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Abstract

We examine designs D; and ternary codes Cji, where
i € {112,113,162, 163,274}, constructed from a primitive permu-
tation representation of degree 275 of the sporadic simple group
MSL. We prove that dim(Cni3) = 22, dim(Cie2) = 21, Cua D
Cie2 and MCSL:2 acts irreducibly on Ciez. Furthermore we have
Ciuz2 = Cies = Cora = Vars(GF(3)), Aut(Dr12) = Aut(Dies) =
Aut(Dus) = Aut(Dlsz) = Aut(Cua) = Aut(Clsz) = M°L:2 while
Aut(Da7a) = Aut(Cr12) = Aut(Cies) = Aut(Cz74) = Sars. We also
determine the weight distributions of C113 and Ciez and that of their
duals.

1 Introduction

In [8, 7] the authors examined binary codes obtained from some primitive
permutation representation of the sporadic simple group M°L (2], namely
on 275 and 2025 points respectively. This paper is concerned with ternary
codes obtained from the representation of degree 275 and we prove the
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following main result (Theorem 1). The proof of Theorem 1 follows from a
series of lemmas in Sections 6 and 7.

Theorem 1 Let G be the McLaughlin group ML and D; and C; where
i € {112,113,162,163,274} be the designs and ternary codes constructed
from the primitive rank-3 permutation action of G on the cosets of Uy(3).
Then the following holds:

(1) Aut(Duz) = Aut(Dua) = Aut(Dlsz) = Aut(Dm;;) = Aut(Cu3) =
Aut(clsz) = M°L:2.
(ii) dim(Ch13) = 22, dim(Cie2) = 21, Cr13 D Cis2 and MCL:2 acts irre-
duczbly on 0162-
(i) Cr12 = Cie3 = Carg = Var5(GF(3)).
(iv) Aut(Doyg) = Aut(Cr12) = Aut(Ce3) = Aut(0274) = Sa75.

We also show that the code Cje is the 21-dimensional irreducible repre-
sentation of M°L over GF(3) contained in the 22-dimensional representation
of M°L:2 over GF(3) (see [10]). We outline our notation in Section 2, and
describe the background results and a construction method in Section 3. A
brief overview of the simple sporadic group M°L is given in Section 4, and in
Section 5 we describe the construction of the designs and the corresponding
ternary codes.

2 Terminology and notation

Our notation will be standard, and it is as in [1] and ATLAS [2]. For the
structure of groups and their maximal subgroups we follow the ATLAS
notation. The groups G.H, G : H, and G'H denote a general extension,
a split extension and a non-split extension respectively. For a prime p,
the symbol p™ denotes an elementary abelian group of that order. The
notation p}*2" and p*2" are used for extraspecial groups of order p+2".
If p is an odd prime, the subscript is + or — according as the group has
exponent p or p?. For p = 2 it is 4+ or — according as the central product
has an even or odd number of quaternionic factors.

An incidence structure D = (P, B, I), with point set P, block set B and
incidence Z is a t-(v, k, A) design, if |P| = v, every block B € B is incident
with precisely  points, and every ¢ distinct points are together incident with
precisely A blocks. The complement of D is the structure D = (P, B, ),
where Z = P x B — T. The dual structure of D is D* = (B, P, T?), where
(B, P) € T* if and only if (P, B) € Z. Thus the transpose of an incidence
matrix for D is an incidence matrix for Dt. We will say that the design is
symmetric if it has the same number of points and blocks, and self dual
if it is isomorphic to its dual.

