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Abstract: Let o(X1,1,¢,n) be the smallest even integer such that every
n-term graphic sequence 7 = (d1,d2,...,ds) Witho(7) =dr +d2+ - +
dn > o(K1,1,t,n) has a realization G containing K1,1,¢ as a subgraph,
where Kj,1,¢ is the 1 x 1 x ¢t complete 3-partite graph. Recently, Lai
(Discrete Mathematics and Theoretical Computer Science, 7(2005), 75-
81) conjectured that for n > 2t + 4,

_J t+1)(n-1)+2 ifnisoddortisodd,
o(Kiae,m) = { (t+1)(n—-1)+1 ifn and ¢ are even.

In this paper, we prove that the above equality holds for n > ¢ + 4.
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1. Introduction

The set of all sequences m = (d1,d2,...,ds) of nonnegative integers
with d; < n — 1 for each i is denoted by NS,. A sequence m € NS,
is said to be graphic if it is the degree sequence of a simple graph G on
n vertices, and such a graph G is called a realization of m. The set of
all graphic non-increasing sequences in NS, is denoted by GSn. For a
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sequence 7 = (dy,da,...,d,) € NS,, define o(n) =dy +da +--- +d,,. For
given a graph H, a graphic sequence 7 is said to be potentially H-graphic
if there exists a realization of 7 containing H as a subgraph.

Gould, Jacobson and Lehel [3] considered the following extremal prob-
lem on potentially H-graphic sequences: for given a graph H, determine
the smallest even integer o(H, n) such that every sequence = € GS, with
o(m) > o(H,n) is potentially H-graphic. If H = K,,,, a complete graph
on r+1 vertices, this problem was considered by Erdés et al. [2] where they
showed that o(K3,n) = 2n for n > 6 and conjectured that o(K,41,n) =
(r —1)(2n —7) +2 for sufficiently large n. Gould et al. [3] and Li and Song
[7] independently proved it for 7 = 3. Recently, Li et al. [8,9] proved that
the conjecture is true for r =4 and n > 10 and for r > 5 and n > (;) + 3.
For H = K, ;, the r x s complete bipartite graph, Gould et al. (3] de-
termined o(K2,2,n) for n > 4, Yin and Li [10] determined o(K3 3,n) for
n 2 6 and 0(Ky4,n) for n > 8, Yin, Li and Chen [14,11,13] further de-
termined ¢ (K, s, n) for s > r > 1 and sufficiently large n. For the case of
H = K1, Lai in [5] determined o(K},19,n) for n > 4. Lai [6] further
determined o(K,3,3,n) for n > 5 and gave a lower bound for o(K11,e,n).
The following are his results.

Theorem 1.1 [5]

n—-1 .
d(Kiy2,n) = 2 [_2—] ffn >4 and n # 6,
20 1fn=6,

where [z] denotes the integer part of z.
Theorem 1.2 [6]

4n—2 ifn>5andn#6,
o(Ki3,m) = { 26 if n = 6. g

Theorem 1.3 [6] Let n >t + 2. Then

(t+1)(n—-1)+2 ifnisoddortisodd,
o(Kypem) 2 { (t+1)(n—1)+1 ifn andt are even.

Moreover, in the end of [6], Lai conjectured that the equality in Theorem
1.3 holds for n > 2t+-4. Recently, Chen [15] proved that the Lai’s conjecture
holds for ¢ > 3 and n > 2[-('—";5-2] + 3. In this paper, we further show that
the Lai's conjecture is true for ¢ > 3 and n > ¢t +4. In other words, we will
prove the following

Theorem 1.4 Lett >3 and n >t + 4. Then

_J t+1)(n—-1)+2 ifnisoddortisodd,
o(Ky0m) = { (t+1)n—-1)+1 ifn andt are even.
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Remark Let ¢(> 3) be odd, n = t +3 and m = ((t + 1)*+2), where the
symbol z¥ in a sequence stands for y consecutive terms, each equal to z.
It is easy to see that 7 is graphic but not potentially K ) -graphic, and
o(m) > (¢t 4 1)((t + 3) — 1) + 2. Therefore, Theorem 1.4 is best possible in
the sense that ¢ + 4 cannot be replaced by a smaller integer.

2. Proof of Theorem 1.4

In order to prove Theorem 1.4, we first need the following preliminaries.
In [4], Kleitman and Wang introduced the “laying off” technique as follows.
Let 7 = (d3,da,...,dn) € NS, be a non-increasing sequence and 1<k <
n. Let

(dl _li"”dk—l - lvdk+1 - 1?"'1ddk+1"'laddk+21"'1dn)
ol = ifdek,
k (di—-1,...,dq, — l,ddk+1,-o-,dk—ladk-i-l,---,dn)
ifdy, < k.

Denote 7} = (d},d},...,dl,_,), where dy > djy > --- > d,,_; is the re-
arrangement of the n — 1 terms in 7. m}, is called the residual sequence
obtained by laying off di. from 7. It is easy to see that if = is graphic then
so is , since a realization G of 7 can be obtained from a realization G’
of m}, by adding a new vertex of degree di and joining it to the vertices
whose degrees are reduced by one in going from 7 to mj. Kleitman and
Wang [4] also proved that if 7 is graphic, then there exists a realization G
of 7 such that the vertex with degree d. is adjacent to those vertices (other
than itself) which have the largest degrees of 7, and hence ), is graphic.
Thus, they obtained the following

Theorem 2.1 [4] Let 7 = (dy,dz,...,ds) € NS, be a non-increasing
sequence and 1 < k < n. Then 7 € GS,, if and only if 7}, € GSa_1.

