The variety generated by the class of K-perfect m-cycle systems

Robert Brier
Department of Mathematics
University of Queensland
Qld 4072, Australia

Abstract

A method called the standard construction generates an algebra from a K-perfect m-cycle system. Let \mathbf{C}_m^K denote the class of algebras generated by K-perfect m-cycle systems. For each m and K, there is a known set Σ_m^K of identities which all the algebras in \mathbf{C}_m^K satisfy. The question of when \mathbf{C}_m^K is a variety is answered in [2]. When \mathbf{C}_m^K is a variety it is defined by Σ_m^K . In general, \mathbf{C}_m^K is a proper subclass of $\mathbf{V}(\Sigma_m^K)$, the variety of algebras defined by Σ_m^K .

If the standard construction is applied to partial K-perfect m-cycle systems then partial algebras result. Using these partial algebras we are able to investigate properties of $\mathbf{V}(\Sigma_m^K)$. We show that the free algebras of $\mathbf{V}(\Sigma_m^K)$ correspond to K-perfect m-cycle systems, so \mathbf{C}_m^K generates $\mathbf{V}(\Sigma_m^K)$. We also answer two questions asked in [5] concerning subvarieties of $\mathbf{V}(\Sigma_m^K)$. Many of these results can be unified in the result that for any subset K' of K, $\mathbf{V}(\Sigma_m^{K'})$ is generated by the class of algebras corresponding to finite K-perfect m-cycle systems.

1 Introduction

An m-circuit, or a circuit of $length\ m$, in a graph G is a cyclically ordered m-tuple $(x_0, x_1, \ldots, x_{m-1})$ of vertices of G such that $x_0x_1, \ldots, x_{m-2}x_{m-1}$, $x_{m-1}x_0$ are distinct edges of G. If all the vertices of an m-circuit are distinct then it is an m-cycle. We do not distinguish m-circuits by their starting point or the overall direction in which the edges are traversed (forwards or backwards). Thus each cyclic permutation of $(x_0, x_1, \ldots, x_{m-1})$ or $(x_0, x_{m-1}, \ldots, x_1)$ represents the same m-circuit. Note however that the internal order of the edges makes a difference. For example, $(x_0, x_1, x_2, x_0, x_3, x_4)$ and $(x_0, x_1, x_2, x_0, x_4, x_3)$ are different 6-circuits. For $i = 0, 1, \ldots, m-1$ we say that x_i and x_{i+k} (subscripts reduced modulo m on the residues $0, 1, \ldots, m-1$) occur at distance k in the circuit (x_0, \ldots, x_{m-1}) . An m-circuit system (m-cycle system) is a pair (A, C) where A is a set and C is a set of m-circuits (m-cycles) whose edges partition the edge set of the complete graph with vertex set A.

There is a well-known method, often called the standard construction [9], for constructing an algebra from any given m-cycle system. An additional property (defined in Section 2) which an m-circuit system may possess is that of being 2-perfect, and 2-perfect m-circuit systems are of special interest as the algebra obtained from an m-circuit system is a quasigroup precisely when the system is 2-perfect. A natural generalization of the notion of 2-perfect is that of K-perfect where K is some set of positive integers.

The purpose of this paper is to investigate the universal algebraic properties of the algebras which correspond to K-perfect m-cycle systems when the standard construction is applied. A few papers already provide results of this nature. For example, it is known that the class of groupoids corresponding to m-cycle systems is a variety precisely when $m \in \{3,5\}$ [4].

Likewise, the quasigroups corresponding to 2-perfect m-cycle systems form a variety precisely when $m \in \{3,5,7\}$ [6]. In general, the class \mathbf{C}_m^K of algebras corresponding to K-perfect m-cycle systems is a variety precisely when $m \neq 4$ and the only K-perfect m-circuit systems are cycle systems [2].

In this paper we show that the variety generated by \mathbf{C}_m^K is generated by its finite members. This result answers a question posed in [5], and is proved by showing that every finite partial K-perfect m-cycle system can be embedded in a complete K-perfect m-cycle system of finite order.

A standard set of identities, denoted by Σ_m^K , which is satisfied by the algebras corresponding to K-perfect m-cycle systems is given in [2]. This is a generalization of the well-known set of identities associated with Steiner quasigroups and 2-perfect m-cycle systems, see [9].

We also investigate the free algebras generated by Σ_m^K , in particular showing that these are in \mathbf{C}_m^K . Along with the embedding result, this enables us to show that the variety generated by $\mathbf{C}_{m_1}^K$ and $\mathbf{C}_{m_2}^K$ is a proper subvariety of \mathbf{C}_m^K where $m = \text{lcm}(m_1, m_2)$, thus answering another question asked in [5].

The result that the free algebras generated by Σ_m^K are in \mathbf{C}_m^K follows from a more general result concerning algebras freely generated by partial K-perfect m-cycle systems. This generalization also allows us to show that for any subset $K' \subseteq K$, $\mathbf{C}_m^{K'}$ is generated by the algebras of $\mathbf{C}_m^{K'}$ which correspond to K-perfect m-cycle systems.