450



The code Cr of the design D over the finite field F is the space spanned
by the incidence vectors of the blocks over F. We take F to be a prime
field Fy, in which case we write also C, for Cp, and refer to the dimension
of C, as the p-rank of D. In the general case of a 2-design, the prime
must divide the order of the design, i.e. » — A\, where r is the replication
number for the design, that is, the number of blocks through a point. If
the point set of D is denoted by P and the block set by B, and if Q is
any subset of P, then we will denote the incidence vector of @ by ve,
Thus Cr = (v | B € B), and is a subspace of F'”, the full vector space of
functions from P to F. For any code C, the dual or orthogonal code C*t
is the orthogonal subspace under the standard inner product. The hull of
a design’s code over some field is the intersection C' N CL. If a linear code
over a field of order g is of length n, dimension k, and minimum weight d,
then we write [n, k, d}, to represent this information. A constant word in
the code is a codeword all of whose coordinate entries are the same. The
all-one vector will be denoted by 7, and is the constant vector of weight the
length of the code. Two linear codes of the same length and over the same
field are equivalent if each can be obtained from the other by permuting
the coordinate positions and multiplying each coordinate position by a non-
zero field element. They are isomorphic if they can be obtained from one
another by permuting the coordinate positions. An automorphism of a
code is any permutation of the coordinate positions that maps codewords
to codewords. An automorphism thus preserves each weight class of C.

3 Preliminary results

The designs and codes in this paper come from the following standard
construction (Result 1), described in [4, Proposition 1] and in [5]. We
would like to point out here that Result 1, Result 2(i) and Remark 1 have
been modified from the original versions by replacing “orbit” to “self-paired
orbit”. The self-paired assumption is only required to guarantee that the
designs constructed are self-dual®.

Result 1 /4, Proposition 1] Let G be a finite primitive permutation group
acting on the set Q of size n. Let a € , and let A # {} be a self-paired
orbit of the stabilizer G, of a. If

B={A?: g€ G},
then B forms a self-dual 1-(n, |A|,|A|) design with n blocks, with G acting

as an automorphism group on this structure, primitive on the points and
blocks of the design.

1We thank the referee for pointing out this error in the original versions of these
results.
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Remark 1 Note that if we form any union of orbits of the stabilizer of a
point, including the orbit consisting of the single point, and take its images
under the full group, we will still get a symmetric 1-design with the group
operating. Thus the orbits of the stabilizer can be regarded as building blocks.
Because of the mazimality of the point stabilizer, there is only one orbit of
length 1: see [{].

The following result which can be found in [9], deals with the automor-
phism groups of the designs and codes constructed from a finite primitive
permutation group in a manner described in Result 1.

Result 2 (i) Let D be a self-dual 1-design obtained by taking all the images
under G of a non-trivial self-paired orbit A of the point stabilizer in any of
G'’s primitive representations, and on which G acts primitively on points
and blocks, then the automorphism group of D contains G.

(ii) If C is a linear code of length n of a symmetric 1 — (v, k, k) design
D over a finite field F,, then the automorphism group of D is contained
in the automorphism group of C.

4 The M°L group and its automorphism group

We consider G to be the sporadic simple group M°L of McLaughlin. Note
that M°L has an involutary outer automorphism, so its automorphism
group is a split extension of ML by Z,, denoted by M°L:2.

It was shown by McLaughlin [6] that there exists a regular graph G =
(92, ) with 275 vertices possessing a transitive automorphism group Aut(G) &
M¢L:2, with M°L a simple group of order 27 x3%x 53 x 7x 11. The McLaugh-
lin graph G is a rank-3 graph of valency 112 on 275 points. The stabilizer of
a point in ML is a maximal subgroup U isomorphic to Uy(3). The orbits
under this action are {z}, ® and ¥ with lengths 1, 112 and 162, respec-
tively. Clearly since these lengths are distinct, the corresponding orbits are
self-paired. The action of U on ® is equivalent to the representation of
U4(3) on the set of totally singular lines of the 4-dimensional unitary space
V over the Galois field GF(9) with the stabilizer of a point having the form
3%:Ag and orbits of lengths 1, 30 and 81. The action of U on ¥ is equivalent
to the representation of Us(3) on the left cosets of a subgroup isomorphic
to L3(4) with the stabilizer of a point having orbits of lengths 1, 56 and
105. Thus the two point stabilizers of M°L on Q are isomorphic to either
3%:4g or L3(4). From this we conclude that U N U9 = 3%:Ag or L3(4), for
any two distinct conjugate subgroups isomorphic to U, (3).

