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Abstract

A method called the standard construction generates an algebra
from a K-perfect m-cycle system. Let CX denote the class of al-
gebras generated by K-perfect m-cycle systems. For each m and
K, there is a known set TX of identities which all the algebras in
CK satisfy. The question of when CX is a variety is answered in
[2]. When CX is a variety it is defined by X, In general, CK is a
proper subclass of V(EX), the variety of algebras defined by TX.

If the standard construction is applied to partial K-perfect m-
cycle systems then partial algebras result. Using these partial alge-
bras we are able to investigate properties of V(ZX). We show that
the free algebras of V(ZX) correspond to K-perfect m-cycle systems,
so CK generates V(ZX). We also answer two questions asked in [5]
concerning subvarieties of V(E2X). Many of these results can be uni-
fied in the result that for any subset K’ of K, V(E,ﬁ') is generated
by the class of algebras corresponding to finite K-perfect m-cycle

systems.
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1 Introduction

An m-circuit, or a circuit of length m, in a graph G is a cyclically ordered
m-tuple (Zo,Z1,...,Zm—1) of vertices of G such that zoz, ..., Tm—2Tm-1,
Tm-1Zo are distinct edges of G. If all the vertices of an m-circuit are
distinct then it is an m-cycle. We do not distinguish m-circuits by their
starting point or the overall direction in which the edges are traversed (for-
wards or backwards). Thus each cyclic permutation of (zg, z1,. .., Tm-1) or
(zo,Zm-1,...,Z1) represents the same m-circuit. Note however that the in-
ternal order of the edges makes a difference. For example, (o, 71,2, Zo, Z3, Z4)
and (zo, Z1, T2, Zo, T4, z3) are different 6-circuits. For i = 0,1,...,m — 1
we say that z; and z;4; (subscripts reduced modulo m on the residues
0,1,...,m — 1) occur at distance k in the circuit (zo,...,Zm-1). An m-
circuit system (m-cycle system) is a pair (4,C) where A is a set and C
is a set of m-circuits (m-cycles) whose edges partition the edge set of the
complete graph with vertex set A.

There is a well-known method, often called the standard construction
[9], for constructing an algebra from any given m-cycle system. An ad-
ditional property (defined in Section 2) which an m-circuit system may
possess is that of being 2-perfect, and 2-perfect m-circuit systems are of
special interest as the algebra obtained from an m-circuit system is a quasi-
group precisely when the system is 2-perfect. A natural generalization of
the notion of 2-perfect is that of K-perfect where K is some set of positive
integers.

The purpose of this paper is to investigate the universal algebraic prop-
erties of the algebras which correspond to K-perfect m-cycle systems when
the standard construction is applied. A few papers already provide results
of this nature. For example, it is known that the class of groupoids cor-

responding to m-cycle systems is a variety precisely when m € {3,5} [4].



Likewise, the quasigroups corresponding to 2-perfect m-cycle systems form
a variety precisely when m € {3,5,7} [6]. In general, the class CX of al-
gebras corresponding to K-perfect m-cycle systems is a variety precisely
when m # 4 and the only K-perfect m-circuit systems are cycle systems
[2].

In this paper we show that the variety generated by CX is generated
by its finite members. This result answers a question posed in [5], and is
proved by showing that every finite partial K-perfect m-cycle system can
be embedded in a complete K-perfect m-cycle system of finite order.

A standard set of identities, denoted by £X, which is satisfied by the
algebras corresponding to K-perfect m-cycle systems is given in [2]. This is
a generalization of the well-known set of identities associated with Steiner
quasigroups and 2-perfect m-cycle systems, see [9].

We also investigate the free algebras generated by TX, in particular
showing that these are in CX. Along with the embedding result, this
enables us to show that the variety generated by Cﬁl and C,’fl2 is a proper
subvariety of CX where m = lem(my, m2), thus answering another question
asked in [5).

The result that the free algebras generated by TX are in CX follows
from a more general result concerning algebras freely generated by partial
K-perfect m-cycle systems. This generalization also allows us to show that
for any subset K’ C K, C,’f,' is generated by the algebras of Cﬁl which

correspond to K-perfect m-cycle systems.

