Potentially $K_{1,1,t}$ -graphic sequences *

Jian-Hua Yin[†]

Department of Applied Math, College of Information Science and Technology, Hainan University, Haikou, Hainan 570228, China.

Jiong-Sheng Li

Department of Mathematics,

University of Science and Technology of China, Hefei, Anhui 230026, China.

Wen-Ya Li

Department of Applied Math, College of Information Science and Technology, Hainan University, Haikou, Hainan 570228, China.

Abstract: Let $\sigma(K_{1,1,t},n)$ be the smallest even integer such that every n-term graphic sequence $\pi=(d_1,d_2,\ldots,d_n)$ with $\sigma(\pi)=d_1+d_2+\cdots+d_n\geq \sigma(K_{1,1,t},n)$ has a realization G containing $K_{1,1,t}$ as a subgraph, where $K_{1,1,t}$ is the $1\times 1\times t$ complete 3-partite graph. Recently, Lai (Discrete Mathematics and Theoretical Computer Science, 7(2005), 75-81) conjectured that for $n\geq 2t+4$,

$$\sigma(K_{1,1,t},n) = \left\{ \begin{array}{ll} (t+1)(n-1)+2 & \text{if } n \text{ is odd or } t \text{ is odd,} \\ (t+1)(n-1)+1 & \text{if } n \text{ and } t \text{ are even.} \end{array} \right.$$

In this paper, we prove that the above equality holds for $n \ge t + 4$. Keywords: graph, degree sequence, potentially $K_{1,1,t}$ -graphic sequence. Mathematics Subject Classification(2000): 05C35, 05C07

1. Introduction

The set of all sequences $\pi = (d_1, d_2, \ldots, d_n)$ of nonnegative integers with $d_i \leq n-1$ for each i is denoted by NS_n . A sequence $\pi \in NS_n$ is said to be graphic if it is the degree sequence of a simple graph G on n vertices, and such a graph G is called a realization of π . The set of all graphic non-increasing sequences in NS_n is denoted by GS_n . For a

^{*}Supported by NNSF of China (No. 10401010) and China Scholarship Council.

[†]E-mail: yinjh@ustc.edu

sequence $\pi = (d_1, d_2, \dots, d_n) \in NS_n$, define $\sigma(\pi) = d_1 + d_2 + \dots + d_n$. For given a graph H, a graphic sequence π is said to be *potentially H-graphic* if there exists a realization of π containing H as a subgraph.

Gould, Jacobson and Lehel [3] considered the following extremal problem on potentially H-graphic sequences: for given a graph H, determine the smallest even integer $\sigma(H, n)$ such that every sequence $\pi \in GS_n$ with $\sigma(\pi) \geq \sigma(H, n)$ is potentially H-graphic. If $H = K_{r+1}$, a complete graph on r+1 vertices, this problem was considered by Erdős et al. [2] where they showed that $\sigma(K_3, n) = 2n$ for $n \geq 6$ and conjectured that $\sigma(K_{r+1}, n) =$ (r-1)(2n-r)+2 for sufficiently large n. Gould et al. [3] and Li and Song [7] independently proved it for r=3. Recently, Li et al. [8,9] proved that the conjecture is true for r=4 and $n\geq 10$ and for $r\geq 5$ and $n\geq {r\choose 2}+3$. For $H = K_{r,s}$, the $r \times s$ complete bipartite graph, Gould et al. [3] determined $\sigma(K_{2,2},n)$ for $n \geq 4$, Yin and Li [10] determined $\sigma(K_{3,3},n)$ for $n \geq 6$ and $\sigma(K_{4,4}, n)$ for $n \geq 8$, Yin, Li and Chen [14,11,13] further determined $\sigma(K_{r,s},n)$ for $s \geq r \geq 1$ and sufficiently large n. For the case of $H = K_{1,1,t}$, Lai in [5] determined $\sigma(K_{1,1,2},n)$ for $n \geq 4$. Lai [6] further determined $\sigma(K_{1,1,3},n)$ for $n \geq 5$ and gave a lower bound for $\sigma(K_{1,1,t},n)$. The following are his results.