2 Algebras corresponding to circuit systems

In this section we provide the necessary definitions for the rest of paper. It is convenient to develop the ideas mentioned in Section 1 not only for circuit systems but also for partial circuit systems. A partial L-circuit system is a pair (A, \mathcal{C}) where A is a non-empty set and \mathcal{C} is set of edge-disjoint circuits whose vertices are in A and whose lengths are in L. The order of (A, \mathcal{C}) is |A|, and if all the circuits in \mathcal{C} are cycles then (A, \mathcal{C}) is a partial L-cycle system. Note that there may be vertices in A which do not occur in any of the cycles in \mathcal{C} . For example, this means that (A, \emptyset) is a partial circuit system for any non-empty set A. If we refer to a partial circuit system as \mathcal{C} instead of as (A, \mathcal{C}) it should be assumed that A consists of the vertices occurring in the circuits of \mathcal{C} . We write m-circuit system instead of $\{m\}$ -circuit system.

A circuit system (A, \mathcal{C}) is k-perfect if for all $u, v \in A$, u and v occur at distance k exactly once. More precisely, there is a unique $(x_0, \ldots, x_{m-1}) \in \mathcal{C}$ with $x_i = u$, $x_{i+k} = v$ (subscripts reduced modulo m) and $k \neq \frac{m}{2}$. For a set K of integers, if an m-circuit system is k-perfect for all $k \in K$ then it is said to be K-perfect. Similarly, a partial circuit system (A, \mathcal{C}) is partially k-perfect if for all distinct $u, v \in A$, u and v occur at distance k at most once. If (A, \mathcal{C}) is partially k-perfect for all $k \in K$ then it is partially K-perfect. It is easy to see that a (complete) circuit system of finite order is K-perfect if it is partially K-perfect. However, there are circuit systems of infinite order which are partially K-perfect but not K-perfect (see Section 5). If a partial m-circuit system is partially k-perfect then it is also partially (m-k)-perfect. For this reason when talking about a K-perfect m-circuit system we consider K to be a subset of $\{1, 2, \ldots, \lfloor \frac{m}{2} \rfloor\}$.

Given a partial circuit system (A, \mathcal{C}) , a partial binary operation \cdot on A may be defined as follows.

- For all $x \in A$, $x \cdot x = x$.
- For distinct x, y ∈ A, if there is a circuit (..., w, x, y, z, ...) ∈ C then
 x · y = z and y · x = w. If no circuit in C contains the edge xy then
 x · y and y · x are undefined.

If (A, C) is a (partial) circuit system then (A, \cdot) is a (partial) groupoid.

This construction is generally called the standard construction and was first introduced by Kotzig in [8]. It is well known that the standard construction on 3-cycle systems gives rise to quasigroups, which are known as Steiner quasigroups. However, given a general circuit system (A, \mathcal{C}) the resulting groupoid (A, \cdot) is a quasigroup precisely when (A, \mathcal{C}) is 2-perfect, see [9]. One may ask what happens when this construction is applied to a K-perfect m-circuit system. Does the resulting groupoid have any structure corresponding to the K-perfect nature of the circuit system? It does, but to describe this structure we introduce a new operation, called k-division for each $k \in K$. In the case k = 2 this operation is the left division operation of the quasigroup.

Suppose we have a partial K-perfect m-circuit system. For each $k \in K$ the partial binary operation called k-division and denoted by \setminus_k , is defined as follows.

- For all $x \in A$, $x \setminus_k x = x$.
- For distinct $x, y \in A$, if x and y occur at distance k in some circuit,

$$(x,x_1,\ldots,x_{k-1},y,x_{k+1},\ldots,x_m)$$

say, then $x \setminus_k y = x_1$ and $y \setminus_k x = x_{k-1}$. If x and y do not occur at distance k in any circuit of C then $x \setminus_k y$ and $y \setminus_k x$ are undefined.

So given a partial K-perfect circuit system (A, \mathcal{C}) we can construct a partial algebra $\mathcal{A} = (A, \{\cdot\} \cup \{\setminus_k \mid k \in K\})$. If (A, \mathcal{C}) is a (complete) circuit system the result is an algebra. This partial algebra or algebra will be referred to with a calligraphic character, such as \mathcal{A} , and the underlying set with the corresponding roman character, such as A. As mentioned above, we denote by \mathbf{C}_m^K the class of algebras resulting from the application of the standard construction to K-perfect m-cycle systems.

It is important to make clear that when speaking of an algebra corresponding to a K-perfect m-cycle system (A, \mathcal{C}) we mean the algebra $(A, \{\cdot\} \cup \{\setminus_k \mid k \in K\})$. For each $k \in K$ we include the operation \setminus_k . Given a subset $K' \subseteq K$, (A, \mathcal{C}) is also a K'-perfect m-cycle system so we can construct the algebra $(A, \{\cdot\} \cup \{\setminus_k \mid k \in K'\})$. This is a different algebra because it has a different set of operations. In the following sections, except Section 5, context determines which algebra we obtain by applying the standard construction to (A, \mathcal{C}) . So if we refer to (A, \mathcal{C}) as K-perfect then the resulting algebra is $(A, \{\cdot\} \cup \{\setminus_k \mid k \in K'\})$. If we refer to (A, \mathcal{C}) as K'-perfect, for some $K' \subseteq K$, then the resulting algebra is $(A, \{\cdot\} \cup \{\setminus_k \mid k \in K'\})$.