2 Algebras corresponding to circuit systems

In this section we provide the necessary definitions for the rest of paper.
It is convenient to develop the ideas mentioned in Section 1 not only for

circuit systems but also for partial circuit systems.
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A partial L-circuit system is a pair (4,C) where A is a non-empty set
and C is set of edge-disjoint circuits whose vertices are in A and whose
lengths are in L. The order of (A4,C) is |A|, and if all the circuits in C
are cycles then (A,C) is a partial L-cycle system. Note that there may be
vertices in A which do not occur in any of the cycles in C. For example,
this means that (A, @) is a partial circuit system for any non-empty set A.
If we refer to a partial circuit system as C instead of as (4,C) it should be
assumed that A consists of the vertices occurring in the circuits of C. We
write m-circuit system instead of {m}-circuit system.

A circuit system (A, C) is k-perfect if for all u,v € A, u and v occur at
distance k exactly once. More precisely, there is a unique (zo,...,Zm_1) €
C with z; = u, Z;4, = v (subscripts reduced modulo m) and k # . Fora
set K of integers, if an m-circuit system is k-perfect for all ¥ € K then it is
said to be K-perfect. Similarly, a partial circuit system (A4,C) is partially
k-perfect if for all distinct u,v € A, u and v occur at distance k at most
once. If (A,C) is partially k-perfect for all k € K then it is partially K-
perfect. It is easy to see that a (complete) circuit system of finite order is
K-perfect if it is partially K-perfect. However, there are circuit systems of
infinite order which are partially K-perfect but not K-perfect (see Section
5). If a partial m-circuit system is partially k-perfect then it is also partially
(m — k)-perfect. For this reason when talking about a K-perfect m-~circuit
system we consider K to be a subset of {1,2,...,|Z]}.

Given a partial circuit system (A,C), a partial binary operation - on A

may be defined as follows.
esForallze A, z-z2=1.

e For distinct z,y € A, if there is a circuit (..., w,z,y,2,...) € C then
z-y=2zand y-z = w. If no circuit in C contains the edge zy then

z -y and y - z are undefined.



If (A, C) is a (partial) circuit system then (4,-) is a (partial) groupoid.

This construction is generally called the standard construction and was
first introduced by Kotzig in [8]. It is well known that the standard con-
struction on 3-cycle systems gives rise to quasigroups, which are known as
Steiner quasigroups. However, given a general circuit system (A,C) the re-
sulting groupoid (4, -) is a quasigroup precisely when (4, () is 2-perfect, see
[9]. One may ask what happens when this construction is applied to a K-
perfect m-circuit system. Does the resulting groupoid have any structure
corresponding to the K-perfect nature of the circuit system? It does, but to
describe this structure we introduce 2 new operation, called k-division for
each k € K. In the case k = 2 this operation is the left division operation
of the quasigroup.

Suppose we have a partial K-perfect m-circuit system. For each k € K
the partial binary operation called k-division and denoted by \«, is defined

as follows.
e Forallz € A, z\rz =1z.

o For distinct x,y € A, if z and y occur at distance k in some circuit,

(mvxl:"ka—l’y’mk'{-l)” . 7xm)

say, then z\xy = z; and y\kz = ZTx-1. If £ and y do not occur at

distance k in any circuit of C then z\ry and y\xz are undefined.

So given a partial K-perfect circuit system (A,C) we can construct a
partial algebra A = (4, {-}U{\« | k¥ € K}). If (A,C) is a (complete) circuit
system the result is an algebra. This partial algebra or algebra will be
referred to with a calligraphic character, such as A, and the underlying set
with the corresponding roman character, such as A. As mentioned above,
we denote by CK the class of algebras resulting from the application of the

standard construction to K-perfect m-cycle systems.
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It is important to make clear that when speaking of an algebra cor-
responding to a K-perfect m-cycle system (A4,C) we mean the algebra
(A {}U{\x | k € K}). For each k € K we include the operation \.
Given a subset K’ C K, (A,C) is also a K’'-perfect m-cycle system so we
can construct the algebra (4,{-} U{\x | ¥ € K’}). This is a different
algebra because it has a different set of operations. In the following sec-
tions, except Section 5, context determines which algebra we obtain by
applying the standard construction to (4,C). So if we refer to (4,C) as
K-perfect then the resulting algebra is (4, {-} U {\« | k € K}). If we refer
to (A,C) as K'’-perfect, for some K’ C K, then the resulting algebra is
(A, {}U{\c| ke K}).

To describe the identities satisfied by the algebras of CX we inductively
define words in the variables x and y by Wy(x,y) = x, Wi(x,y) =y, and
Wi(x,y) = Wi—a(x,y) - Wi—1(x,y) for all i > 2.