Theorem 1.1 [5]

$$\sigma(K_{1,1,2},n) = \begin{cases} 2\left[\frac{3n-1}{2}\right] & \text{if } n \geq 4 \text{ and } n \neq 6, \\ 20 & \text{if } n = 6, \end{cases}$$

where [x] denotes the integer part of x.

Theorem 1.2 [6]

$$\sigma(K_{1,1,3},n)=\left\{\begin{array}{ll}4n-2 & \text{if } n\geq 5 \text{ and } n\neq 6,\\26 & \text{if } n=6.\end{array}\right.$$

Theorem 1.3 [6] Let $n \ge t + 2$. Then

$$\sigma(K_{1,1,t},n) \geq \left\{ \begin{array}{ll} (t+1)(n-1)+2 & \text{if } n \text{ is odd or } t \text{ is odd,} \\ (t+1)(n-1)+1 & \text{if } n \text{ and } t \text{ are even.} \end{array} \right.$$

Moreover, in the end of [6], Lai conjectured that the equality in Theorem 1.3 holds for $n \geq 2t+4$. Recently, Chen [15] proved that the Lai's conjecture holds for $t \geq 3$ and $n \geq 2\left[\frac{(t+5)^2}{2}\right] + 3$. In this paper, we further show that the Lai's conjecture is true for $t \geq 3$ and $n \geq t+4$. In other words, we will prove the following

Theorem 1.4 Let $t \geq 3$ and $n \geq t + 4$. Then

$$\sigma(K_{1,1,t},n) = \left\{ \begin{array}{ll} (t+1)(n-1) + 2 & \text{if } n \text{ is odd or } t \text{ is odd,} \\ (t+1)(n-1) + 1 & \text{if } n \text{ and } t \text{ are even.} \end{array} \right.$$

Remark Let $t(\geq 3)$ be odd, n=t+3 and $\pi=((t+1)^{t+3})$, where the symbol x^y in a sequence stands for y consecutive terms, each equal to x. It is easy to see that π is graphic but not potentially $K_{1,1,t}$ -graphic, and $\sigma(\pi) > (t+1)((t+3)-1)+2$. Therefore, Theorem 1.4 is best possible in the sense that t+4 cannot be replaced by a smaller integer.

2. Proof of Theorem 1.4

In order to prove Theorem 1.4, we first need the following preliminaries. In [4], Kleitman and Wang introduced the "laying off" technique as follows. Let $\pi = (d_1, d_2, \ldots, d_n) \in NS_n$ be a non-increasing sequence and $1 \le k \le n$. Let

$$\pi_k'' = \begin{cases} (d_1 - 1, \dots, d_{k-1} - 1, d_{k+1} - 1, \dots, d_{d_k+1} - 1, d_{d_k+2}, \dots, d_n) \\ \text{if } d_k \ge k, \\ (d_1 - 1, \dots, d_{d_k} - 1, d_{d_k+1}, \dots, d_{k-1}, d_{k+1}, \dots, d_n) \\ \text{if } d_k < k. \end{cases}$$

Denote $\pi'_k = (d'_1, d'_2, \dots, d'_{n-1})$, where $d'_1 \geq d'_2 \geq \dots \geq d'_{n-1}$ is the rearrangement of the n-1 terms in π''_k . π'_k is called the residual sequence obtained by laying off d_k from π . It is easy to see that if π'_k is graphic then so is π , since a realization G of π can be obtained from a realization G' of π'_k by adding a new vertex of degree d_k and joining it to the vertices whose degrees are reduced by one in going from π to π'_k . Kleitman and Wang [4] also proved that if π is graphic, then there exists a realization G of π such that the vertex with degree d_k is adjacent to those vertices (other than itself) which have the largest degrees of π , and hence π'_k is graphic. Thus, they obtained the following

Theorem 2.1 [4] Let $\pi = (d_1, d_2, \ldots, d_n) \in NS_n$ be a non-increasing sequence and $1 \le k \le n$. Then $\pi \in GS_n$ if and only if $\pi'_k \in GS_{n-1}$.