To describe the identities satisfied by the algebras of \mathbf{C}_m^K we inductively define words in the variables \mathbf{x} and \mathbf{y} by $W_0(\mathbf{x}, \mathbf{y}) = \mathbf{x}$, $W_1(\mathbf{x}, \mathbf{y}) = \mathbf{y}$, and $W_i(\mathbf{x}, \mathbf{y}) = W_{i-2}(\mathbf{x}, \mathbf{y}) \cdot W_{i-1}(\mathbf{x}, \mathbf{y})$ for all $i \geq 2$.

Given a circuit system (A, \mathcal{C}) and any distinct pair $a, b \in A$, the unique circuit in \mathcal{C} traversing the edge ab is given by

$$(W_0(a,b),W_1(a,b),\ldots,W_{m-1}(a,b))$$

where m is the length of the circuit. If (A, C) is k-perfect then

$$(W_0(a, a \setminus b), W_1(a, a \setminus b), \ldots, W_{m-1}(a, a \setminus b))$$

is the unique circuit in which a and b occur at distance k.

It is straightforward to show that an algebra corresponding to a K-perfect m-circuit system satisfies the following identities.

$$\mathbf{x}^2 = \mathbf{x}$$
 $(\mathbf{x}\mathbf{y})\mathbf{y} = \mathbf{x}$
 $W_m(\mathbf{x}, \mathbf{y}) = \mathbf{x}$
 $\mathbf{x} \setminus_k W_k(\mathbf{x}, \mathbf{y}) = \mathbf{y}$ for all $k \in K$
 $W_k(\mathbf{x}, \mathbf{x} \setminus_k \mathbf{y}) = \mathbf{y}$ for all $k \in K$.

We refer to this set of identities as Σ_m^K throughout this paper.

A class of algebras closed under the taking of homomorphic images, subalgebras and direct products is a variety. It is well known that if C is a variety then there is a set Σ of identities such that $A \in C$ precisely when A satisfies Σ , see [1]. The variety of algebras satisfying Σ is denoted $V(\Sigma)$. The smallest variety containing a class C of algebras is denoted V(C). A class C generates C' if $C' \subseteq V(C)$. For more detail on the basic concepts of universal algebra see Grätzer's text [7], particularly Chapters 1 and 2.

3 Embedding finite partial K-perfect m-cycle systems

A partial K-perfect m-cycle system (A, C) embeds in another (A', C') if $A \subseteq A'$ and $C \subseteq C'$. Here, we show that every finite partial K-perfect m-cycle system embeds in a finite K-perfect m-cycle system. It is already known that any finite partial m-cycle system embeds in a finite m-cycle system, for example see [10]. To prove the result for K-perfect m-cycle systems we make use of edge-coloured graphs. An edge-coloured graph G^* is a multigraph G, without loops, and an assignment of colours to the edges of G. An edge-coloured graph G* is simple if there are no parallel edges, and it is uniform if each colour is assigned to the same number of edges. We denote by rK_n^* the graph with n vertices and with exactly one edge of each of r colours between each pair of vertices. We will say that two edge-coloured graphs G^* and H^* are colour-identical if there is a bijection ϕ between the vertex sets of G^* and H^* such that there is an edge of colour α between a and b in G^* if and only if there is an edge of colour α between $\phi(a)$ and $\phi(b)$ in H^* . A partial G^* -decomposition is a set G^* of edge-disjoint edge-coloured subgraphs of rK_n^* , each colour-identical with

 G^* . If the edge sets of the edge-coloured graphs in \mathcal{G}^* partition the edge set of rK_n^* then \mathcal{G}^* is a G^* -decomposition. A partial G^* -decomposition \mathcal{G}^* embeds in a partial G^* -decomposition \mathcal{G}'^* if $\mathcal{G}^* \subseteq \mathcal{G}'^*$. The following result concerning embeddings of partial G^* -decompositions was proven in [3].

Theorem 3.1. [3] If G^* is a uniform simple edge-coloured graph then any finite partial G^* -decomposition can be embedded in a finite G^* -decomposition.

By turning the problem of embedding partial K-perfect m-cycle systems into a problem on embedding edge-coloured graph decompositions we can use the above theorem to obtain the following result.

Theorem 3.2. Any finite partial K-perfect m-cycle system can be embedded in a finite K-perfect m-cycle system.

Proof Suppose C is a partial K-perfect m-cycle system of finite order and let $C = \{C_1, \ldots, C_t\}$. Let $\{\alpha_k \mid k \in K\}$ be a set of colours and let $\mathcal{G}^* = \{G_1^*, \ldots, G_t^*\}$ be the following partial edge-coloured graph decomposition.

- For $i=1,2,\ldots,t$, the vertex set of G_i^* is the vertex set of C_i .
- For each k ∈ K and each pair of vertices u and v in G_i^{*} there is an edge of colour α_k between u and v if and only if u and v occur at distance k in C_i.

