1 or 3 (mod 6 ), where
0, 0; and Qs are any three disjoint SQ(»)s and o any permutation on the n-
element set. We will review this construction in the following. For this propose,
we need to review briefly some concepts from graph theory [10].

A complete bipartite graph K, . is a simple graph, whose set of vertices
V(K,, ) can be partitioned into two disjoint sets 4 and B such that |4|=n &
| B | = m and the set of edges E(K, ») is exactly the set of all edges connecting
each vertex of A to each vertex of B. A spanning subgraph F of a graph G is
called a 1-factor of G, if degr v = 1; for all v € V(G ). If a graph G is the union
of a set of disjoint 1-factors {F\, F5, ... , F,,}, then the set F = {F\, F,, ... , F} is
called a 1-factorization of G and G itself is called 1-factorable. In fact, every
regular bipartite K,, ,is 1-factorable [10].

Let @, for i =1, 2, 3 be any three disjoint squags (P; *) of the same
cardinality » and let (P;, T}) be the corresponding disjoint STS(n)s for i = 1, 2, 3;
i.e, P, P;=0, fori=j. LetK, ,be the complete bipartite graph with a set of
vertices V(K,, ,) = Piu P;and F = {F\, F, ... , F,} be a 1-factorization of K,, .
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By taking any permutation « on {1, 2, ... , n}, then o can be considered as a
bijective map from {1,2,...,n} onto P3by o : i —> coq.

Consider the following set of triples given by:
Tiy={{x,y,a()}: xye F;, & F,e F}.

For P := PyUP, UP; and T := Ty U T, U T3 U T3, then the system (P; 7) is an
STS(3n) [1]. We note that F may be any 1-factorization on P, P, and that a
may be any permutation on {1, 2, ..., n}. This construction of an STS (3n) = (P;
T) will be denoted by:

[((Py; TV) U (P3; T2)) L (Ps; T3); F(Py, P2), o).

Also the corresponding squag (P; *) denoted by:
[((P1; *1) W (Py; *2)) V (P3; *3); F(Py, Pa), ],

where the binary operation ” * " on P is defined by :
X%y ifx,yeP; fori =1,2,3

x*y: [+10)] if xePi&yeP,&xyeF;
z ifxePi&yePs &XZGFQ'I(V)
z if xeP3 &yePz&yzan-l(y).

In addition the binary operation “ * * satisfies the identitiesx * x =xandx * y =
y *x (cf. [1]).
3. 1 Construction 3 ®, 0,

By choosing SQ(n) = Q; = (Py; *1) = (P3; *») = (P3; *;) we will denote the
construction [((Py; *1) U (Py; *2)) U (P5; *3 ), F(Py, P,), o] by 3 ®, Q,. Based
on the number of subsquags of an SQ(21) and using the construction 3 ®, 0, ,
we will construct in the next section all classes of nonsimple subdirectly
irreducible SQ(21)s in which all of whose proper homomorphic images are
entropic (medial).

Let Po={1,2,3,4,5,6,7} and T, := (Py; Tp) be an STS(7). Let P, = {a,,
.y a7}, P, ={b1, ey b7} and P ={C|, .o s C7} such that PPNP,NPy= <.
Consider three isomorphic STS(7)s T; = (P, ; T;) to T for i = 1, 2, 3 by meaning
{i?j’ k}e T0 < { a;, aj, ak}ETl A {bi’ bj, bk} ETZ < {cb S Ck}eTs- AISO, let Qi
= (P; *; ) be the corresponding squags of T; = (P;; T;) for i = 1, 2, 3. Consider
the set of 1-factors defined by F;={aby: at * ax=a;, a;, a;, ax € Py and b, b,
by € P,}, then the class F = {F,, F,, ... , F;} forms a 1-factorization of the
complete bipartite graph K,, , on the sets of vertices P, U P, . The constructed
STS(21) = (P ; T) and the associated squag SQ(21) = (P; * ) will be denoted by
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3®, T, and 3 ®, Q,, respectively. We take here P= P, U P, U P;, the set of
triples T=TYV L, U U Tinand T3 =  {{a;, b; ca} : 4 by € Fi}.

If we choose the permutation o equal to the identity map on the set {1, 2, ..., 7},
then the constructed squag @ = 3 ®, 0, is isomorphic to the direct product of
SQ(7) = 0, and the 3-element squag SQ(3).