Theorem 2.2 [1] Let $\pi = (d_1, d_2, \ldots, d_n) \in NS_n$ be a non-increasing sequence with even $\sigma(\pi)$. Then $\pi \in GS_n$ if and only if for any t, $1 \le t \le n-1$,

$$\sum_{i=1}^{t} d_i \le t(t-1) + \sum_{j=t+1}^{n} \min\{t, d_j\}.$$

Theorem 2.3 [10,11] Let $\pi = (d_1, \ldots, d_n) \in NS_n$, $m = \max\{d_1, \ldots, d_n\}$ and $\sigma(\pi)$ be even. The rearrangement sequence of π is denoted by $\pi^* = (d_1^*, d_2^*, \ldots, d_n^*)$, where $d_1^* \geq d_2^* \geq \cdots \geq d_n^*$ is the rearrangement of d_1, d_2, \ldots, d_n . If there exists an integer $n_1 \leq n$ such that $d_{n_1}^* \geq h \geq 1$ and $n_1 \geq \frac{1}{h} \left[\frac{(m+h+1)^2}{4} \right]$, then $\pi \in GS_n$.

Theorem 2.4 [12] Let $\pi = (d_1, d_2, \ldots, d_n) \in NS_n$ be a non-increasing sequence, where $d_1 = r$ and $\sigma(\pi)$ is even. If $d_{r+1} \geq r - 1$, then $\pi \in GS_n$.

Theorem 2.5 [3] If $\pi = (d_1, d_2, \ldots, d_n) \in GS_n$ has a realization G containing H as a subgraph, then there exists a realization G' of π containing H as a subgraph so that the vertices of H have the largest degrees of π .

Let $\pi=(d_1,\ldots,d_{t+2},\ldots,d_n)\in GS_n$. If π has a realization G with vertex set $V(G)=\{v_1,v_2,\ldots,v_n\}$ such that $d_G(v_i)=d_i$ for $1\leq i\leq n$ and G contains $K_{1,1,t}$ as its subgraph, where $\{v_1\}$, $\{v_2\}$ and $\{v_3,\ldots,v_{t+2}\}$ is the 3-partite partition of the vertex set of $K_{1,1,t}$, then π is said to be potentially $A_{1,1,t}$ -graphic. On potentially $A_{1,1,t}$ -graphic sequence, we have the following

Lemma 2.1 $\pi = (d_1, d_2, \dots, d_n) \in GS_n$ is potentially $K_{1,1,t}$ -graphic if and only if it is potentially $A_{1,1,t}$ -graphic.

Proof. We only need to prove that if π is potentially $K_{1,1,t}$ -graphic, then it is potentially $A_{1,1,t}$ -graphic. By Theorem 2.5, we may assume that π has a realization G with vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$ such that $d_G(v_i) = d_i$ for $1 \leq i \leq n$ and the induced subgraph $G[\{v_1, v_2, \ldots, v_{t+2}\}]$ by $\{v_1, v_2, \ldots, v_{t+2}\}$ contains $K_{1,1,t}$ as a subgraph, where $\{v_i\}$, $\{v_j\}$ and $\{v_1, \ldots, v_{t+2}\} - \{v_i, v_j\}$ $(1 \leq i < j \leq t+2)$ is the 3-partite partition of the vertex set of $K_{1,1,t}$. Denote $H = G[\{v_1, v_2, \ldots, v_{t+2}\}]$. We consider the following cases.

Case 1. $|\{v_1, v_2\} \cap \{v_i, v_j\}| = 2$. Then $\{v_1, v_2\} = \{v_i, v_j\}$, and π is clearly potentially $A_{1,1,t}$ -graphic.