The fact that \mathcal{C} is K-perfect ensures that \mathcal{G}^* is indeed a partial edge-coloured decomposition. It is clear that each G_i^* is colour-identical with G_1^* , that is $\{G_1^*, \ldots, G_t^*\}$ is a partial G_1^* -decomposition. Furthermore G_1^* is a simple edge-coloured graph. Thus by Theorem 3.1, $\{G_1^*, \ldots, G_t^*\}$ embeds in an edge-coloured G_1^* -decomposition of finite order, say $\{G_1^{'*}, \ldots, G_{t'}^{'*}\}$. Let $G_i^{'}$ be the unique m-cycle whose edges are colour α_1 in $G_i^{'*}$. Then $\{C_1^{'}, \ldots, C_{t'}^{'}\}$ is a finite K-perfect m-cycle system in which \mathcal{C} is embedded.

It follows from Theorem 3.2 that any algebra corresponding to a finite partial K-perfect m-cycle system can be embedded in an algebra corresponding to a finite K-perfect m-cycle system.

This enables us to answer one of the questions asked in [5].

Theorem 3.3. The finite algebras of C_m^K generate $V(C_m^K)$.

Proof Let \mathcal{A} be an algebra in $V(\mathbf{C}_m^K)$. Suppose \mathcal{A} fails to satisfy some identity, $\mathbf{p} = \mathbf{q}$ say. Then in the K-perfect m-cycle system corresponding to \mathcal{A} there is a finite collection of m-cycles, which gives rise to a partial algebra for which $\mathbf{p} = \mathbf{q}$ fails to hold. This partial subalgebra, \mathcal{A}' say, can be embedded in some finite algebra, \mathcal{B} say, in \mathbf{C}_m^K . Thus \mathcal{B} fails to satisfy $\mathbf{p} = \mathbf{q}$. So any identity which does not hold in \mathbf{C}_m^K does not hold in some finite algebra of \mathbf{C}_m^K . Thus, the finite algebras of \mathbf{C}_m^K generate the same variety as \mathbf{C}_m^K .

4 The free algebras of $\mathbf{V}(\Sigma_m^K)$

In this section we discuss what is in a sense the 'largest' possible embedding of a cycle system and the resulting algebra. Let (A_0, C_0) be a partial K-perfect m-cycle system. We wish to embed this in a complete K-perfect m-cycle system. If $u, v \in A_0$ do not occur at distance k in (A_0, C_0) we want to add a cycle where they do occur at distance k. The 'easiest' way to do this is to create some new vertices $\{x_1, \dots, x_{k-1}, x_{k+1}, \dots, x_{m-1}\}$ and add the cycle $(u, x_1, \dots, x_{k-1}, v, x_{k+1}, \dots, x_{m-1})$ to the partial cycle system. By repeating this procedure for all the other missing occurrences in (A_0, C_0) we end up with the partial circuit system (A_1, C_1) in which (A_0, C_0) is embedded and in which all the missing occurrences in (A_0, C_0) are included. Similarly we can find a partial circuit system (A_2, C_2) in which (A_1, C_1) is embedded and in which all the missing occurrences in (A_1, C_1)

are included. Taking the limit of this process we end up with a K-perfect m-cycle system $(A_{\omega}, \mathcal{C}_{\omega})$ in which (A_0, \mathcal{C}_0) is embedded and where every pair of vertices occurs at distance k for all $k \in K$. We call $(A_{\omega}, \mathcal{C}_{\omega})$ the free completion of (A_0, \mathcal{C}_0) .

The algebras arising from free completions correspond to a special sort of algebra, *freely generated* algebras. Here we give only the basic definitions needed to discuss freely generated algebras. For more detail see Chapter 4 of [7].

Given a partial algebra \mathcal{A} , a relative subalgebra of \mathcal{A} is a partial algebra \mathcal{B} such that $B \subseteq A$ and the operation $f(x_1, \ldots, x_n)$ is defined and equals y in \mathcal{B} if and only if $x_1, \ldots, x_n, y \in B$ and $f(x_1, \ldots, x_n) = y$ in \mathcal{A} . We say that \mathcal{B} is obtained by restricting \mathcal{A} to B.

Given partial algebras \mathcal{A} and \mathcal{B} , a homomorphism $\phi: \mathcal{A} \to \mathcal{B}$ is a function $\phi: A \to \mathcal{B}$ where $\phi(f(x_1, \ldots, x_n)) = f(\phi(x_1), \ldots, \phi(x_n))$ whenever $f(x_1, \ldots, x_n)$ is defined in \mathcal{A} . If $\phi: \mathcal{A} \to \mathcal{B}$ is a bijection and the inverse function $\phi^{-1}: \mathcal{B} \to \mathcal{A}$ is a homomorphism from \mathcal{B} to \mathcal{A} then ϕ is an isomorphism and \mathcal{A} and \mathcal{B} are isomorphic.

