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Abstract

A graph is 1-planar if it can be drawn on the plane so that each edge is
crossed by at most one other edge. In this paper, it is proved that every 1-
planar graph without chordal 5-cycles and with maximum degree A > 9 is
of class one. Meanwhile, we show that there exist class two 1-planar graphs
with maximum degree A foreach A < 7.
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1 Introduction

We consider only finite, simple and undirected graphs in this paper. For a plane
graph G, we denote by V(G), E(G), F(G), 6(G) and A(G) the set of vertices, the
set of edges, the set of faces, the minimum degree and the maximum degree of G,
respectively. For an element x € V(G) U F(G), dg(x) denotes the degree of xin G.
Throughout this paper, a k-, k*- and k™-vertex (resp. face) is a vertex (resp. face)
of degree k, at least k and at most k. A k-cycle is a cycle of length k. We call a
cycle to be chordal if there is at least one chord contained in this cycle. For other
undefined notations, we refer the readers to [S].

A graph is 1-planar if it can be drawn on the plane so that each edge is crossed
by at most one other edge. This notion of 1-planar graphs was introduced by
Ringel [7] while trying to simultaneously color the vertices and faces of a planar
graph G such that any pair of adjacent/incident elements receive different colors.
The coloring problems of 1-planar graphs have been investigated in many papers
suchas [1, 2, 3,4, 10, 11].

A graph is k edge-colorable if its edges can be colored with & colors in such
a way that adjacent edges receive different colors. The edge chromatic number
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of G, denoted by x'(G), is the smallest integer  such that G is k edge-colorable.
Vizing’s theorem ([5], pp.251) states that the edge chromatic number y’(G) of
every nonempty graph G is either A(G) or A(G) + 1. Thus we can divide all graphs
into two classes. A graph G is of class one if ¥'(G) = A(G) and is of class two if
X'(G) = A(G) + 1. Naturally, the problem of deciding whether a graph is of class
one or class two is a major question in graph edge coloring.

For a 1-planar graph G, it was proved that G is of class one provided A(G) > 10
[11] or A(G) 2 7 and G containing no 3-cycles [10]. In this paper, we consider 1-
planar graph G without chordal 5-cycle by proving that G is of class one provided
A(G) 2 9. Moreover, we show by examples that there exists class two 1-planar
graph with maximum degree A for each A < 7.

2 1-planar graph without chordal 5-cycles

Throughout this section, for any 1-planar graph G, we always assume that G has
been embedded on a plane such that every edge is crossed by at most one other
edge and the number of crossings is as small as possible. We call such an embed-
ding of G 1-plane graph. The associated plane graph G* of a 1-plane graph G is
the plane graph obtained from G by turning all crossings of G into new 4-valent
vertices. A vertex in G* is called to be false if it is a new added vertex and is called
to be true otherwise. We denote by T(G) the set of true vertices and by C(G) the
set of false vertices in G* If a face f in G* is incident with at least one false vertex,
then we call f a false face; otherwise we call f a true face. In (11}, Zhang and
Wu displayed some basic properties on a 1-plane graph G and its associated plane
graph G*.

Lemma 1. (Zhang and Wu (11]) Let G be a 1-plane graph and G* be its associ-
ated plane graph. Then the following hold:

(1) for any two false vertices u and v in G*, uv ¢ E(G*);

(2) for any 2-vertex v in G, v is incident with no false 3-faces in G*;

(3) for any 3-vertex v in G, either v is incident with at most one false 3-face or v
is incident with two false 3-faces and one 5*-face in G*;

(4) for any 4-vertex v in G, v is incident with at most three false 3-faces in G*;
(5) for any 5-vertex v in G, v is incident with at most four false 3-faces in G*.

Now we restrict G to be a 1-plane graph without chordal 5-cycles and prove
the following lemma.