Case 2. $|\{v_1, v_2\} \cap \{v_i, v_j\}| = 1$. Without loss of generality, we assume that i = 1 and j > 2. Let $A = N_H(v_j) - (\{v_2\} \cup N_H(v_2))$ and $B = N_G(v_2) - (\{v_j\} \cup N_G(v_j))$. Since $d_G(v_2) \ge d_G(v_j)$, it follows that $|B| \ge |A|$. Now choose any subset $C \subseteq B$ having |C| = |A|. Now form a new realization G' of π by interchanging the edges of the star centered at v_j with endvertices in A with the non-edges of the star centered at v_j with endvertices in C, and interchanging the edges of the star centered at v_2 with endvertices in C with the non-edges of the star centered at v_2 with endvertices in C with the non-edges of the star centered at v_2 with endvertices in C with the non-edges of the star centered at v_2 with endvertices in C with the non-edges of the star centered at v_2 with endvertices in C with the non-edges of the star centered at v_2 with endvertices in C with the non-edges of the star centered at v_2 with endvertices in C with the non-edges of the star centered at v_2 with endvertices in C with the non-edges of the star centered at v_2 with endvertices in C with the non-edges of the star centered at v_2 with endvertices in C with the non-edges of the star centered at v_2 with endvertices in C with the non-edges of the star centered at v_2 with endvertices in C with endvertices in C with the non-edges of the star centered at v_2 with endvertices in C with endvertices in C

Case 3. $|\{v_1, v_2\} \cap \{v_i, v_j\}| = 0$. Similar to the proof of Case 2, we first construct a realization G' of π containing $K_{1,1,t}$ as a subgraph such that $\{v_1\}, \{v_j\}$ and $\{v_1, \ldots, v_{t+2}\} - \{v_1, v_j\}$ (j > 2) is the 3-partite partition of the vertex set of $K_{1,1,t}$. Then, it follows from Case 2 with G' playing the role of G that π is potentially $A_{1,1,t}$ -graphic. \square

Lemma 2.2 If $\pi = (d_1, d_2, \dots, d_n) \in GS_n$ with $d_1 + d_2 \ge n + t$, then π is potentially $A_{1,1,t}$ -graphic.

Proof. By Theorem 2.1, we may assume that G is a realization of π with vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$ such that $d_G(v_i) = d_i$ for $1 \le i \le n$ and v_1 is adjacent to v_2, \ldots, v_{d_1+1} . Let $A = N_G(v_1) - \{v_2\}$, $B = N_G(v_2) - \{v_2\}$

 $\{v_1\}$ and $C = A \cap B$. It is easy to see that |A - B| + |B - A| + 2|C| + 2 = $d_1+d_2 \ge n+t$ and $|A-B|+|B-A|+|C|+2 \le n$. Thus $|C| \ge t$. Therefore, G contains $K_{1,1,t}$ as a subgraph. By Lemma 2.1, π is potentially $A_{1,1,t}$ graphic.

Lemma 2.3 Let $t \geq 3$, $n \geq t+2$ and $\pi = (d_1, d_2, \ldots, d_n) \in GS_n$ with $n-2 \ge d_1 \ge d_2 = \cdots = d_{d_1+2} \ge \cdots \ge d_n$ and $d_2 \ge t+1$. Let

$$\rho_1'(\pi) = (d_2 - 1, d_3 - 1, \dots, d_{t+2} - 1, d_{t+3} - 1, \dots, d_{d_1+1} - 1, d_{d_1+2}, \dots, d_n),$$

and denote $\rho_1(\pi) = (d_2 - 1, d_3 - 1, \dots, d_{t+2} - 1, d_{t+3}^{(1)}, d_{t+4}^{(1)}, \dots, d_n^{(1)})$, where $d_{t+3}^{(1)} \geq d_{t+4}^{(1)} \geq \dots \geq d_n^{(1)}$ is the rearrangement of $d_{t+3} - 1, \dots, d_{d_1+1} - 1$ $1, d_d, \pm 2, \ldots, d_n$. Let

$$\rho_2'(\pi) = (d_3 - 2, \dots, d_{t+2} - 2, d_{t+3}^{(1)} - 1, \dots, d_{d_2+1}^{(1)} - 1, d_{d_2+2}^{(1)}, \dots, d_n^{(1)}),$$

