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Abstract

For two positive integers j and k with j > k, an L(j, k)-labeling
of a graph G is an assignment of nonnegative integers to V(G) such
that the difference between labels of adjacent vertices is at least 7,
and the difference between labels of vertices that are distance two
apart is at least k. The span of an L(j, k)-labeling of a graph G is the
difference between the maximum and minimum integers used by it.
The Aj,x-number of G is the minimum span over all L(j, k)-labelings
of G. This paper focuses on the Ag,;-number of the Cartesian prod-
ucts of complete graphs. We completely determine the )z ;-numbers
of the Cartesian products of three complete graphs K,, K., and K;
for any three positive integers n,m,and [.

Keywords: L(2,1)-labeling, Az,1-number, Cartesian product.

1 Introduction

For two positive integers j and k with j > k, an L(j, k)-labeling of a graph G
is an assignment L of nonnegative integers to V(G) such that the difference
between labels of adjacent vertices is at least 7, and the difference between
labels of vertices that are distance two apart is at least k. Elements of the
image of L are called labels, and the span of L, denoted by span(L) is the
difference between the largest and smallest labels of L. The \; x-number of
G, denoted A; x(G), is the minimum span over all L(3, k)-labelings of G. If
L is an L(j, k)-labeling with span A;x(G) then L is called a \j x-labeling
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of G. We shall assume without loss of generality that the minimum label
of L(j, k)-labelings of G is always 0.

Motivated by a special kind of channel assignment problem, Griggs and
Yeh [8] first proposed and studied the L(2, 1)-labeling of a graph. Since then
the Az 1-numbers of graphs have been studied extensively, see [2,4,6-8,10,
13,15]. And L(j, k)-labelings were also investigated in many papers, see
[3-6]. For a survey on L(j, k)-labelings of graphs, please see [1].

Given two graphs G and H, the Cartesian product of G and H is the
graph G x H with vertex set V(G) x V(H) in which two vertices (z,y) and
(z',y') are adjacent if £ = 2’ and yy’ € E(H) or y = ¢ and zz’ € E(G).
Let G* denote the Cartesian product of k copies of G. Let K, denote the
complete graph on n vertices. Then K2 = K, x K, and K2 = K, x K, x
K,.

The L(2,1)-labeling of the Cartesian product of n paths, especially of
the Cartesian product of n copies of P; (the n-cube @), was investigated by
Whittlesey, Georges, and Mauro [15]. In the same paper, they completely
determined the Az ;-numbers of Cartesian products of two paths. Jha et
al. [10] studied the L(2, 1)-labeling of the Cartesian product of a cycle and
a path. The Az ;-numbers of the Cartesian product of a cycle and a path
were completely computed by Klavzar and Vesel in [11]. Partial results
for the Ag ;-numbers of the Cartesian products of two cycles were obtained
in [11). These partial results are completed in [14]. Georges, Mauro, and
Whittlesey (7] determined L(2,1)-labeling numbers of Cartesian products
of two complete graphs. This result was then extended by Georges, Mauro,
and Stein [6] who determined the L(j, k)-labeling numbers of Cartesian
products of two complete graphs.

Theorem 1.1 [6] Let j, k, n, and m be integers where 2 < m < n and
j 2> k. Then

(i) ’\J"k(Kn X Km) = (n -1)j+ (m - l)ks 2'fj/k >m;

(i) Ajk(Kn X Km) = (nm — 1)k, if j/k < m.

Theorem 1.2 [6] Let j, k, and n be integers where2 < n and j > k. Then
(i) Ajk(KZ) = (n = 1)j + (2n — 2}k, if j/k >n - 1;
(i) Ajk(K2) = (n® = 1)k, if j/k <n—1.

Georges, and Mauro [4] also obtained other results on L(j, k)-labelling
numbers of Cartesian products of complete graphs. In particular, they
investigated the );x-number of K3.

Theorem 1.3 [{] The )\ x-number of Q3 = K3 is equal to 35 if j/k < 5/2;
and j 45k if j/k > 5/2.
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Theorem 1.4 [4{] Suppose n is an odd integer, n > 3 . Then
(i) Mjk(KR) = (n = 1)(j + 3k), if j/k > 3n—4;
(it) Ajk(K3) = (n? = 1k, if j/k <n—2;
(i) (K3 < (n—1)(F+3k), fn—2<j/k<3n-4.

Theorem 1.5 [{] Suppose n is an even integer. Then
(i) Ajk(K3) = (n® = 1)k, if j/k < n/2;
(n? + 2n)k, if nf2<jlk<n-2,
(i) M (K3) < ¢ n(i+3k), if n—2<j/k<2n(n-2),
(n—1)j+n2n - 1)k, if j/k>2n(n-2)).

In the next section, we completely determine the Ay ;-number of K, x
K, x K, for any three positive integers n,m,l.

For two positive integers a and b with a < b, denote by [a, b} the set of
integers a,a + 1,...,b. A set of integers is called k-separated if and only
if any two distinct elements of the set differ by at least k. Given a graph
G(V, E), a subset S of V is call 2-independent if any two vertices of it are
at distance at least 3. The 2-independence number of G is the number of
vertices in a maximum 2-independent set of G.