Lemma 2. Let G be a 1-plane graph without chordal 5-cycles and G* be its
associated plane graph. Then the following hold:

(1) for any 7-vertex v in G, v is incident with at most six 3-faces in G*;

(2) for any 8-vertex v in G, v is incident with at most six 3-faces in G*;

(3) for any 9-vertex v in G, v is incident with at most seven 3-faces in G*.
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Proof. The proofs of the three results stated in this lemma are mutually similar.
So we only prove (3) of them and leave another two to the readers. Suppose, to
the contrary, that dg(v) = 9 and v is incident with at least eight 3-faces in G*.
Without loss of generality, assume vy, vz, , Vg are neighbors of v in G* lying in
a clockwise order with respect to the drawing of G and vv;v;, are false 3-faces in
G* forevery 1 <i < 8. LetS = {v),---,vg}. Since the number of false vertices
containing in S can not exceed five by Lemma 1(1) (otherwise two adjacent false
vertices would be found in G*), there are at least four true vertices in S. Without
loss of generality, assume that {v, 3, vs, v7, vo} C C(G) and {v;, v4, Vs, vg} € T(G).
It follows that (vava, V4V, VeVs, W2, WVa, W6, W} € E(G). At this stage, the four
true vertices v, Vs, Vs, vg along with the vertex v form a chordal 5-cycle in G. This
contradiction completes the proof. o

We call a graph G to be A-critical if A(G) = A, ¥'(G) = A+1and x'(G—-¢) = A
for every e € E(G). For our purposes the following lemma, which is known as
Vizing’s Adjacency Lemma, is an useful starting point.

Lemma 3. (Vizing [9]) Let G be a A-critical graph and let v, w be adjacent ver-
tices of G with dg(v) = k. Then

(1) ifk < A, then w is adjacent to at least (A — k + 1) A-vertices;

(2) ifk = A, then w is adjacent to at least two A-vertices.

Theorem 4. Let G be a 1-planar graph without chordal 5-cycles. If A(G) 2 9,
then ¥’ (G) = A(G).

Proof. By the result of Zhang and Wu [11], we should only prove the case when
A(G) = 9 here. Suppose, to the contrary, that G is a 9-critical 1-planar graph. Then
by Lemma 3(1), the minimum degree of G is at least 2. Let v be a vertex in G. We
denote the degree of the neighbors of x in G as 8;(x) < 62(x) < -+ < Fgg(n(%)-
Our proof of the theorem uses the discharging method. First of all, we assign an
initial charge ¢ on V(G) U F(G*) by c(v) = dg(v) — 4 for every v € V(G) and
e(f) = dox(f) — 4 for every f € F(G*). Then by Euler’s formula and the fact that
dgx(v) = 4 for every v € C(G), one can easily deduce that 3 ,cvGurcr) €(x) = —8.
Let us now discharging along the following rules.

R1. Every 9-vertex sends T:iz to each of its adjacent i-vertex in G, where 2 < i <
7.

R2. Every 8-vertex sends J to each of its adjacent 4-vertex, {5 to each of its
adjacent 5-vertex or 6-vertex in G.

R3. Every 7-vertex sends 3 to each of its adjacent 6-vertex in G.

R4. Every 5*-face sends % to each of its incident 3-vertex in G*.

RS. Every true 3-face receives 'li from each of its incident 6*-vertex in G*.

R6. Every false 3-face receives -;- from each of its incident true vertex in G*.

In the following, we check that the final charge ¢’ on each vertex and each face is
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nonnegative. Since our rules only move charge around and do not affect the total
charges, this leads to a contradiction that

-8 = Z o(x) = Z 20
XeV(GWF(G*) xeV(GYUF(G*)

in final and completes the proof.

By Lemma 3, it is easy to see dg(x) + dg(y) = 11 for every xy € E(G). This
implies that every true 3-face in G* is incident with at least two 6*-vertices. On the
other hand, by Lemma 1, one can also see that every false 3-face in G* is incident
with at least two true vertices. Thus by R5 and R6, ¢’(f) = -1 +2 X % = 0 for
every 3-face in G*. Since 4-faces are not involved in the rules, ¢’(f) = ¢(f) = 0
for every 4-face in G*. Let f be a 5*-face in G*. Then f can be incident with at
most l_‘-'ﬁfz—(ﬂj 3-vertices in G*, since any two 3-vertices are not adjacent in G* by
Lemma 3. This implies that ¢'(f) 2 dox(f) = 4 ~ $1 %2 | > 0 for dex(f) 2 5.

Now we focus on vertices in G. Let v be a k-vertex in G. If k = 2, then v must
be adjacent to two 9-vertices in G by Lemma 3. Meanwhile, v is not incident with
any false 3-face in G* by Lemma 1(2). So¢’(v) = -2 +2x 2 = 1 by R1.