The group ML has precisely one conjugacy class of involutions and
the centralizer of an involution in M*°L is isomorphic to 2-Ag, the unique
perfect central extension of the alternating group Ag by a group of order
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2. Finkelstein [3] showed that the proper non-abelian simple subgroups
of M°L are isomorphic to As, As, A7, L2(7), Us(2), Us(3), L3(4), Ua(5),
Ua(3), M;; and My;. There are two classes of Mp; subgroups, interchanged
by the outer automorphism.

Theorem 2 (Finkelstein [3]) The McLaughlin simple group has precisely
twelve conjugacy classes of mazimal subgroups. The isomorphism types in
these classes are as follows:

(i) two groups of classical type, namely, Us(3) and Us(5);

(ii) four groups of Mathieu type, namely, My, Mae (two classes) and
L3(4):22, the set stabilizer of two points in the canonical representation of
Mz3;

Siii) siz p-local subgroups, namely, 2*:Ay (two classes), 2-As, 3*: Mo,
34+42.5; and 51t%3:8. B

5 Construction of the designs and codes

Notice from Theorem 2 and the ATLAS (see [2]) that there is just one
class of maximal subgroups of ML of index 275, namely the unitary group
U4(3). The M°L group acts as a rank-3 primitive group of degree 275 on
the cosets of Uy(3). The stabilizer of a point in this action is Us(3), and
the orbits of U(3) have lengths 1, 112, and 162 respectively.

In this paper, using the construction method outlined in Result 1 and
Remark 1, we construct the self-dual symmetric designs D; where
i € {112,113,162,163,274}, from the orbits of Uy(3) and their respective
unions, from the primitive permutation representation of ML of degree
275. The stabilizer of a point « in this representation is a maximal sub-
group isomorphic to Uy(3), producing orbits {a}, A, Az of lengths 1, 112
and 162 respectively. The self-dual symmetric 1-designs D; are constructed
from the sets A;, {a}UA;, Az, {a}UA2, and AU A2, respectively. Notice
that the orbit containing a single element, has been excluded, as it would
produce a trivial design. The ternary codes C; whose properties we will be
examining are the ternary span of the rows of the incidence matrices of the
designs D;. In Sections 6 and 7 we deal with these designs and respective
ternary codes.

6 Dus, Cis, Disz and Cie2

We start by taking the union of the orbit consisting of a single point and
the orbit of length 112, namely {a} U A;. By taking its images under
ML we get the blocks of a self-dual symmetric 1-(275,113,113) design
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which we denote by D,;3. Similarly A, produces a self-dual symmetric 1-
(275,162, 162) design D)62. Lemma 3 below deals with these designs and in
Lemma 4 we show that M°L:2 is the automorphism group of their associated
ternary codes C133 and Cje3, and we also examine some of the properties
of these codes.

Lemma 3 Aut(D;13) and Aut(Dgs) are isomorphic to M<L:2.

Proof: Let G = Aut(Dy13). Then M¢L is contained in G by Result 2(i). By
Magma computations (see Subsection 8.1), |G| = 2 x |M°L|. Also Magma
computations shows that G is generated by the permutations which we
denote x,y and there is a permutation a of order 2 in G — M°L of cycle
type 1112132 (see Subsection 8.2). Hence G = ML : (). Furthermore since
Digp = D113, we have Aut(Dleg) Allt(Du;;) = Aut(Dua) ]

Lemma 4 Cy,3 is a [275,22, 113]3 code, Crnatisa [275,253, 6]3 code, Che2
is a 275,21, 114]3 code and Cygo™ is a [275,254,5|3 code. Moreover 3 is
in Cp1a and Cigat , Cie2 18 self-orthogonal and is contained in Cyy3. Also
Aut(Cy13) and Aut(Ciez) are isomorphic to M°L:2 and M°L:2 acts irre-
ductbly on 0162-

Proof: The statements given in the first sentence are verified entirely by
using the Magma programme in 8.1. Let Aut(Cjj3) = I'. Then by Re-
sult 2(ii) and Lemma 3, we have that M°L:2 C I. Our computations show
that |T'| = 1796256000 = [M°L:2| and hence I' = M°L:2.