Given a circuit system (4,C) and any distinct pair a,b € A, the unique

circuit in C traversing the edge ab is given by
(Wo(a, b), Wi(a,b),...,Win_1(a,b))
where m is the length of the circuit. If (A, C) is k-perfect then
(Wo(a, a\rb), Wi(a,a\ib),..., Wn_1(a,a\rb))

is the unique circuit in which a and b occur at distance k.
It is straightforward to show that an algebra corresponding to a K-

perfect m-circuit system satisfies the following identities.

x? =

x
(xy)y x
Walx,y) = x

xX\eWi(x,y) = y forallkek

Wie(x,x\ry) = ¥ for all k € K.
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We refer to this set of identities as £X throughout this paper.

A class of algebras closed under the taking of homomorphic images,
subalgebras and direct products is a variety. It is well known that if C is
a variety then there is a set T of identities such that .A € C precisely when
A satisfies &, see [1]. The variety of algebras satisfying T is denoted V().
The smallest variety containing a class C of algebras is denoted V(C). A
class C generates C' if C' C V(C). For more detail on the basic concepts
of universal algebra see Gritzer's text [7], particularly Chapters 1 and 2.

3 Embedding finite partial K-perfect m-cycle
systems

A partial K-perfect m-cycle system (A,C) embeds in another (A',C’) if
A C A’ and C C C'. Here, we show that every finite partial K-perfect
m-cycle system embeds in a finite K-perfect m-cycle system. It is already
known that any finite partial m-cycle system embeds in a finite m-cycle
system, for example see [10]. To prove the result for K-perfect m-cycle
systems we make use of edge-coloured graphs. An edge-coloured graph G*
is a multigraph G, without loops, and an assignment of colours to the edges
of G. An edge-coloured graph G* is simple if there are no parallel edges,
and it is uniform if each colour is assigned to the same number of edges.
We denote by 7K} the graph with n vertices and with exactly one edge
of each of r colours between each pair of vertices. We will say that two
edge-coloured graphs G* and H* are colour-identical if there is a bijection
¢ between the vertex sets of G* and H* such that there is an edge of
colour o between a and b in G* if and only if there is an edge of colour
a between ¢(a) and ¢(b) in H*. A partial G*-decomposition is a set G*
of edge-disjoint edge-coloured subgraphs of 7K, each colour-identical with

469



G*. If the edge sets of the edge-coloured graphs in G* partition the edge
set of 7K then G* is a G*-decomposition. A partial G*-decomposition G*
embeds in a partial G*-decomposition G'* if G* C G'*. The following result

concerning embeddings of partial G*-decompositions was proven in [3].

Theorem 3.1. [3] If G* is a uniform simple edge-coloured graph then any

finite partial G*-decomposition can be embedded in a finite G*-decomposition.

By turning the problem of embedding partial K-perfect m-cycle systems
into a problem on embedding edge-coloured graph decompositions we can

use the above theorem to obtain the following result.

Theorem 3.2. Any finite partial K -perfect m-cycle system can be embed-
ded in a finite K -perfect m-cycle system.

Proof SupposeC is a partial K-perfect m-cycle system of finite order and
let C = {Cy,...,C:}. Let {ax | k € K} be a set of colours and let G* =
{G1,...,G;} be the following partial edge-coloured graph decomposition.

e Fori=1,2,...,t, the vertex set of G} is the vertex set of C;.

e For each k € K and each pair of vertices u and v in G} there is an
edge of colour ay between u and v if and only if © and v occur at

distance k in C;.

The fact that C is K-perfect ensures that G* is indeed a partial edge-
coloured decomposition. It is clear that each G} is colour-identical with
Gi, that is {G7,...,G}} is a partial G}-decomposition. Furthermore G} is
a simple edge-coloured graph. Thus by Theorem 3.1, {G},...,G}} embeds
in an edge-coloured G}-decomposition of finite order, say {G7',..., Gz}
Let C] be the unique m-cycle whose edges are colour @; in G;*. Then
{Ci, ceey C;,} is a finite K-perfect m-cycle system in which C is embedded.

(o]
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It follows from Theorem 3.2 that any algebra corresponding to a finite
partial K-perfect m-cycle system can be embedded in an algebra corre-
sponding to a finite K-perfect m-cycle system.

This enables us to answer one of the questions asked in [5].
Theorem 3.3. The finite algebras of CK generate V(CK).