An algebra $\mathcal{F}_{\mathbf{C}}(\mathcal{A})$ is freely generated by the partial algebra \mathcal{A} over class \mathbf{C} if

- \mathcal{A} is a relative subalgebra of $\mathcal{F}_{\mathbf{C}}(\mathcal{A})$
- \mathcal{A} generates $\mathcal{F}_{\mathbf{C}}(\mathcal{A})$,
- for all homomorphisms $\phi : \mathcal{A} \to \mathcal{B}$ where $\mathcal{B} \in \mathbf{C}$ there is a homomorphism $\theta : \mathcal{F}_{\mathbf{C}}(\mathcal{A}) \to \mathcal{B}$ such that the restriction of θ to \mathcal{A} is ϕ .

If no operations are defined in \mathcal{A} then $\mathcal{F}_{\mathbf{C}}(\mathcal{A})$ is denoted by $\mathcal{F}_{\mathbf{C}}(A)$ and is called a *free algebra* generated by set A. For all $\mathcal{B} \in \mathbf{C}$ each map from A to B extends to a homomorphism from $\mathcal{F}_{\mathbf{C}}(A)$ to B. If the class \mathbf{C} of algebras is a variety defined by the set Σ of identities we write $\mathcal{F}_{\Sigma}(A)$ instead of

 $\mathcal{F}_{\mathbf{C}}(\mathcal{A})$.

Lemma 4.1. If A is a set and A is the algebra arising from the partial K-perfect m-cycle system (A,\emptyset) then $\mathcal{F}_{\Sigma_m^K}(A) \cong \mathcal{F}_{\Sigma_m^K}(A)$.

Proof The partial algebra \mathcal{A} is idempotent, as are all the algebras in $V(\Sigma_m^K)$, so every map from A to an algebra in $V(\Sigma_m^K)$ is a homomorphism. Thus $\mathcal{F}_{\Sigma_m^K}(\mathcal{A})$ is an algebra with a free generating set A. The uniqueness of free algebras (see [7]) then means that $\mathcal{F}_{\Sigma_m^K}(A) \cong \mathcal{F}_{\Sigma_m^K}(A)$.

Theorem 4.2. Let (A, C) be a partial K-perfect m-cycle system and A its corresponding partial algebra. The algebra obtained by the free completion of (A, C) is isomorphic to $\mathcal{F}_{\Sigma_n^K}(A)$.

Proof Let $(A, \mathcal{C}) = (A'_0, \mathcal{C}_0)$, let (A'_i, \mathcal{C}_i) $(i \in \mathbb{N})$ be the partial K-perfect m-cycle systems that arise in the free completion of (A', \mathcal{C}_0) and let $(A'_{\omega}, \mathcal{C}_{\omega})$ be the free completion of (A', \mathcal{C}_0) . Let A'_i be the corresponding partial algebra to (A_i, \mathcal{C}_i) and A'_{ω} the corresponding algebra to $(A'_{\omega}, \mathcal{C}_{\omega})$.

Since $V(\Sigma_m^K)$ is a variety we know by Theorem 2 in section 28 of Gräzter [7] that $\mathcal{F}_{\Sigma_m^K}(A)$ exists. We define the following sequence of partial algebras.

- $\bullet \ A_0=A,$
- $A_{i+1} = \{x \mid x = W_j(y, y \setminus_k z) \text{ where } y, z \in A'_i \text{ and } k \in K\},$
- A_i is the relative subalgebra obtained by restricting $\mathcal{F}_{\Sigma_m^K}(A)$ to A_i' .

Now $\mathcal{A}'_{\omega} \in \mathbf{V}(\Sigma_{m}^{K})$ so the identity map id: $\mathcal{A}_{0} \to \mathcal{A}'_{0}$ extends to a homomorphism $\phi: \mathcal{F}_{\Sigma_{m}^{K}}(\mathcal{A}) \to \mathcal{A}'_{\omega}$. Let ϕ_{i} denote the restriction of ϕ to \mathcal{A}_{i} . We will show by induction that ϕ_{i} is an isomorphism of \mathcal{A}_{i} and \mathcal{A}'_{i} for all $i \in \mathbb{N}$. Since $\mathcal{F}_{\Sigma_{m}^{K}}(\mathcal{A})$ is the direct union of the \mathcal{A}_{i} , and \mathcal{A}'_{ω} is the direct union of the \mathcal{A}'_{i} , this establishes that ϕ is an isomorphism of $\mathcal{F}_{\Sigma_{m}^{K}}(\mathcal{A})$ and \mathcal{A}'_{ω} .

First of all ϕ_0 is the identity so it is an isomorphism. Now assume that ϕ_i is an isomorphism. To show that ϕ_{i+1} is an isomorphism we need to show four things, that ϕ_{i+1} is a homomorphism, one-to-one, onto, and that ϕ_{i+1}^{-1} is a homomorphism. Firstly ϕ_{i+1} is a homomorphism. This follows easily from the fact that it is the restriction of ϕ to \mathcal{A}_{i+1} .

Secondly ϕ_{i+1} is onto. Let x' be an element of A'_{i+1} . If $x' \in A'_i$ then it is the image of something in A_i by the assumption that ϕ_i is an isomorphism. If $x' \notin A'_i$ then there is some pair $y', z' \in A'_i$ and $k \in K$ such that x' is a vertex of the cycle where y' and z' occur at distance k. That is there is some integer j such that $x' = W_j(y', y' \setminus_k z')$. Now y' and z' are the images of some elements in A_i , y and z say. Then x' is the image of $W_j(y, y \setminus_k z)$.