Let 3 ®, Q) = (P = P, U P, U P3; *) be the squag associated with the STS(21)
= 3 ®, T;. Notice that the squag 3 ®, @; = (P; * ) contains the disjoint normal
subsquags @, = (Py; *1 ), @2 = (P; *2) and @3 = (Ps; *3).

For each block {i, j, k} € T, there is a sub-1-factorization f ={f; = {a; b;, g;
bi, ay b} € Fi, f; = {a; b, a; by, @ b} S F, fi = {ax by, @ by, a; bi} < Fiij of F.
Conversely, if there is a sub-1-factorization of K3 ; on the two 3-¢lement subsets
{a, a, ai} < Pyand {b;, by, by} < Py, then {i,j, k} is ablock € T.

In the next lemma we show that these sub-1-factorizations of Kj ; are the
only sub-l-factorizations of F. This means that there is a one-one
correspondence between the set of blocks of Tj and the sub-1-factorizations of
K, ; in F.

Lemma 8. The 1-factorization F of the complete bipartite graph Ks, 7 on the set
Py U P, has exactly T sub-1-factorizations of K s.

Proof. Let f be a sub-1-factorization on K, , of F. Then the order r of the
complete bipartite graph K, , is less than or equal 7/2, hence r = 3 is the only
interesting nontrivial case. Indeed, there is always a sub-1-factorization on the

two blocks {a;, a;, ax} €T, and {b,, by, by} €T that is the sub-1-factorization:
f={i=laib, a; by, a bc Fifi={a b, a; by, ay b} F},ﬁ: ={ay b, a; b, a; bi} € Fi}.

Now, we want to prove that these are all sub-1-factorizations of F. Assume that

there is another sub-1-factorization on the two blocks {a;, a;, a;} €T\ and {b;, by,

beye T If i=1i',then a; b, € F;, hence fi = {a; b; , a; b, ax b} < Fi is the unique

sub-1-factor in F; containing {ai, a;, @}, therefore j = j* and k = k. The same

result if we begin with j = j or &£ = k". Notice that if @, b and g; b; are two edges

with i # j* and i # j in one factor Fy, then {h, i,j'} and {h, i, j} are two blocks in

Ty, hencej' =jand h=k= k. This means that {i", ", k'} = {i,j, k} if i=1".

Now, assume that there is a sub-1-factorization on the two blocks {a, ai}eT
and {b;, b;, by} €T with {i, j, k} N {7, j", K’} = O, then there is a sub-1-factor f=
{a by, a; by, a, b}y c Fywithhe{i, ), k i,j, k}. Otherwise, a, by, is an edge in
contradicting that {i, j, k} N {i",j', &'} = @. This means that F}, = {an by, a; by, q;
by, ay b, ay b, a5 b;, ay be}. Also, we may assume that there is another sub-1-
factor 1~ = {a; by, a; bg, a by} < Fyr With B ¢{ i, j, ki, j,kyand h=h

contradicting that {i, j, k, i', j', k', h, #"} must be 7-element set. Since the number
of blocks of T, is 7, the 1-factorizations F on the set P, U P, has exactly 7 sub-1-
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facorizations. So each two blocks {a;, a, a} €T and {b, by, b} eT; for each {i, j,
k} €T, there is a sub-1-facorization f= {f; c F, fC F, fic Fi} of K35. D

Accordingly, we may easily verify the following lemma.

Lemma 9. Let C; ={a;, aj, &} and C; ={b;, b;, b;} be two subsquags of Q, and
Q,, respectively. Also, let «, be equal to o restricted to the line {i, j, k}. Then 3

® Ci=(CiuvCuUCCs; * ), where Cs = {Cu(y, Cagj)s Cay}, is a subsquag of 3
®¢ 0., if and only if {a(i), a(), a(k)} is a line in T, .

Proof. Since C, ={aj, a;, a;} and C; ={b;, b;, b} are two subsquags of @, and @,
respectively. Then there is a sub-1-factorization f= {f,c F,, f, € F}, fy < Fi} on C,
v 2.