Proof Let A be an algebra in V(CX). Suppose A fails to satisfy some
identity, p = q say. Then in the K-perfect m-cycle system corresponding
to A there is a finite collection of m-cycles, which gives rise to a partial
algebra for which p = q fails to hold. This partial subalgebra, A’ say, can
be embedded in some finite algebra, B say, in CX. Thus B fails to satisfy
p = q. So any identity which does not hold in CK does not hold in some
finite algebra of CX. Thus, the finite algebras of Cf generate the same

variety as CX . )

4 - The free algebras of V(ZK)

In this section we discuss what is in a sense the ‘largest’ possible embedding
of a cycle system and the resulting algebra. Let (Ao,Co) be a partial K-
perfect m-cycle system. We wish to embed this in a complete K -perfect
m-cycle system. If u,v € Ao do not occur at distance k in (Ao, Co) we
want to add a cycle where they do occur at distance k. The ‘easiest’ way
to do this is to create some new vertices {z; ey The1,Thgly -y Em—1}
and add the cycle (u,z,...,Tk-1,0, Tk+1,-..,Tm-1) to the partial cycle
system. By repeating this procedure for all the other missing occurrences
in (Ao,Co) we end up with the partial circuit system (A;,C1) in which
(Ao, Co) is embedded and in which all the missing occurrences in (Ao, Co)
are included. Similarly we can find a partial circuit system (Az, C2) in which

(A1,C) is embedded and in which all the missing occurrences in (A1,Ch)
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are included. Taking the limit of this process we end up with a K-perfect
m-cycle system (A,,C,) in which (Ao,Co) is embedded and where every
pair of vertices occurs at distance & for all k € K. We call (A,,,C,) the free
completion of (Ao,Co) .

The algebras arising from free completions correspond to a special sort
of algebra, freely generated algebras. Here we give only the basic definitions
needed to discuss freely generated algebras. For more detail see Chapter 4
of [7].

Given a partial algebra A, a relative subalgebra of A is a partial algebra
B such that B C A and the operation f(zi,...,z,) is defined and equals
y in B if and only if z1,...,Z,,y € B and f(z1,...,2z,) =y in A. We say
that B is obtained by restricting A to B.

Given partial algebras A and B, a homomorphism ¢ : A — Bis a
function ¢ : A — B where ¢(f(z1,...,z,)) = f(¢(z1),...,d(zn)) when-
ever f(z1,...,%,) is defined in A. If ¢ : A — B is a bijection and the
inverse function ¢! : B — A is a homomorphism from B to A then ¢ is
an isomorphism and A and B are isomorphic.

An algebra Fc(A) is freely generated by the partial algebra A over class
Cif

o A is a relative subalgebra of Fc(A)
o A generates Fc(A),

e for all homomorphisms ¢ : A — B where B € C there is a homomor-
phism 0 : Fc(A) — B such that the restriction of 8 to A is ¢.

If no operations are defined in A then Fc(A) is denoted by Fc(A) and is
called a free algebra generated by set A. For all B € C each map from A to
B extends to a homomorphism from Fc(A) to B. If the class C of algebras
is a variety defined by the set I of identities we write Fx(.A) instead of
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Fec(A) .

Lemma 4.1. If A is a set and A is the algebra arising from the partial
K -perfect m-cycle system (A,0) then Fgi (A) = Fex (A).

Proof The partial algebra A is idempotent, as are all the algebras in
V(ZK), so every map from A to an algebra in V(ZK) is a homomorphism.
Thus Fyx (A) is an algebra with a free generating set A. The uniqueness

of free algebras (see [7]) then means that Fyk (4) = Fpx (A). °

Theorem 4.2. Let (A,C) be a partial K-perfect m-cycle system and A its
corresponding partial algebra. The algebra obtained by the free completion
of (A,C) is isomorphic to Fzx (A).

Proof Let (A,C) = (45,Co), let (A%, Ci) (i € N) be the partial K-perfect
m-cycle systems that arise in the free completion of (A’, Co) and let (A,,C.)
be the free completion of (A’,Co). Let A} be the corresponding partial
algebra to (A;,C;) and AL, the corresponding algebra to (A, Cu)-

Since V(ZX) is a variety we know by Theorem 2 in section 28 of Grazter

[7] that Fzx (A) exists. We define the following sequence of partial algebras.