Next we need to show that ϕ_{i+1} is one-to-one. Suppose $x_1, x_2 \in A_{i+1}$ and $\phi_{i+1}(x_1) = \phi_{i+1}(x_2)$. There are three cases to consider.

i) If $x_1, x_2 \in A_i$ then

$$\phi_{i+1}(x_1) = \phi_i(x_1) = \phi_i(x_2) = \phi_{i+1}(x_2)$$

which implies that $x_1 = x_2$ by assumption.

ii) If $x_1 \notin A_i$ but $x_2 \in A_i$. There is some $k \in K$, $j \in \mathbb{Z}$ and $y, z \in A_i$ such that $x_1 = W_i(y, y \setminus_k z)$. If $\phi_{i+1}(x_1) = \phi_{i+1}(x_2)$ then $W_j(\phi_{i+1}(y), \phi_{i+1}(y) \setminus_k \phi_{i+1}(z)) = \phi_{i+1}(x_2) \in A_i$.

By the construction of (A_i', \mathcal{C}_i) this means that $\phi_{i+1}(y)\setminus_k \phi_{i+1}(z)$ is defined in A_i' . As ϕ_i is an isomorphism this means that $y\setminus_{k_1}z$ is defined in A_i . But then $x_1=W_j(y,y\setminus_k z)\in A_i$ which is a contradiction. So we do not have $x_1\not\in A_i$ and $x_2\in A_i$.

iii) If $x_1, x_2 \notin A_i$ then there are some $k_1, k_2 \in K$, some $j_1, j_2 \in \mathbb{Z}$ and some $y_1, y_2, z_1, z_2 \in A_{i+1}$ such that $x_1 = W_{j_1}(y_1, y_1 \setminus_{k_1} z_1)$ and $x_2 = W_{j_2}(y_2, y_2 \setminus_{k_2} z_2)$. Because $y_1, y_2, z_1, z_2 \in A_i$, $\phi_{i+1}(y_1) \neq \phi_{i+1}(z_1)$ and $\phi_{i+1}(y_2) \neq \phi_{i+1}(z_2)$. This means that $\phi_{i+1}(x_1)$ is in the cycle

where $\phi_{i+1}(y_1)$ and $\phi_{i+1}(z_1)$ occur at distance k_1 . Similarly $\phi_{i+1}(x_2)$ is in the cycle where $\phi_{i+1}(y_2)$ and $\phi_{i+1}(z_2)$ occur at distance k_2 . The construction of (A'_{i+1}, C_{i+1}) means that $\phi_{i+1}(x_1)$ and $\phi_{i+1}(x_2)$ are distinct unless

- a) $k_1 = k_2$, $j_1 = j_2$, $\phi_{i+1}(y_1) = \phi_{i+1}(y_2)$ and $\phi_{i+1}(z_1) = \phi_{i+1}(z_2)$. Then $y_1 = y_2$ and $z_1 = z_2$ and so $x_1 = x_2$,

 OR.
- b) $k_1 = k_2$, $j_2 = m j_1 + k_1$, $\phi_{i+1}(y_1) = \phi_{i+1}(z_2)$ and $\phi_{i+1}(z_1) = \phi_{i+1}(y_2)$. Then $y_1 = z_2$, $z_1 = y_2$ and

$$x_1 = W_{j_1}(y_1, y_1 \setminus_{k_1} z_1) = W_{m-j_2+k_1}(z_2, z_2 \setminus_{k_1} y_2)$$

$$=W_{m-j_2+1}(y_2\backslash_{k_1}z_2,y_2)=W_{j_2}(y_2,y_2\backslash_{k_2}z_2)=x_2.$$

Thus $\phi_{i+1}(x_1) = \phi_{i+1}(x_2)$ implies $x_1 = x_2$, so ϕ_{i+1} is one-to-one.

As ϕ_{i+1} is a bijection between \mathcal{A}_i and \mathcal{A}'_i it has an inverse ϕ_{i+1}^{-1} . Finally we need to show that ϕ_{i+1}^{-1} is a homomorphism. Now $x_1 \cdot x_2$ is defined in \mathcal{A}_{i+1} if and only if $x_1, x_2 \in A_i$ or $x_1 = W_j(y, y \setminus_k z)$ and $x_2 = W_{j+1}(y, y \setminus_k z)$ for some $k \in K$, $j \in \mathbb{Z}$ and $y, z \in A_i$. Also $x'_1 \cdot x'_2$ is defined in \mathcal{A}'_{i+1} if and only if $x'_1, x'_2 \in A'_i$ or $x'_1 = W_j(y', y' \setminus_k z')$ and $x'_2 = W_{j+1}(y', y' \setminus_k z')$ for some $k \in K$, $j \in \mathbb{Z}$ and $y', z' \in A'_i$. So it follows from this that $x_1 \cdot x_2$ is defined in \mathcal{A}'_{i+1} if and only if $\phi_{i+1}^{-1}(x_1) \cdot \phi_{i+1}^{-1}(x_2)$ is defined in \mathcal{A}_{i+1} . If