2  Ag1-numbers of K, x K, x K

This section determines the A ;-number of K, x K, x K; for any three
positive integers n,m,l. We shall always suppose that n, m and ! are
positive integers with n > m > 1 > 2.

We shall view the vertices of the graph K, x K,, x K, as points in
3 Dimensional Euclidean space with coordinate (a,b,c), where a,b,c are
nonnegative integers and 0 < a <n-1,0<b<m-1,0<ec <l -1.
For v = (a,b,¢) € V(K, x K, X K]), we say that v is a vertex in the
at® row, b** column and the ct? level of K, x K,, x K;. It is not difficult
to see that two vertices are at distance k if their coordinates are different
in exactly £ components. In other words, two vertices on a line parallel
to some coordinate axis are adjacent; two vertices on a plane parallel to
some coordinate plane but not on any line parallel to some coordinate axis
are at distance 2; and any two vertices not on any plane parallel to some
coordinate plane are at distance 3. The diameter of K, x K,, x K; is 3.
The 2-independence number of K, x Ky, x K is . Thus each label can be
used at most ! times by any L(2, 1)-labeling of K, x K, x Kj.

Theorem 2.1 Let n, m and !l be positive integers withn >m > 1> 2. If
n>4 then A2,1(Kn X Km X K[) =nm—1.
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Proof. Since K, x K, is of diameter 2 and has nm vertices, Az ;(Kn X
Kn,) > nm—1. Thus Mg 1 (Kr x K x Ki) 2 nm—1. To prove the theorem,
it suffice to give an L(2,1)-labeling of K,, x K, x K| with span nm — 1.
We deal with the following three cases.

Case 1: m > 4.

We define the matrix X = (%i;)nxm as follows. Let z;; =nm — 1 and
Zpm = 0. For j = 2,3,...,m, let z;; = Zt—-lt forl1<i<n-m+1,
let Tim =m(m —1)/24+(i—1)m;forn—m+1<i<n-1,let zim =
nm - 0+t And let 7 = (i-1)j+1) if i # 1 and j # m. Thus we
have

2 4 7
X= 9 . (2.1)
nm-—3
nm —2 0

nxm

It is straightforward to check that each row of X is 2-separated and
each column of X is also 2-separated. Furthermore, for 0 < a <n—1 and
0 < b < m~—1, the set {Z(atq)(b+q) : 4 =0,1,...,m — 1} is 2-separated,
where the first “4+” in the subscript is taken modulo n and the second
modulo m.

Define a mapping f from V (K, x K, x K}) to {0,1,2,...,nm -1} as:

f((@,6,0)) = T(a41)p41), for0<a<n—-1,0<b<m—1;

f((a,b,¢)) = f(((a + <) modn, b+ c) modm,0)),for0<a<n-1,
0<b<m—-1,0<¢e<!-1

We first show that if vi = (a1,b1,¢1) and vo = (a2,b2,c2) are two
vertices at distance 2 then f(v1) # f(v2). As v; and v, are at distance 2,
their coordinates are the same in exactly one component. If ¢; = ¢ =0
then, from the definition of f, it is easy to see that f(v1) # f(v2). For
the case ¢; # 0 or c; # 0, suppose to the contrary that f(vi) = f(ve).
Then f(((a1 + ¢1) modn, (by + ¢;) modm,0)) = f(((a2 + c2) modn, (b2 +
¢2) modm,0)). It follows from the definition of f (for the case ¢ = 0) that
(a1 +c1) modn = (az + cz) modn and (by + ¢1) modm = (b2 + ¢2) modm.
This implies that if the coordinates of v; and v, are the same in at least
one component then they must be the same in all three components. It
follows that (ay,b1,¢1) = (a2, b2, c2). A contradiction.

Now suppose v; = (a1,b1,¢1) and vo = (az,b2,c2) are two adjacent
vertices in V(K, x Ky x Kj). Their coordinates are different in exactly
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one component. If @) = ag = a, by = bz = b and ¢; # c2 then f(v1) =
T(a+cr)(b+ar) and f(ve) = Z(a+ca)(bte2) Ifay #az, 0y =by=band ¢; =
¢y = c then f(v;) = Z(ay +c)(b+c) and f(v2) = T(ag+e)(b+c)- If a; = a; = qa,
by # b2 and ¢; = ¢ = c then f(v1) = Z(a+e)(by+c) a0d f(V2) = T(atc)(b+c)-
In all cases, from the above discussions about the properties of X, we have
[f(v1) = flv2)] = 2.

Thus f is an L(2, 1)-labeling of K, x K, x K; with span nm — 1.
Case 2: m = 3.