Since D62 is the complement of Dy;3, the difference of any two code-
words in Cy;3 is in Cje2. As these differences span a subcode of dimension
21 in Cy,3, this subcode must be Cjg3. The weight distribution of Cy,3 and
Che2 are listed in Table I and Table II, respectively. In these tables, i rep-
resents the weight of a codeword and A; denotes the number of codewords
of weight 1.

Self orthogonality of Cg2 follows, since all its weights are divisible by
3. Also 3 is orthogonal to the codewords corresponding to the blocks of
D162, since these codes have weights 162 (divisible by 3). So we have that
3 € Chrg2t. Since J can be written, in many ways, as the sum of a codeword
in Cy313 and a codeword in Cigg, it is also in Cj;3.

If v € Aut(Ce2), then since v(3) = 5 and Ci13 = (Cie2,3), We have
Y E Aut(Cua). So that Aut(Cie2) C Aut(Cus). Now

ML:2 = Aut(Dlsz) < Aut(Clsz) < Aut(Cus) = M°L:2,

implies that Aut(Cie2) = M°L:2.

Finally notice that the group M°L has a unique 21-dimensional irre-
ducible representation over GF(3) contained in the 22-dimensional repre-
sentation of M°L:2 over GF(3) (see [10]). Using Table II we can easily see
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that Cjez does not contain an invariant subspace of dimension 1. Also [10]
establishes that ML has no irreducible modules over GF(3) with degrees
between 2 and 20. Hence Cigp is the 21-dimensional GF(3) module on
which M¢L:2 acts irreducibly. W

TABLE I
The weight distribution of Cj;3

T A: | 1 A,
o 86— T4s7o0ases
113 31350 182 2739290400
114 44850 183 1392098400
143 2721600 185 3480246000
144 2494800 186 1683990000
149 712800 188 2567149200
150 598762 189 1181703600
155 26061760 191 2202364800
156 20047500 192 1002909600
161 12518550 194 1087086000
162 8809350 195 451858800
164 37422000 197 840925800
165 25174800 198 331273800
167 485654400 200 240698304
168 312206400 201 89812800
170 855760950 203 171918450
171 525467250 204 60877100
173 1627857000 218 9756450
174 954261000 219 2538350
176 1747919250 242 226800
177 977649750 243 30800
179 2694384000 276 552
TABLE II
The weight distribution of Cie2
i Az [ Ai
1) 1 180 1437004800
114 44550 183 1392008400
144 2494800 186 1683990000
150 598752 189 1181703600
166 20047500 192 1002809600
162 8809350 195 451558800
165 25174800 198 331273800
168 312206400 201 89812800
171 525467250 204 680677100
174 954261000 219 2539350
177 977649750 243 30800

Remark 2 In the following we give some observations on the codewords of
minimum-weight and of mazimum weight from the ternary code Cis.

It follows from the weight distribution of Cy;3 that the minimum weight
of Ci13 is 113 and its maximum weight is 275. Let Wj;3 and Wars be
respectively the sets of minimum and maximum weight codewords of Chs.
Then the following observations give a description of the codewords of each
set:
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1. Let Wi = {w € Cns|wt(w) = 113}, where wt(w) denotes the
weight of w. Then |Wy;3] = 31350 and M°L produces four orbits
of lengths 275, 275, 15400 and 15400 respectively on Wj;3. Let
(275)1, (275)2, (15400); and (15400), denote the sets containing such
codewords. We say that (275); contains words of type I, (275);
contains words of type II, (15400); contains words of type III and
(15400); contains words of type IV. A word w € Wyy3 is of type I
(respectively type II) if all its non-zero coordinates positions are 1
(respectively -1). Moreover, a word w € W3 is of type III if 81 non-
zero coordinates positions are 1 and 32 non-zero coordinate positions
are -1. Finally a word w € W3 is of type IV if —w is of type III.