Let3 ®,, € = (C; v G U Cj; * ) be a subsquag of 3 ®,0;. According to the
definition of 3 841 Cy, then fj related to cq, / related to ¢,y and f; related to Calh)
so the set C; = {cy(y), Ca(y, Cary} Must be a block in T3, hence {a(i), a(f), a(k)} is a
line in 7

On the other direction, if {o(i), a(), c(k)} is a line in Tp, then C; = {Catr Cagis
Cay} is a block in T5. The sub-1-factorization f= { f;={a; b, a; by, as b} = F, fj=
{a; b, a; by, ax bi} C F;, fi = {ax by, a, by, a; bi} < Fi} forms with the block C; =
{Cay Cags Ca} the subsquag3 @y, C;=(C;V ;U Cy*). O

The next lemma shows that the converse of the above lemma is also true.

Lemma 10. Let S be a sub-SQ(9) of 3 ®,0:, then there is a sub-1-factorization
of F on two sub-SQ(3)s C, = {a;, a, a;} €T, and C, = {b, b, bi}eT; and a sub-
SQ(3) G = {Ca(,'), Ca(s) Ca(k)}ET 2 sansfjung §=3Q, C] (Cru Cyu Gy *)

such that{o(i), a(j), a(k)} is a line of Ty. Here 0, is equal to the permutation a
restricted to the line {i, j, k} and the binary operation" * " is the same binary
operation of 3 ®,0,.

Proof . According to Lemma 2, we may say that S " L, = C, ={a,, a, ax}, SN L,
=Cy ={by, b, by} and SN L3 = C; ={cy, ¢;, ¢} are three sub-SQ(3)s. Also, there
is a sub-1-factorization f = {fj={a, b, a; by, ar b} c F, fi={a b, a; by, a b}
F, fi={ay by, a; by, a; b} < Fi} on Cy U C,; forms with the block C; = ={c;, s
cr} a sub-SQ(9). According to the construction 3 ®, @, we have: f; related with
Ca), Jfj related with ¢,y and f; related with cauy, s0 i =a(d), /' =a(j) and £ =a(k).
Since § is a sub-SQ(9), then {i, j, k}and {a(i), a(j), a(k)} are lines in T,
According to the definition of the set of blocks T),; and by using the sub-1-
factorization £, then the subsquag § can be represented by the construction § = 3
®a1 C, =(C; v C; L Cj; *). The proof is complete. ]
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This means that the only possible sub-SQ(9)s of the squag 3 ®, 0, are
determined by the set of elements S = {a;, a;, a, by, by, by, €, Cagp)r Cay} SUCH
that {i, j, &} and {o(é), a(f), a(k)} e T, and the intersection Q; N S is always a
sub-SQ(3) for i=1,2 and 3.

In the following section we will construct all possible subdirectly irreducible
squags of cardinality 21 each of whose proper homomorphic images are
entropic.

4. Subdirectly irreducible squags SQ(21)s with all possible subsquags

The STS(21) associated with the squag SQ(7) x SQ(3) has exactly three sub-
STS(7) and 7 sub-STS(9)s. On the other hand, the planar STS(21) has no
nontrivial subsystems. Any squag of cardinality 21 has at most three disjoint
subsquags of cardinality 7 and n subsquags of cardinality 9 (» =0, 1, 3,7).Forn
= 7, we will show that, if an SQ(21) contains three disjoint sub-SQ(7)s and 7
sub-SQ(9)s, then this squag is isomorphic to the direct product SQ(7) x SQQ).

A nonsimple subdirectly irreducible SQ(21) has exactly one proper
congruence. Except for the subdirectly irreducible SQ(21)s having a normal
sub-SQ(3) all the other nonsimple subdirectly irreducible SQ(21)s have exactly
three disjoint normal sub-SQ(7)s (equivalently, exactly one proper congruence)
and n sub-SQ(9)s for n = 0, 1, 3. The proper homomorphic images of these
SQ(21)s are entropic (more precisely = SQ(3)). This means that these SQ(21)s
satisfy the expectation of Quackenbush given in [12]. Example for each case
will be given in section 5.

Theorem 11. The constructed sloop 3 ®, @y = (P = Py U P, U P3; * ) is
isomorphic to the direct product of the subsquag SQ(7) = @, and the 3-element
squag SQ(3) if and only if 3 ®, Q) has 7 sub-SQ(9)s, otherwise 3 ®, O, is
nonsimple subdirectly irreducible. Moreover, the constructed sloop 3 ®, 0, has
exactly n subsquags of cardinality 9 if and only if the permutation @ transfers n
lines into n lines of Ty for n =0, 1, 3, 7, where To is the set of lines of the
projective plane over GF(2).