The matrix defined in Case 1 doesn’t work when m = 3. This time we
define the matrix X as:

0 n+2 2n+1 0 2n n

n 2n+2 1 2n+1 n+1 1

2n 2 n+1 n+2 2 2n +2

3 2n+3 n+43
n—-3 2n-1 3n-2 2n+4 n+4 4
Mm—3 3n—1 n-9
-3 n-1 2n-2 n—-1 3n—-1 2n-1

a. n=0 mod3 b. n=1 mod3
0 n 2n

n+l 2n+1 1
2n+2 2 n+2
3 n+3 2n+43
n+d 2m+4 4
2n-1 3n-1 n-1
c. n=2 mod3
Similar to Case 1, one can use this matrix to define an L(2, 1)-labeling
of K x K, X K withspannm —1=3n-1.
Case 3: m = 2.
Clearly we have K, x K2 x K3 & K, x C4. An L(2,1)-labeling of
K, x C4 with span 2n — 1 is given by the following matrix, where each row
corresponds to a vertex of K,, and each column a vertex of Cj.

2n—1 2 2n-2 2n-5\

1 4 0 2n—-3

3 6 9 9m—1

5 8 4 1

7 10 6 3 (22)

2n-5 2n—-2 2n—6 2n-9
\2n-3 0 2n-4 207 )
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We now consider the case n < 3.

Theorem 2.2 )p,1(K2x Kox Ka) =nm+2 =6 and X2,1(KaxK2x K3) =
8.

Proof. X2,1(K2 x K3 x K3) = nm + 2 = 6 comes from Theorem 1.3. And
)\2,1(K3 X K2 X Kg) = )\2‘1(03 X 04) =8 by [12]. .

The next theorem deals with the case n =m = 3.

Theorem 2.3

9, ifl=2,

’\2'1(K3"K3"K‘)={ 10, if 1=3

Proof. We prove the theorem by giving an L(2, 1)-labeling of K3 x K3 x K>
with span 9 and an L(2,1)-labeling of K3 with span 10, and showing that
/\2,1(K3 x K3 x Kz) > 8 and )\2'1(K§) >9

Following is an L(2,1)-labeling of K3 x K3 x K with span 9. So
/\2,1(K3 x K3 x Kg) <9

5 8 2 1 47
71 4 3 90
0 6 9 8 25

a. Labels onlevel 0 b. Labels on level 1

And an L(2,1)-labeling of K3 with span 10 is given by the following

three matrixes.
6 10 2
8 0 4
1 5 9

0 4 8 9 1 5
5 91 2 6 10
10 2 6 4 8 0

a. Labelsonlevel 0 b. Labelsonlevel 1  c. Labels on level 2

We now show that Az (K3 x K3 x Kp) > 8 and Ap1(K3) > 9.

First observe that, in any L(2,1)-labelling of K3 x K3 x K3, if each
of the three consecutive labels 7 — 1,7 and i + 1 is assigned to exactly two
vertices of K3 x K3 x Ko, then the three vertices in the same level receive
labels ¢ — 1,i,and 4 + 1 respectively must lie in different rows and different
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columns. If this is false then the two vertices in some level labeled by i — 1
and ¢+ 1 must lie in the same row (or column). Without loss of generality,
suppose, in the the 0" level, f assigns i to (g, bo, o), i — 1 to (a1,b1, o),
and i+1 to (a1, b2,¢). Then it is easy to see that, in the 1¢* level, the only
two vertices that can receive the label ¢ are {(ag,b1,¢;) and (ag, b2, ¢1). If f
assigns the label 7 to (a2, b1, 1) then it is easy to see that no vertices in the
1t* level can receive the label i + 1. If f assigns the label i to (az,b2,¢1)
then it is easy to see that no vertices in the 1t* level can receive the label
i — 1. Both are contradictions.

Suppose f is any L(2, 1)-labelling of K3 x K3 x K2. Then each label is
used at most twice by f. From the above observation, any four consecutive
labels are assigned to at most 7 vertices. As K3 x K3 x K3 has 18 vertices,
we must have span(f) > 9. Thus A2 ;1 (K3 x K3 x K3) > 8.

Now suppose f is an L(2,1)-labelling of K3 with span 9. Then each
label is used at most three times by f. Since A ;(K3 x K3) = 8, in each
level of K3, there is exactly one label in [0, 9] not used by f. Let zo, z; and
3 be labels [0, 9] not used by f in 0%, 1** and 2%* level of K3, respectively.
Without loss of generality, suppose zo < 1 < z2. Then zop < 71 < 3,
zo < 3 and z > 6, since, otherwise, there must exist an integer ¢ in [0, 6]
and two levels of K3 such that each of the four consecutive labels 7,541,342
and i+ 3 is used twice by f in this two levels of K3, which is a contradiction
to the above observation. If £; < 5 then each of the four consecutive labels
6,7,8,9 is used twice by f in 0°* and 1%* levels of K3, a contradiction. If
z; 2 6 then each of the four consecutive labels 0,1, 2, 3 is used twice by f
in 1** and 2 levels of K3, a contradiction. Thus A1 (K3) > 9. [ |

In this paper, we have completely determined the Mg ;-numbers of the
Cartesian products of any three complete graphs. It remains open to deter-
mine Aj x-numbers of the Cartesian products of any three complete graphs.
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