and denote $\rho_2(\pi) = (d_3 - 2, \dots, d_{t+2} - 2, d_{t+3}^{(2)}, d_{t+4}^{(2)}, \dots, d_n^{(2)})$, where $d_{t+3}^{(2)} \ge d_{t+4}^{(2)} \ge \dots \ge d_n^{(2)}$ is the rearrangement of $d_{t+3}^{(1)} - 1, \dots, d_{d_2+1}^{(1)} - 1, d_{d_2+2}^{(1)}, \dots, d_n^{(1)}$. If $\rho_2(\pi)$ is graphic, then π is potentially $A_{1,1,t}$ -graphic.

Proof. It easily follows from the definition of $\rho_2(\pi)$ that π is potentially $A_{1,1,t}$ -graphic. \square

Lemma 2.4 Let $n \geq t+2$ and $\pi = (d_1, \ldots, d_n) \in GS_n$ with

$$\sigma(\pi) \geq \left\{ \begin{array}{ll} (t+1)(n-1) + 2 & \text{if } n \text{ is odd or } t \text{ is odd,} \\ (t+1)(n-1) + 1 & \text{if } n \text{ and } t \text{ are even.} \end{array} \right.$$

Then $d_2 \geq t+1$ and $d_{t+2} \geq 2$.

Proof. If $d_2 \le t$, then $\sigma(\pi) \le n - 1 + (n - 1)t = (t + 1)(n - 1)$, a contradiction. If $d_{t+2} \leq 1$, then by Theorem 2.2, $\sigma(\pi) = \sum_{i=1}^{n} d_i = \sum_{i=1}^{t+1} d_i + \sum_{i=t+2}^{n} d_i \leq (t(t+1) + \sum_{i=t+2}^{n} \min\{t+1, d_i\}) + \sum_{i=t+2}^{n} d_i = t(t+1) + 2\sum_{i=t+2}^{n} d_i \leq t(t+1) + 2(n-t-1) = (t-2)(t+1) + 2n = t(t+1) + t(t+1) t(t+1) + t(t+1) + t(t+1) = t(t+1) + t(t+1$ (t-1)(t+1)+2n-(t+1)<(t-1)n+2n-(t+1)=(t+1)(n-1), a contradiction.

Lemma 2.5 Let $r \geq 4$, $n \geq r+1$ and $\pi = (d_1, d_2, \ldots, d_n) \in NS_n$ be a non-increasing sequence, where $d_1 = r$ and $\sigma(\pi)$ is even.

- (1) If $d_{r+2} \geq r-2$, then $\pi \in GS_n$.

(2) If $r-1 \ge d_2 \ge \cdots \ge d_{r+1} \ge r-2$, then $\pi \in GS_n$. **Proof.** (1) Since $\frac{1}{r-2} \left[\frac{(r+r-2+1)^2}{4} \right] = r+1+\frac{2}{r-2} \le r+2$, by Theorem $2.3, \pi \in GS_n$.

(2) If $d_{r+2} \geq r-2$, then by (1), $\pi \in GS_n$. Assume $d_{r+2} \leq r-3$. Let $\pi_1' = (d_1', d_2', \dots, d_{n-1}')$ be the residual sequence obtained by laying off d_1 from π . Then $\sigma(\pi'_1)$ is even, and $d'_1 = d_2 - 1, d'_2 = d_3 - 1, \dots, d'_r = d_{r+1} - 1$. Clearly, $r-2 \ge d_1' \ge \cdots \ge d_r' \ge r-3$. It follows from Theorem 2.4 that $\pi'_1 \in GS_{n-1}$, and $\pi \in GS_n$ by Theorem 2.1. \square

We now prove Theorem 1.4.