$$\phi_{i+1}^{-1}(x_1)\cdot\phi_{i+1}^{-1}(x_2)\neq\phi_{i+1}^{-1}(x_1\cdot x_2)$$

then

$$x_1 \cdot x_2 = \phi_{i+1}(\phi_{i+1}^{-1}(x_1) \cdot \phi_{i+1}^{-1}(x_2)) \neq \phi_{i+1}(\phi_{i+1}^{-1}(x_1 \cdot x_2)) = x_1 \cdot x_2$$

which is a contradiction. Thus

$$\phi_{i+1}^{-1}(x_1)\cdot\phi_{i+1}^{-1}(x_2)=\phi_{i+1}^{-1}(x_1\cdot x_2).$$

A similar argument shows that

$$\phi_{i+1}^{-1}(x_1\backslash_k x_2) = \phi_{i+1}^{-1}(x_1)\backslash_k \phi_{i+1}^{-1}(x_2).$$

So ϕ_{i+1}^{-1} is a homomorphism. Thus ϕ_{i+1} is an isomorphism. By the principle of mathematical induction ϕ_i is an isomorphism between \mathcal{A}_i and \mathcal{A}'_i for all $i \in \mathbb{N}$.

o

Theorem 4.3. The variety $V(\Sigma_m^K)$ is generated by C_m^K . Thus the finite algebras of C_m^K generate $V(\Sigma_m^K)$.

Proof Let A be an infinite set and let A be the algebra corresponding to the partial K-perfect m-cycle system (A,\emptyset) . The algebra A_{ω} arising from the free completion of (A,\emptyset) is a free algebra by Lemma 4.1. By Theorem 4.2, A_{ω} is a free algebra of $\mathbf{V}(\Sigma_m^K)$ generated by an infinite set, and so generates $\mathbf{V}(\Sigma_m^K)$ see [7]. Furthermore, A_{ω} corresponds to a K-perfect m-cycle system and so \mathbf{C}_m^K generates $\mathbf{V}(\Sigma_m^K)$. Theorem 3.3 then implies that the finite algebras of \mathbf{C}_m^K generate $\mathbf{V}(\Sigma_m^K)$.

We can now answer another question asked in [5].

Theorem 4.4. If $m_1, m_2 \geq 3$ are distinct integers and $m = \text{lcm}(m_1, m_2)$ then $V(\mathbf{C}_{m_1}^K \cup \mathbf{C}_{m_2}^K)$ is a proper subvariety of $V(\mathbf{C}_m^K)$.

Proof Each of the algebras in $\mathbf{C}_{m_1}^K \cup \mathbf{C}_{m_2}^K$ satisfies Σ_m^K , so $\mathbf{V}(\mathbf{C}_{m_1}^K \cup \mathbf{C}_{m_2}^K)$ is a subvariety of $\mathbf{V}(\Sigma_m^K) = \mathbf{V}(\mathbf{C}_m^K)$ by Theorem 4.3. Now, every algebra in $\mathbf{C}_{m_1}^K \cup \mathbf{C}_{m_2}^K$ satisfies the identity $W_{m_1}(\mathbf{x}, W_{m_2}(\mathbf{x}, \mathbf{y})) = \mathbf{x}$. Thus $\mathbf{V}(\mathbf{C}_{m_1}^K \cup \mathbf{C}_{m_2}^K)$ satisfies $W_{m_1}(\mathbf{x}, W_{m_2}(\mathbf{x}, \mathbf{y})) = \mathbf{x}$. Let \mathcal{C} be a K-perfect m-cycle system in which the partial K-perfect m-cycle system

$$\{(x_0,x_1,\ldots x_{m-1}),(x_0,x_{m_2},y_2,\ldots y_{m-1})\}$$

is embedded and where $x_i \neq y_j$ for all $i, j \in \{0, ..., m-1\}$ with $j \geq 2$ (\mathcal{C} exists by Theorem 3.2). If \mathcal{A} is the algebra corresponding to \mathcal{C} then

 $W_{m_1}(x_0, W_{m_2}(x_0, x_1)) = W_{m_1}(x_0, x_{m_2}) = y_{m_1} \neq x_1$. Thus \mathcal{A} does not satisfy $W_{m_1}(\mathbf{x}, W_{m_2}(\mathbf{x}, \mathbf{y})) = \mathbf{x}$ and so $\mathcal{A} \notin \mathbf{V}(\mathbf{C}_{m_1}^K \cup \mathbf{C}_{m_2}^K)$. Hence $\mathbf{V}(\mathbf{C}_{m_1}^K \cup \mathbf{C}_{m_2}^K)$ is a proper subvariety of $\mathbf{V}(\mathbf{C}_m^K)$.