2. Let Wyes = {w € Cnlet(‘lU) = 275} Then |W275| = 552 and ML
produces four orbits of lengths 1, 1, 275 and 275 respectively on
Wars. Let (1)1, (1)2, (275)1 and (275)2 denote the sets containing
such codewords, then (1); = {3}, (1)2 = {7} and we say that (275),
contains words of type III and (275)2 contains words of type IV. A
word w € Wazs is of type III if 113 coordinates positions are 1 and the
remaining 162 coordinate positions are -1. Finally a word w € Ways
is of type IV if —w is of type IIL

Remark 3 In the following we give some observations on the codewords of
minimum-weight and of mazimum weight from the ternary code Chgs.

It follows from the weight distribution of Cje2 that the minimum weight
of Cigz is 114 and its maximum weight is 243. Let Wi;4 and Way3 be
respectively the sets of minimum and maximum weight codewords of Cjgs.
Then the following observations give a description of the codewords of each
set:

1. Let Wiy = {'w € C114 I wt(w) = 114} Then |W114| = 44550 and ML
produces one orbit of length 44550 on W;14. A word w € W4 is such
that the 114 non-zero coordinate positions are split into exactly 57
+1 and 57 —1.

2. Let Woy3 = {w € Ci1y I wt(w) = 243}. Then |W243I = 30800 and M°L
produces two orbits of lengths 15400 and 15400 respectively on Waus.
Let (15400);, (15400)2 denote the sets containing such codewords,
then (15400); contains words of type I, (15400); contains words of
type II. A word w € Way3 is of type I if 81 coordinates positions are
1 and the remaining 162 coordinate are -1. A word w € Woyg is of
type II if —w is of type L.
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7 Dia, Criz, D163, Cre3, Dara and Corg
In this section we examine the designs D; and codes C;, where i € {112,163,274}.

Lemma 5 (l) Aut(Duz) = Aut(D163) = M°L:2.
(i) Cr12 = Cie3 = Ca74 = Var5(GF(3)).
(iii) Aut(D274) = Aut(Cr12) = Aut(Cie3) = Aut(Carq) = S27s.

Proof: (i) Computations with Magma (similar to Lemma 3) show that
Aut(Dy12) = MCL:2. Since Digz = D2, we deduce that Aut(Dies) =
Aut(Duz) = M°L:2.

(ii)Using Magma, the row span of the adjacency matrices of D12, Dies
and Da74, respectively, yield the full space Va75(GF(3)). That is

Chiz = Cie3 = Ca14 = Var5(GF(3)).
(iii) Since Aut(V275(GF(3))) = Sars, we have
Aut(Cng) = Aut(Cles) = Aut(an) = Sa7s.

Darg is the complement of the trivial design D; in which the blocks
are single points and all permutations are design automorphisms. Hence
Aut('D274) = So75. B

Acknowledgment. The authors express their gratitude to the referee

whose suggestions and comments led to significant improvement of the con-
tent and the presentation of this paper.
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8 Appendix
8.1 Designs and codes from M°L group of degree 275

‘‘The program, where mcl is a permgroup
on 275 pts given by two permutations’’
g:=mcl;

’’determine a maximal subgroup isomorphic to U_4(3)??
mi:=Stabilizer(mcl,1);
al,a2,a3:=CosetAction(mcl,ml);
st:=Stabilizer(a2,1);

orbs:=0rbits(st) ;#orbs;
v:=Index(a2,st);

v; “"degree=",v;

lo:=[#orbs[i): i in [1..#orbs]];

"seq. of orbit lengths=",lo;

for j:=2 to #lo do

"orbs no",j,"of length®,#orbs[j];
blox:=Setseq(orbs[j]~a2);
des:=Design<1,v|blox>;des;

autdes :=AutomorphismGroup(des) ;

"autgp of order",Order(autdes);

p:=3;

dc:=LinearCode(des,GF(p));
dl:=Dual(dc);

d1:=Dimension{(dc);

d2:=Dimension(dl);

d3:=Dimension(dc meet dl);

up._._.n P> vdim=" ,di , *dimdual=" .
d2,"hull=",d3;

end for;