Proof of Theorem 1.4. By Theorem 1.3, it is enough to prove that if $t \geq 3$, $n \geq t+4$ and $\pi = (d_1, d_2, \ldots, d_n) \in GS_n$ with

$$\sigma(\pi) \geq \left\{ \begin{array}{ll} (t+1)(n-1) + 2 & \text{if } n \text{ is odd or } t \text{ is odd,} \\ (t+1)(n-1) + 1 & \text{if } n \text{ and } t \text{ are even,} \end{array} \right.$$

then π is potentially $A_{1,1,t}$ -graphic. By Lemma 2.4, we have $d_2 \geq t+1$ and $d_{t+2} \geq 2$. Now use induction on t. If t=3, then by Theorem 1.2 and Lemma 2.1, π is potentially $A_{1,1,3}$ -graphic. In other words, Theorem 1.4 holds for t=3. Assume that $t\geq 4$ and π is not potentially $A_{1,1,t}$ -graphic. We have

- (1) $d_1 \leq n-2$ and $d_{t+2} = \cdots = d_{d_1+2}$. If $d_1 = n-1$ or there exists an integer k, $t+2 \leq k \leq d_1+1$ such that $d_k > d_{k+1}$, then the residual sequence $\pi'_1 = (d'_1, d'_2, \ldots, d'_{n-1})$ obtained by laying off d_1 from π satisfies $d'_1 = d_2 1$, $d'_2 = d_3 1, \ldots, d'_{t+1} = d_{t+2} 1$. By Theorem 2.1, π'_1 is graphic, and hence π'_1 has a realization G' such that the vertex with degree d'_1 is adjacent to those vertices having degrees $d'_2, \ldots, d'_{t+1}, \ldots, d'_{d'_1+1}$. We now form a realization G of π from G' by adding a new vertex of degree d_1 and joining it to the vertices whose degrees are reduced by one in going from π to π'_1 . It is easy to see that G contains $K_{1,1,t}$ as a subgraph. Hence π is potentially $A_{1,1,t}$ -graphic, a contradiction. Thus, $d_1 \leq n-2$ and $d_{t+2} = \cdots = d_{d_1+2}$.
- (2) $d_2 \leq \left[\frac{n+t+1}{2}\right] 1$. If $d_2 \geq \left[\frac{n+t+1}{2}\right]$, then $d_1 + d_2 \geq n + t$, and so π is potentially $A_{1,1,t}$ -graphic by Lemma 2.2, a contradiction. Hence, $d_2 \leq \left[\frac{n+t+1}{2}\right] 1$.
- (3) $d_2=d_3=\cdots=d_{t+2}$. If $d_2>d_3$, then $d_3\leq [\frac{n+t+1}{2}]-2$ and the residual sequence $\pi_3'=(d_1',d_2',\ldots,d_{n-1}')$ obtained by laying off d_3 from π satisfies $d_1'=d_1-1,d_2'=d_2-1,n-1\geq (t-1)+4$ and $\sigma(\pi_3')=\sigma(\pi)-2d_3\geq (t+1)(n-1)+1-(n+t+1)+4>((t-1)+1)((n-1)-1)+2$. By the induction hypothesis, π_3' is potentially $A_{1,1,t-1}$ -graphic. It is easy to get that π is potentially $K_{1,1,t}$ -graphic, a contradiction. Hence $d_2=d_3$. If there exists an integer k, $3\leq k\leq t+1$ such that $d_k>d_{k+1}$, then $t+1\leq d_3\leq [\frac{n+t+1}{2}]-1$, and it is easy to verify that the residual sequence $\pi_3'=(d_1',d_2',\ldots,d_{n-1}')$ obtained by laying off d_3 from π satisfies $d_1'=d_1-1,d_2'=d_2-1,n-1\geq (t-1)+4$ and $\sigma(\pi_3')=\sigma(\pi)-2d_3\geq ((t-1)+1)((n-1)-1)+2$. By the induction hypothesis, π_3' is potentially $A_{1,1,t-1}$ -graphic, and hence π is potentially $K_{1,1,t}$ -graphic, a contradiction. Thus, $d_2=d_3=\cdots=d_{t+2}$.