5 K-perfect and K'-perfect m-cycle systems

Given a partial K-perfect circuit system (A, \mathcal{C}) we can construct a partial algebra $\mathcal{A} = (A, \{\cdot\} \cup \{\setminus_k \mid k \in K\})$. However, for any set $K' \subseteq K$, (A, \mathcal{C}) is also a partial K'-perfect m-cycle system, so we can also construct a partial algebra $\mathcal{A}_{K'} = (A, \{\cdot\} \cup \{\setminus_k \mid k \in K'\})$. So (A, \mathcal{C}) gives rise to different partial algebras, one for each $K' \subseteq K$. We will call $\mathcal{A}_{K'}$ the K'-reduct of \mathcal{A} . We denote by $\mathbf{C}_m^{K,K'}$ the class of K'-reducts of the algebras in \mathbf{C}_m^K .

Theorem 5.1. If m is a positive integer and K' and K are subsets of $\{1, \ldots, \lfloor \frac{m}{2} \rfloor\}$ with $K' \subseteq K$, then $V(\mathbf{C}_m^{K,K'}) = V(\Sigma_m^{K'})$.

Proof We will show that the free algebras of $V(\Sigma_m^{K'})$ are in $V(C_m^{K,K'})$. This is sufficient because the free algebras of a variety generate the variety. Let \mathcal{F} be a free algebra of $V(\Sigma_m^K)$ freely generated by a set A. Let \mathcal{C}_0 be the free completion of (A,\emptyset) considered as a partial K'-perfect m-cycle system. By Theorem 4.2, $\mathcal{F} \cong \mathcal{A}'_0$ where \mathcal{A}'_0 is the algebra corresponding to \mathcal{C}_0 . Note that \mathcal{C}_0 is also a partial K-perfect m-cycle system. Thus \mathcal{A}'_0 is the K'-reduct of $\mathcal{A}_0 = (\mathcal{A}, \{\cdot\} \cup \{\setminus_k \mid k \in K\})$, the partial algebra corresponding to \mathcal{C}_0 considered as a partial K-perfect m-cycle system. Let \mathcal{C}_1 be the free completion of \mathcal{C}_0 considered as a K-perfect m-cycle system and let \mathcal{A}_1 be the algebra corresponding to \mathcal{C}_1 . Let \mathcal{A}'_1 be the K'-reduct of \mathcal{A}_1 .

The following diagram illustrates the relationship between the four algebras.

$$\mathcal{A}_0'$$
 extends to \mathcal{A}_0 is a subalgebra of \downarrow \downarrow is embedded in \mathcal{A}_1' reduces to \mathcal{A}_1

Clearly $\mathcal{A}_{1}' \in \mathbf{C}_{m}^{K,K'}$. It follows easily from the construction of \mathcal{A}_{1}' that \mathcal{A}_{0}' is a subalgebra of \mathcal{A}_{1}' and so $\mathcal{A}_{0}' \cong \mathcal{F} \in \mathbf{V}(\mathbf{C}_{m}^{K,K'})$.

Finally, we obtain the following theorem which unifies some of the previous results in this paper.

Theorem 5.2. Let m be an integer and let K and K' be subsets of $\{1, \ldots, \lfloor \frac{m}{2} \rfloor\}$ with $K' \subseteq K$. The finite algebras of $\mathbf{C}_m^{K,K'}$ generate $\mathbf{V}(\Sigma_m^{K'})$.

Proof The finite algebras of \mathbf{C}_m^K generate \mathbf{C}_m^K by Theorem 3.3. Thus, the finite algebras of $\mathbf{C}_m^{K,K'}$ generate $\mathbf{C}_m^{K,K'}$. Furthermore, $\mathbf{C}_m^{K,K'}$ generates $\mathbf{V}(\Sigma_m^{K'})$ by Theorem 5.1. So the finite algebras of $\mathbf{C}_m^{K,K'}$ generate $\mathbf{V}(\Sigma_m^{K'})$.

Acknowledgement

The author wishes to thank Darryn Bryant for his help in the writing of this paper.

References

- G. Birkhoff, On the structure of abstract algebras, Proc. Cambridge Philos. Soc. 31 (1935), 433-454.
- [2] R. Brier and D. Bryant, Varieties of algebras arising from K-perfect m-cycle systems, Discrete Math. 306 (2006), 2038-2046.
- [3] R. Brier and D. Bryant, On the existence and embedding of edgecoloured graph decompositions, *Ars Combin*. (to appear)

- [4] D.E. Bryant, A Note on Varieties of Groupoids Arising from m-Cycle Systems, J. Algebraic Combin. 4 (1995), 197-200.
- [5] D.E. Bryant, Varieties of P-Quasigroups, Australas. J. Combin. 6 (1992), 229-243.
- [6] D.E. Bryant and C.C. Lindner, 2-perfect m-cycle systems can be equationally defined for m=3,5 and 7 only, Algebra Universalis 35 (1996), 1-7.
- [7] G. Grätzer, Universal Algebra (second edition), Spring-Verlag, New York 1979.
- [8] A. Kotzig, Groupoids and partitions of complete graphs, Combinatorial structures and their applications, Gordon and Breach, New York 1970, 215-221.
- [9] C.C. Lindner, Graph decompositions and quasigroup identities, Le Mathematiche 45 (1990), 83-118.
- [10] C.C. Lindner, A survey of small embeddings for partial cycle systems London Math. Soc. Lecture Note Ser. 245 (1997), 123-147.