‘‘omiting the trivial designs and

the natural representations’’

3

275

degree= 275

seq. of orbit lengths= [ 1, 112, 162 ]
orbs no 2 of length 112

1-(275, 112, 112) Design with 275 blocks
autgp of order 1796256000

p= 3 dim= 275 dimdual= 0 hull= 0

orbs no 3 of length 162
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1-(275, 162, 162) Design with 275 blocks

autgp of order 1796256000

p= 3 dim= 21 dimdual= 264 hull= 21

‘‘constructing the designs D_i from the union of orbits of the
rank-3 action of McL on 275 points’’

‘‘orbit 1 joined with orbit 2

b:=Setseq(orbs[1]);

bb:=Seqset(b) ;

c:=Setseq(orbs[2]);

cc:=Segset(c);

dd:=bb join cc;
bll:=Setseq(dd~a2);

dss:=Design<i,v|bll>;

dss;

1-(275, 113, 113) Design with 275 blocks

IsSelfDual(dss);

true

at:=AutomorphismGroup(dss);

ffat;

1796256000

gg:=Sym(275) ;

aa:=gg'!x; ‘‘x is given as a permutation on 275 pts below’’
bb:=gg!y; ‘‘y is given as a permutation on 275 pts below’’
sb:=sub<gg|aa,bb>;

‘‘mcl:2 as a perm group generated by two permutations”

#sb;

1796256000

¢ ¢‘determining an element of order 2 in at - a2’’
for a in at do

if not a in a2 then

if #sub<atla > eq 2 then print a; ‘‘a is given as alpha below’’
break;

end if;

end if;

end for;

>dcc:=LinearCode(dss,GF(3));

> Dimension(dcc);

22

> pdd:=PermutationGroup(dcc);

>#pdd;

1796256000

‘¢orbit 1 joined with orbit 3
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> dds:=Design<1,v|blo>;dds;

1-(275, 163, 163) Design with 275 blocks
> IsSelfDual(dds);

true

> ldc:=LinearCode(dds,GF(3)) ;Dimension(ldc);
275

> pdc:=PermutationGroup(ldc);

> pdc eq Sym(275);

true

> att:=AutomorphismGroup(dds); #att;
1796256000

‘‘orbit 2 joined with orbit 3

> dk:=Design<1,v|ff>;dk;

1-(275, 274, 274) Design with 2300 blocks
> IsSelfDual(dk);

true

> 1s:=LinearCode(dk,GF(3)) ;Dimension(ls);
275

> pda:=PermutationGroup(ls);

> pda eq Sym(275);

true



8.2 Generators of G = M°L:2 and «
r=

(1,2)(3,4)(6,7)(6,8)(9,12)(10,13) (11,16) (14,19)
(16,21) (17,22) (18,24) (20,27)(23,31) (25,33)
(26,34) (28, 37) (29, 38) (30,40) (32,43) (35,47)
(36,48) (39, 51) (41,53) (42,54) (44,67) (45,58)
(46,60) (49, 63) (50,64) (52,67) (65,71) (56,72)
(69,76) (61,78) (62,79) (66,82) (68, 86) (69,86)
(70,88) (73,92) (75,94) (77,97)(80,101) (81, 102)
(83, 105)(64,108) (87, 110) (69, 112) (90,113) (91, 115)
(93, 118)(95,120) (96, 121)(98,123) (99, 109)

(100, 125) (103,129) (104, 130) (107, 133) (108, 134)
(111,137) (114,140) (116, 142) (117, 128)(119,144)
(122,147) (124, 149) (126, 139) (131, 153) (132, 154)
(135,158) (136, 1569) (138, 161) (141, 164) (143,167)
(145,170) (148, 172) (148, 175) (160, 177)(151,178)
(152,179) (167, 183) (160, 187) (162, 189) (163, 190)
(165,168) (166, 193) (169, 195) (171, 196) (174,197)
(176, 192) (180,204) (181,201) (182,206) (188,209)
(191,213) (194, 216) (188, 221) (159, 222) (200, 208)
(202,226) (203,227) (205, 230) (207, 232) (210,210)
(211,233) (212,235) (215, 236) (217,238) (219, 240)
(220,241) (223,244) (224, 245) (226,247) (228, 249)
(229,260) (231,252) (234, 266) (237,257) (239, 242)
(243,259) (245, 261) (248, 264) (263, 267) (254,268)
(256,269) (258, 266) (260,270) (262,271) (263,266) (272,274)(273,275);

y:

(1,3,5)(4,6,9)(7,10,14)(8,11,16)(12,17,23) (13, 18,25)
(15,20,28) (19,26,35)(21,29, 39) (22, 30,41) (24,32,44)
(27,36,49) (31,42,56)(33,45,59) (34,46, 61) (38,60,65)
(40,62,68) (43,58,73)(48,62,80) (61,66,83) (63,69,87)
(54,70,89) (57,74,93)(63,75,95) (60, 77,98) (63,81, 103)
(64,76,96) (67,84, 107) (71,90,114) (72,91, 116) (78,99,124)
(79,100, 1268) (82,104,133 ) (85,108, 112) (86, 109,135)
(88,111,138)(92,117,123) (94,119, 125)(97, 122, 148)
(101,127,150) (102, 128,161) (106,132, 165) (110,136, 160)
(113,339,162) (115,141, 165) (118,143, 168) (120, 145,171)
(121,146,173) (129,144, 169) (130, 162, 180) (133, 156,182)
(134,157,164) (140,163, 191) (142, 166,172) (147,174,18)
(149,176,200) (163, 181,205) (168, 185, 207) (159,186, 170)
(161,188,210) (164, 192,214) (167, 194, 217) (175, 199,223)
(177,201,224) (178,202,226) (179,203, 228) (183, 193,216)
(187,208, 209) (189, 211,234) (150,212, 221) (195,210, 239)
(196,219,233) (197,220,242) (204, 229,251) (206,231,263)
(216,237, 255) (222,243,260) (225,246, 262) (227, 248, 257)
(230,238, 258) (232, 254, 269) (236,256, 267) (240, 249, 265)
(247,263,261) (250,264, 268) (252, 266,272) (270,271,273);

=

(1,195)(2,19) (3,200) (4, 163) (5, 129) (6, 152) (7, 103) (8,105 (9,96) (10, 152) (11, 169)
(12,222) (13,76) (14, 160) (15,221) (16, 140) (17, 30) (18,45) (20,63) (21, 246) (22,220)
(23,270) (24,272) (25, 181) (26,269) (27,34) (28, 144) (29,109) (31,121) (32,2683) (33, 60)
(35,50) (35,256) (38, 177) (39,238) (40,179) (41, 143) (42,217) (43,55) (44,125) {46, 145)
(47,83) (48, 68) (49, 161) (52, 124) (63, 126) (54, 86) (65,99) (66, 112) (67, 113) (69, 228)
(60,84) (61,260 (65,239 (66,249) (67,225) (68, 131) (69, 168) (70, 170) (71,205) (72, 163)
(73,108) (74,190) (76,212) (77, 116) (78,213) (79, 137) (80, 88) (81,119) (82, 180) (87, 188)
(88,248) (69,231) (91,257) (92,243) (93, 168) (94, 120) (95, 136) (97, 240) (100, 165) (101,173)
(102,271) (104, 186) (108, 135) (107, 166) (111,251) (114,266) (115,208) (117,171) (118, 149)
(122,226) (123, 155) (127, 172) (128, 147) (130,207) (132, 139)(133, 196) (134, 194) (138,233)
(141, 153) (142,218) (146, 187) (148,237) (150,241) (1564, 206) (166,274) (167,220) (161,210)
(162,263) (164,216) (167, 252) (169,247) (175,211)(176,262) (179,235) (162,214 (183,244)
(184, 188) (185,204 (193,224) (197, 199) (201,219) (202, 254) (215, 258) (223,230) (227,250)
(232,264) (234,246) (236, 265) (253,255) (259, 276) (267,273) .
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