By (1), (2) and (3), $\pi = (d_1, d_2, \ldots, d_n)$ satisfies $n-2 \ge d_1 \ge d_2 = d_3 = \cdots = d_{t+2} = \cdots = d_{d_1+2} \ge d_{d_1+3} \ge \cdots \ge d_n$. Let $d_2 = d_3 = \cdots = d_{d_1+2} = r(\ge t+1)$. Clearly, $d_1 + 2 \ge r + 2 \ge t + 3$. By the definition of $\rho_2(\pi)$, we have $\rho_2(\pi) = ((r-2)^t, d_{t+3}^{(2)}, \ldots, d_n^{(2)})$, where $r-1 \le d_{t+3}^{(2)} \le r$.

Let m, h and ℓ denote the term number of r, r-1 and r-2 appearing in $\rho_2(\pi)$, respectively. Clearly, $\ell \geq t$. If m=0, then by the definition of $\rho_2(\pi)$, it is easy to see that $h+\ell \geq (d_1+2)-2=d_1 \geq r$, and hence $\rho_2(\pi)$ is graphic by Theorem 2.4. Thus, π is potentially $A_{1,1,\ell}$ -graphic by Lemma 2.3, a contradiction. Assume that $m \geq 1$. By the definition of $\rho_2(\pi)$, we have $h \geq d_1 + r - 2(t+1)$. We now consider the following cases.

Case 1. $d_1 \ge r+2$. Then $m+h+\ell \ge 1+d_1+r-2(t+1)+t=d_1+r-(t+1)\ge r+2$. By Lemma 2.5(1), $\rho_2(\pi)$ is graphic, and hence π is potentially $A_{1,1,t}$ -graphic, a contradiction.

Case 2. $d_1=r+1$. If $r\geq t+2$, then $m+h+\ell\geq r+2$, $\rho_2(\pi)$ is graphic by Lemma 2.5(1), and hence π is potentially $A_{1,1,t}$ -graphic, a contradiction. If r=t+1 and $m\geq 2$, then $m+h+\ell\geq r+2$, $\rho_2(\pi)$ is graphic and π is potentially $A_{1,1,t}$ -graphic, a contradiction. If r=t+1 and m=1, then $m+h+\ell\geq r+1$, $\rho_2(\pi)$ is graphic by Lemma 2.5(1) or Lemma 2.5(2), and π is potentially $A_{1,1,t}$ -graphic, a contradiction.

Case 3. $d_1 = r$. If $r \ge t + 2$ and $m \ge 2$, then $m + h + \ell \ge r + 2$, $ho_2(\pi)$ is graphic and π is potentially $A_{1,1,t}$ -graphic, a contradiction. If $r \geq t+2$ and m=1, then $m+h+\ell \geq r+1$, $\rho_2(\pi)$ is graphic by Lemma 2.5(1) or Lemma 2.5(2), and π is potentially $A_{1,1,t}$ -graphic, a contradiction. If r = t + 1 and $m \ge 3$, then $m + h + \ell \ge r + 2$, $\rho_2(\pi)$ is graphic and π is potentially $A_{1,1,t}$ -graphic, a contradiction. We now assume that r=t+1 and m=2. In this case, if $h\geq 1$ or $\ell\geq t+1$, then $m+h+\ell \geq r+2, \,
ho_2(\pi)$ is graphic and π is potentially $A_{1,1,\ell}$ -graphic, a contradiction. If h = 0 and $\ell = t$, then $\rho_2(\pi) = ((t+1)^2, (t-1)^t, d_{t+5}^{(2)}, \dots, d_n^{(2)})$ (in non-increasing order), where $d_{t+5}^{(2)} \leq t-2$. By Lemma 2.5(2), the residual sequence $(t, (t-2)^t, d_{t+5}^{(2)}, \ldots, d_n^{(2)})$ obtained by laying off t+1 from $\rho_2(\pi)$ is graphic. Thus, $\rho_2(\pi)$ is also graphic and π is potentially $A_{1.1.t}$ graphic, a contradiction. Finally, we assume that r=t+1 and m=1. In this case, $\rho_2(\pi)=((t-1)^t,t+1,d_{t+4}^{(2)},\ldots,d_n^{(2)})$, where $d_{t+4}^{(2)}\leq t$. If $t-1 \leq d_{t+4}^{(2)} \leq t$, then by Lemma 2.5(2), $\rho_2(\pi)$ is graphic and π is potentially $A_{1,1,t}$ -graphic, a contradiction. If $1 \leq d_{t+4}^{(2)} \leq t-2$, then by Theorem 2.4, the residual sequence $((t-2)^t, d_{t+4}^{(2)}, \dots, d_{t+5}^{(2)}, \dots, d_n^{(2)})$ obtained by laying off t+1 from $\rho_2(\pi)$ is graphic, and hence $\rho_2(\pi)$ is also graphic and π is potentially $A_{1,1,t}$ -graphic, a contradiction. If $d_{t+4}^{(2)} = 0$, then $\rho_2(\pi) = ((t-1)^t, t+1, 0^{n-t-3})$ and $\pi = ((t+1)^{t+3}, 0^{n-t-3})$. Thus, $\sigma(\pi) = (t+1)(t+3) < (t+1)(n-1)+1 \le \sigma(\pi)$, which is impossible. \Box