Proof. Let 3 ®, O, have 7 sub-SQ(9)s, according to Lemmas 8 and 9 each sub-
SQ(9) is determined by the 9-element subset ={a;, @, ax, by, by, bi, €y oty Caty}
such that {i, j, k} and {a(?), a(7), a(k)} € To. This means that a(7) := {{a(d), aff),
a(k)}: for all {i, j, k} € To} = To Consider the map ¢ from 3 ®, @, to the direct
product @, x I; by @(a;) = (a, 0), ¢(b) = (a;, 1) and ¢(c)) = (aa1@, 2). It is routine
matter to proof that @(x; * x2) = @(x1) * @(x2) if {x; , X2} < P; fori=1,2o0r3.
Also, if {a;, b, ¢} is a block in Tyz3, then the edge a; b; € F, for some A, hence {i,
Jjr B} € Ty, 50 {a;, bj, Cary} is a block in T3, s0 a(h) = k, hence o{a;, by, ci} = { (as
0), (ay, 1), (@, 2)} is ablock in @y x I ; i.e. @ is an isomorphism.
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Since 3 ®, O, has three disjoint subsquags of cardinality 7, then Q; is a normal
subsquag for i = 1, 2 and 3, so 3 ®, @, is not simple. Another possible normal
subsquag is the 3-element subsquag SQ(3) = I; with | ; ~ @, =1 for each i. But if
3 ®q O contains a normal sub-SQ(3), then 3 ®, Q; is isomorphic to the direct
product SQ(7) x SQ(3). Therefore, if 3 ®, 0, has n subsquags with n < 7, then the
congruence lattice of 3 ®, @, has exactly one proper atom that is the congruence
determined by the three disjoint SQ(7)s @y = (Py; * ), 02 = (P; * ) and Qs = (P3; *
). Hence 3 ®, 0, is always subdirectly irreducible for each possible n < 7.

Let o transfer the line {i, j, k} € T, into the line {a(?), a(j), a(k)} € T,. Now,
according to Lemmas 8 and 9, we may directly say that the set of elements S = {a,
a;, ay, by, by, by, @), Cagyy Caw} forms a subsquag. Since a is permutation on the set
of points Py = {1, 2, ... , 7} of the projective plane over GF(2), the possible values
for the number of lines transferred into lines are n=0, 1, 3, or 7. a

5. Examples of subdirectly irreducible SQ(21)s

In this section we describe how one can construct an example for each class of
SQ(21). Let Py={1,2, 3,4, 5, 6, 7} and Tp := (Po; Tp) be an STS(7) where T, =
{124, 156, 137, 235, 267, 346, 457}. Similarly as in section 3.1, let T, = (P; T;)
be there STS(7)s isomorphic to T for i = 1, 2 and 3, and @, = (P; *;) be the
corresponding squags, where P, = {ay, ..., a7}, P2= {by, ..., b7} and P3 = {c, ...
» ¢7} such that Py n P, N Py = . Consider the set of 1-factors defined by F;=
{aby:ay* &= a, {a, a, a} c P, and {b, by, by} < P>}, then the class F =
{Fi, F,, ... , F7} forms a 1-factorization of the complete bipartite graph K; ; on
P, U P; the two disjoint sets of vertices P; and P, {1, 12]. The constructed
STS(21) = (P; T) and the associated squag SQ(21) = (P; * ) will be denoted by
3 ®, T and 3 ®, O, respectively. Note that P= P, U P, U P; and the set of
trlples r=huhuT;u Ty23, where T2 = {{a, b/, Ca(k)} . aq; bj € Fk}.

The SQ(21) = 3 ®, @, has three disjoint sub-SQ(7)s for each permutation

a, so 0y, @, and Q; are always normal in 3 ®, 0,. Namely, Q,, @; and Qs form
the unique proper congruence of 3 ®, 0, for each a.

For each block {i, j, k} € T,, we have the sub-1-factorizations:
f={fi=lab,ab,ab}cF,f={a byaib,arb} cFp fi={arbr, ar by, a
bYycF}onCiuCforall {i,j, k} € T.