If k = 3, then by Lemma 3, v is adjacent to at least two 9-vertices in G. If
v is incident wnth at most one false 3-face in G*, then by R1 and R6, ¢’(v) >
-1- l +2x2 7 = 0. If v is incident with at least two false 3-faces in G*, then by
Lemma 1(3), v is also incident with one 5*-face now. So by R1, R4 and R6, it also
holds that (V) > -1-2x $ +2x 2 + 1 =0.

If k = 4, then by Lemma 1(4), v is incident with at most three false 3-faces
in G*. If 6;(v) 2 8, then by R1, R2, R6 and Lemma 3, we have ¢'(v) = 0 - 3 x
-;-+2x-;-+2x% = 0. If 6;(v) < 7, then by Lemma 3, one can see that v must
be adjacent to exactly three 9-vertices in G. This follows from R1 and R6 that
cw)20-3x3+3x41=0

If k = 5, then by Lemma 1(5), v is incident with at most four false 3- faces in
G*. If6|(v) > 8, then by R1, R2, R6 and Lemma 3, we have ¢’(v) > 1 -4 x 3+
2 x +3X = 10 > 0. If 8;(v) < 7, then by Lemma 3, one can see that v is adjacent
to at least three 9-vertices in G. Thus by R1 and R6, ¢'(v) 2 1-4x 1 +3x 2 > 0.

If k = 6, then by RS and R6, v would send 1 3 to each of its mcxdent 3-faces in
G*. Ifdl(v) 2 7, then by R1, R3, RS and R6, c'(v) >2-6x%x3 +mm(3x it
3Ix 30,2x +4 X l0} = 0. If §;(v) < 6, then by Lemma 3, onecanseethat
vis adjacent to at least four 9-vertices in G. This implies by R1, R5 and R6 that
cW)22-6x1+4x4>0.

If k = 7, then by Lemma 2(1), v is incident with at most six 3-faces. Mean-
while, by Lemma 3, v is adjacent to at least two 9-vertices and is adjacent to at
most three 6-vertex in G. Soby R1, R3, R5and R6, ¢’(v) > 3-6x]—-3x3+2x1 >
0.

If k = 8, then by Lemma 2(2), v is incident with at most six 3-faces. So by R2,
RS, R6 and Lemma 3, ¢’(v) 2 4 - 6 X 1 —max{2 X §,4 X 15} > 0.
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Figure 1: 6-regular 1-planar graph

If k = 9, then by Lemma 2(3), v is incident with at most seven 3-faces. Mean-
while, by Lemma 3, v is adjacent to at least 9 — 6, (v) + 1 = 10—-8;(v) 9-vertices in
G. Hence by R1, R5 and R6, we have ¢’(v) 2 5-7X % - Wi)—z'(g' 10+6,(v)) =0
in final. o

3 1-planar graphs being of class two

This section is devoted to prove the existence of class two 1-planar graphs with
small maximum degree. In [8], Vizing presented examples of planar graphs of
class two with maximum degree no more than five. It is known that every planar
graph is also 1-planar. Therefore, we conclude that there are 1-planar graphs of
class two with maximum degree A for each A < 5. In the following, we are going
to construct class two 1-planar graphs with maximum degree 6 or 7 based on the
following lemma, which is an useful sufficient condition for a graph being of class
two.

Lemma 5. ([5], pp.258) If G is a graph of size m such that m > &' (G)A(G), where
a’'(G) is the edge independent number of G, then G is of class two.

Theorem 6. The graph G derived from a k-regular graph R with even order by
adding an new 2-vertex on an arbitrary edge is of class two.

Proof. Since [V(G)| = |[V(R)|+1is odd, &/(G) < -;-(IV(G)l —1). On the other hand,
itis easy to calculate that |E(G)| = [E(R)|+1 = %lV(R)I+l = %A(G)(I V(G)-1)+1.
Hence |[E(G)] > o' (G)A(G), which implies that G is of class two by Lemma 5. O

One can check that the graph in Figure 1 is a 6-regular 1-planar graph with
24 vertices. In [6), Fabrici and Madaras also presented a 7-regular 1-planar graph
with 24 vertices. Hence by Theorem 6, we directly have the following corollary.
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Corollary 7. There exist 1-planar graphs of class two with maximum degree A
Joreach A <7.

To end this paper, we leave a conjecture to the interested readers.

Conjecture 8. Every I-planar graph with maximum degree 8 or 9 is of class one.
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