[ ] Ao = A,
o Ay = {z |z =W;(y,y\sz) wherey,z € A} and k € K},
e A; is the relative subalgebra obtained by restricting Fxx (A) to Al

Now A’, € V(ZK) so the identity map id : Ag — Aj extends to a homo-
morphism ¢ : Frx(A) — A,. Let ¢ denote the restriction of ¢ to A;.
We will show by induction that ¢; is an isomorphism of A; and A, for all
i € N. Since Fxk (A) is the direct union of the A;, and A, is the direct
union of the A}, this establishes that ¢ is an isomorphism of Fgx (A) and
Al .
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First of all ¢ is the identity so it is an isomorphism. Now assume that
¢; is an isomorphism. To show that ¢;;; is an isomorphism we need to
show four things, that ¢;, is a homomorphism, one-to-one, onto, and that
¢,-'_|_11 is a homomorphism. Firstly ¢;4; is 2 homomorphism. This follows
easily from the fact that it is the restriction of ¢ to A;4;.

Secondly ¢;, is onto. Let z’ be an element of A},. If 2’ € A! then it is
the image of something in A; by the assumption that ¢; is an isomorphism.
If z' & Aj then there is some pair 3,2’ € A} and k € K such that z’ is
a vertex of the cycle where ¥’ and 2’ occur at distance k. That is there is
some integer j such that z’ = W;(y’,y"\x2’). Now 3’ and 2’ are the images
of some elements in A;, y and z say. Then =’ is the image of W;(y, y\x2).

Next we need to show that ¢;, is one-to-one. Suppose z;,z3 € Aiyy

and ¢i;1(z1) = @i+1(z2). There are three cases to consider.

i) If 21,25 € A; then

Pir1(21) = Gi(z1) = di(z2) = Piy1(22)
which implies that z; = 22 by assumption.

ii) Ifz) € A; but z; € A;. Thereissomek € K, j € Zand y, z € A; such

that 1 = Wiy, y\k2). If §is1(21) = @it1(x2) then
Wi(9i+1(¥), $it1(W)\xdi+1(2)) = diy1(z2) € A

. By the construction of (A!,C;) this means that
Pi+1(Y)\k@i+1(z) is defined in A]. As ¢ is an isomorphism this means
that ¥\, 2 is defined in A;. But then z; = W;(y,y\kz) € A; which

is a contradiction. So we do not have z, ¢ A; and z, € A;.

iii) If z;,22 & A; then there are some ki, k; € K , some ji,j2 € Z and
some ¥1,Y2, 21,22 € Ai41 such that z; = W, (y1,y1\,21) and zo =

Wiz (¥2,y2\k,22). Because y1,v2,21,22 € Ai, dit1(v1) # dir1(21)
and ¢;41(y2) # di+1(22). This means that ¢i+1(z1) is in the cycle
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where ¢i4.1(y1) and ¢i11(z1) occur at distance ky. Similarly ¢;y1(z2)
is in the cycle where ¢;41(y2) and ¢iy1(22) occur at distance k. The

construction of (A},,,Cit1) means that ¢;+1(z1) and ¢iv1(z2) are

distinct unless

a) ki = ka, j1 = 2, ir1(¥1) = dir1(v2) and ¢it1(21) = dita(22)-

Then 7, = y2 and 2; = 22 and so z; = T2,
OR

b) ki = ks, jo = m — j1 + k1, $is1(11) = dip1(22) and diya(21) =
®i+1(y2). Then y) = 2, 21 = y2 and

z1 = Wi, (91, ¥1\k: 21) = Win—jaks (22, 22\ k1 ¥2)
= Win—jz+1(¥2\k, 22, ¥2) = Wi, (Y2, Y2\k 22) = Zo2.

Thus ¢;+1(z1) = ¢i+1(x2) implies z; = 2, 50 $;41 is one-to-one.

As ¢4 is a bijection between A; and A} it has an inverse ¢} +11. Finally
we need to show that ¢;; +11 is a homomorphism. Now z; - z; is defined in
Aqiy1 if and only if 21, 72 € A; or 21 = Wj(y,vy\x2) and 2o = W1 (y, ¥\x2)
for some k € K, j € Z and y,z € A;. Also z} - 7 is defined in A}, if
and only if z},z) € A} or i = W;(/,¥'\xz’) and zh = W;41(y',y"\k2')
for some k € K, j € Z and ¢, 2’ € Al. So it follows from this that z; - 2
is defined in A}, , if and only if ¢3;}, (1) - ¢;;}1 (22) is defined in Asi. If

(@) - 85 (22) # o7 (1 - 72)
then
o1 - T2 = Gir1 (97 (31) - $ig1 (22)) # Gin1 (P (21 - 22)) = 21 - T2
which is a contradiction. Thus

d1 (@) - by (z2) = 974 (21 - 22).
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A similar argument shows that

¢i_+11 (z1\kz2) = ¢i_+11(-"71)\k¢:+11 (z2)-

So ¢,-'_,_11 is a homomorphism. Thus ¢;,; is an isomorphism. By the principle
of mathematical induction ¢; is an isomorphism between A; and A’ for all

ieN.