Acknowledgements The authors are grateful to the referee for his valuable comments.

References

 P. Erdös and T. Gallai, Graphs with given degrees of vertices, Math. Lapok, 11(1960), 264-274.

- [2] P. Erdös, M.S. Jacobson and J. Lehel, Graphs realizing the same degree sequences and their respective clique numbers, in: Y. Alavi et al., (Eds.), *Graph Theory, Combinatorics and Applications*, Vol.1, John Wiley & Sons, New York, 1991, 439-449.
- [3] R.J. Gould, M.S. Jacobson and J. Lehel, Potentially G-graphical degree sequences, in: Y. Alavi et al., (Eds.), Combinatorics, Graph Theory, and Algorithms, Vol.1, New Issues Press, Kalamazoo Michigan, 1999, 451-460.
- [4] D.J. Kleitman and D.L. Wang, Algorithm for constructing graphs and digraphs with given valences and factors, *Discrete Math.*, 6(1973), 79– 88.
- [5] C.H. Lai, A note on potentially $K_4 e$ -graphical sequences, Australasian J. Combinatorics, 24(2001), 123-127.
- [6] C.H. Lai, An extremal problem on potentially $K_{p,1,1}$ -graphic sequences, Discrete Mathematics and Theoretical Computer Science, 7(2005), 75-81.
- [7] J.S. Li and Z.X. Song, An extremal problem on the potentially P_k -graphic sequence, *Discrete Math.*, 212(2000), 223-231.
- [8] J.S. Li and Z.X. Song, The smallest degree sum that yields potentially P_k -graphic sequences, J. Graph Theory, 29(1998), 63-72.
- [9] J.S. Li, Z.X. Song and R. Luo, The Erdös-Jacobson-Lehel conjecture on potentially P_k -graphic sequences is true, *Science in China*, *Ser.A*, 41(1998), 510–520.
- [10] J.H. Yin and J.S. Li, An extremal problem on potentially $K_{r,s}$ -graphic sequences, *Discrete Math.*, **260**(2003), 295–305.
- [11] J.H. Yin and J.S. Li, The smallest degree sum that yields potentially $K_{r,r}$ -graphic sequences, Science in China, Ser.A, 45(2002), 694-705.
- [12] J.H. Yin and J.S. Li, Two sufficient conditions for a graphic sequence to have a realization with prescribed clique size, *Discrete Math.*, 301(2005), 218-227.
- [13] J.H. Yin, J.S. Li and G.L. Chen, A variation of a classical Turán-type extremal problem, *European J. Combinatorics*, 25(2004), 989-1002.
- [14] J.H. Yin, J.S. Li and G.L. Chen, The smallest degree sum that yields potentially $K_{2,s}$ -graphic sequences, Ars Combinatoria, 74(2005), 213-222
- [15] 213-222. [15] G. Chen, A note on potentially $K_{1,1,t}$ -graphic sequences, Australasian J. Combinatorics, 37(2007), 21-26.