We may consider T, = {124, 156, 137, 235, 267, 346, 457} the set of lines of the
projective planar over GF(2) with the set of points Py = {1, 2, ..., 7}.
nonsimple SQ(21)s:

The following 4 examples supplies us with an example for each class of
nonsimple SQ(21)s given in section 4. Notice that {1, 2, 4} is a line in T, we
choose a permutation a satisfying that a{l, 2, 4} = {1, 2, 4} in the first three
cases as follows:
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. o= idpo; i. e, a; transfers each line into the same line in T, The
constructed SQ(21) = 3 ®,, Q; has 7 sub-SQ(9)s and three disjoint
sub-SQ(7). According to Theorem 10, we may say that 3 ®, 0, is

isomorphic to SQ(7) x SQ(3).

2. o, = (12); i. e., &, transfers only 3 lines into lines, namely, the set of lines
{124, 346, 457} is transferred to itself. The constructed SQ(21) = 3
®¢2 Q, is subdirectly irreducible having three disjoint sub-SQ(7)s and
3 sub-SQ(9)s.

3. a3=(124);1. e., o transfers only one line into itself that is the line 124. The
constructed SQ(21) = 3 ®,, O is subdirectly irreducible having 3
disjoint sub-SQ(7)s and one sub-SQ(9).

4, a4 = (1234); i. e., a4 transfers no line into a line. The constructed SQ(21) =
3 ®,, O is subdirectly irreducible having three disjoint sub-SQ(7)s,

but no sub-SQ(9)s. In fact, the STS(21) associated with 3 @, O, has

exactly three disjoint sub-STS(7)s, but no sub-STS(9)s. This means
that each triangle in the corresponding sloop SL(22) either generates
the whole SL(22) or a subsloop of cardinality 8. Accordingly, the
sloops SL(22)s associated with these squags supplies us with semi-
planar sloops of cardinality 22. We note that the two smallest well-
known cardinalities of non-planar semi-planar sloops are 20 and 28
(cf. [2]).

The three sub-SQ(7)s mentioned in the above examples are Q) , Q; and @3 and the

sub-SQ(9)s are determined by the sets {a;, ay, ax, b;, by, br, Ca(ys Cagi)» Car)} SUCh

that {i, j, k} and {a(i), o(y), a(k)} are lines in Ty,

In fact, each nonsimple subdirectly irreducible SQ(21) has exactly one
proper homomorphic image. The constructed SQ(21)s are subdirectly irreducible
having exactly one proper homomorphic image isomorphic to the SQ(3).
According to Theorem 7, a natural question at this point, to find a construction for
subdirectly irreducible SQ(21)s having exactly one proper homomorphic image
isomorphic to the SQ(7) (SQ(21)s having 7 sub-SQ(9)s, but no 3 disjoint sub-
SQ(Ms).

Simple SQ(21)s:

An SQ(21) has a proper congruence if it has 3 disjoint sub-SQ(7)s or 7
sub-SQ(9)s, otherwise it is simple. We note that there is a planar SQ(21) [7]
(having neither sub-SQ(7)s nor sub-SQ(9)s). Each planar SQ(21) is simple [12].

The construction given in [4] supplies us with a simple SQ(3x) having sub-
SQ(9)s as the only proper subsquags. By applying this construction for n= 7 we
get a simple SQ(21) having 3 sub-SQ(9)s but no sub-SQ(7)s [5]. Using the
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interchange property on a sub-SQ(9) we will get a simple SQ(21) having one sub-
SQ(9) and no sub-SQ(7)s.

The construction given in [3] gives an SQ(3n) having only one subsquag of
cardinality n.. By applying this construction for n = 7 we get a simple SQ(21)
having one sub-SQ(7) and 3 sub-SQ(9)s. Using the interchange property on the
sub-SQ(7) we will get two different classes of simple SQ(21)s, the first is a
simple SQ(21) with one sub-SQ(7) and one sub-SQ(9) and the second is a simple
SQ(21) with one sub-SQ(7) and no sub-SQ(9)s.

Lemma 5 tells us that each two sub-SQ(9)s are intersected in a sub-SQ(3),
also, if the SQ(21) contains a sub-SQ(9) and a sub-SQ(7), then the intersection
between them is a sub-SQ(3). We may say that there is an SQ(21) with one sub-
SQ(7) [1] and an SQ(21) with three disjoint sub-SQ(7)s [1, 11], i.e., there is no
SQ(21)s with exactly two disjoint sub-SQ(7)s. Consequently, we are faced with
the question: Is there an SQ(21) having two (or more) intersected sub-SQ(7)s?
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