Theorem 4.3. The variety V(EK) is generated by CK. Thus the finite
algebras of CX generate V(ZK).

Proof Let A be an infinite set and let .4 be the algebra corresponding to
the partial K-perfect m-cycle system (A, ®). The algebra A, arising from
the free completion of (A, @) is a free algebra by Lemma 4.1. By Theorem
4.2, A, is a free algebra of V(ZX) generated by an infinite set, and so
generates V(ZX) see (7). Furthermore, A,, corresponds to a K-perfect m-
cycle system and so CX generates V(ZX). Theorem 3.3 then implies that
the finite algebras of CX generate V(ZK). o

We can now answer another question asked in [5].

Theorem 4.4. If my,ma > 3 are distinct integers and m = lem(m;, m2)
then V(CK U CK.) is a proper subvariety of V(CK).

Proof Each of the algebras in CX U CK satisfies TX, so V(CK U
C,’f,z) is a subvariety of V(£X) = V(CK) by Theorem 4.3. Now, every
algebra in CX U CX, satisfies the identity Wy, (X, Wi, (x,¥)) = x. Thus
V(CX, U CK ) satisfies Wi, (X, Win, (X,¥)) = x. Let C be a K-perfect

m-cycle system in which the partial K-perfect m-cycle system

{(103 T1yees zm—l)a (xO, Tma Y2y 0. y‘m—l)}

is embedded and where z; # y; for all 4,5 € {0,...,m — 1} with j > 2
(C exists by Theorem 3.2). If A is the algebra corresponding to C then
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Wi, (20, Wing (0, 21)) = Wiy (20, Tmz) = Ym, # T1- Thus A does not
satisfy Win, (X, Win,(X,y)) = xandso A € V(CX uCK ). Hence V(CK u
C,’ﬁz) is a proper subvariety of V(CK). )

5 K-perfect and K'-perfect m-cycle systems

Given a partial K-perfect circuit system (A4,C) we can construct a partial
algebra A = (4, {-}U{\x | k € K}). However, for any set K’ C K, (4,C) is
also a partial K’-perfect m-cycle system, so we can also construct a partial
algebra A = (A, {-}U{\x | k£ € K'}). So (4,C) gives rise to different
partial algebras, one for each K’ C K. We will call Ak the K'-reduct of
A. We denote by CK-X' the class of K’-reducts of the algebras in CK,

Theorem 5.1. If m is a positive integer and K' and K are subsets of

{1,...,12]} with K' C K, then V(CKX') = V(ZK").

Proof We will show that the free algebras of V(ZK') are in V(CK-X ).
This is sufficient because the free algebras of a variety generate the variety.
Let F be a free algebra of V(ZK) freely generated by a set A. Let Co
be the free completion of (A, ) considered as a partial K'-perfect m-cycle
system. By Theorem 4.2, F = A;, where A;, is the algebra corresponding
to Cp. Note that Cp is also a partial K-perfect m-cycle system. Thus .A;,
is the K’-reduct of A9 = (A, {-} U {\x | £ € K}), the partial algebra
corresponding to Cp considered as a partial K-perfect m-cycle system. Let
C; be the free completion of Cy considered as a K-perfect m-cycle system
and let A; be the algebra corresponding to C;. Let .A'1 be the K’-reduct of
Aj.

The following diagram illustrates the relationship between the four al-

gebras,
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Ay extends to Ao
is a subalgebra of | 1l is embedded in
A, reducesto A;

Clearly A; € CKKX’_ 1t follows easily from the construction of A; that A,
is a subalgebra of A; and so A, = F € V(CK.X"), °

Finally, we obtain the following theorem which unifies some of the pre-

vious results in this paper.

Theorem 5.2. Letm be an integer and let K and K’ be subsets of {1,.. ., |3
with K’ C K. The finite algebras of CK:KX' generate V(EK').

Proof The finite algebras of CX generate CX by Theorem 3.3. Thus, the
finite algebras of CK-X’ generate CX¥’. Furthermore, CXX’ generates
V(EK') by Theorem 5.1. So the finite algebras of CX-X’ generate V(ZX').

o
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