Theorem 2.2 [1] Let m = (d1,d2,...,dn) € NS, be a non-increasing
sequence with even o(m). Then w € GS,, if and only if for any ¢, 1<t <

n-1,
n

t
Ydi<tt—1)+ Y min{t,d;}.
i=1 j=t+l
Theorem 2.3 [10,11] Let 7 = (d1,...,dn) € NSp, m = max{dy,...,dn}
and o(7) be even. The rearrangement sequence of « is denoted by 7* =
(d},d3,...,d;), whered} >d3 2--- 2 d? is the rearrangement of dy, da, . . .,
d,. If there exists an integer ny < m such that d;, > h 21 and n; >

* gm—'”‘;ﬂf-], then 7 € GS,.

Theorem 2.4 [12] Let w = (dy,d2,...,d,) € NS, bea non-increasing
sequence, where d; = r and o(w) is even. If dpy1 27— 1, then € GS,.
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Theorem 2.5 [3] If # = (dy,dy,...,d,) € GS, has a realization
G containing H as a subgraph, then there exists a realization G’ of =
containing H as a subgraph so that the vertices of H have the largest
degrees of .

Let # = (dy,...,d¢42,...,dn) € GS,. If w has a realization G with
vertex set V(G) = {v1,vs,...,v,} such that dg(v;) = d; for 1 <i < n
and G contains K},1, as its subgraph, where {v;}, {v2} and {vs,...,ve42}
is the 3-partite partition of the vertex set of K3 1, then 7 is said to be
potentially Ay ) .-graphic. On potentially A; ;;:-graphic sequence, we have
the following

Lemma 2.1 7 = (d),ds,...,d,) € GS, is potentially K ; ;-graphic if
and only if it is potentially A, ; .-graphic.

Proof. We only need to prove that if 7 is potentially K ;:-graphic,
then it is potentially A, ; ,-graphic. By Theorem 2.5, we may assume that
7 has a realization G with vertex set V(G) = {v;,vs,...,v,} such that
dg(vi) = d; for 1 < i < n and the induced subgraph G[{vi,vs,...,ve42}]
by {v1,v2,...,v42} contains K, as a subgraph, where {v;}, {v;} and
{v1,...,veq2} — {vi,v;} (1 £ i < j < t+2) is the 3-partite partition of
the vertex set of K1,1¢. Denote H = G[{vy,va,...,v+2}]. We consider the
following cases. .

Case 1. |[{v1,v2} N {v;,v;}| = 2. Then {v),v2} = {v;,v;}, and 7 is
clearly potentially A, :-graphic.

Case 2. |{v1,v2}N{v;,v;}| = 1. Without loss of generality, we assume
thati=1and j > 2. Let A = Ny (v;)—({v2}UNg(v2)) and B = Ng(v2)—
({vj} U Ng(v;)). Since dg(v2) > dg(v;), it follows that |B| > |A]. Now
choose any subset C C B having |C| = |A|. Now form a new realization G’
of m by interchanging the edges of the star centered at v; with endvertices
in A with the non-edges of the star centered at v; with endvertices in C,
and interchanging the edges of the star centered at vy with endvertices in
C with the non-edges of the star centered at vy with endvertices in A. It
is easy to see that G’ contains K ; as a subgraph, and {v;1}, {v2} and
{v3,...,ve42} is the 3-partite partition of the vertex set of K1 ¢. In other
words, 7 is potentially A, ; ,-graphic.

Case 3. |{v),v2}N{v;,v;}| = 0. Similar to the proof of Case 2, we first
construct a realization G’ of m containing K),;; as a subgraph such that
{w1}, {v;} and {vy,...,ve42} — {v1,v;} (5 > 2) is the 3-partite partition of
the vertex set of Kj,1¢. Then, it follows from Case 2 with G’ playing the
role of G that 7 is potentially A; ; .-graphic. O

Lemma 2.2 If 7 = (dy,ds,...,d,) € GS,, with d; +ds > n +¢, then
w is potentially A, .-graphic.

Proof. By Theorem 2.1, we may assume that G is a realization of 7
with vertex set V(G) = {v;,va,...,v,} such that dg(v;) =d; for1 <i<n
and v; is adjacent to vz, ...,vq,+1. Let A = Ng(v1) — {v2}, B = Ng(v2) —



{v:} and C = ANB. It is easy to see that |[A— B| +|B — 4| +2|C|+2=
d1+dy > n+t and |[A—B|+|B—A4|+|C|+2 < n. Thus |C| > £. Therefore,
G contains K, ¢ as a subgraph. By Lemma 2.1, 7 is potentially A; 1.-

graphic. O
Lemma 2.3 Lett >3, n>t+2and m= (dy,ds,...,dn) € GS, with
n—22d12d2="'=dd,+2_>_"Zdn andd22t+1- Let

p’1(7r) = (d2 - 1,d3 - 1,. .o ,dt+2 bl 1,d¢+3 - 1,... ,dd,+1 - l,ddl+2,...,dn),

and denote p1 () = (do — L, dz —1,..., depa — 1,d{s, d%y, ..., d%?), where
d&):, > dg,)‘, > ... > d¥¥ is the rearrangement of di13 — 1,...,da,+1 —
l,dd,+2,. ..,dn. Let

1
() = (d3 — 2, deyz — 2,d — 1,...,dD,, —1,d8),,, ..., dD),

and denote p2(7) = (ds —2,...,dt42—2, dﬁi’s, dﬁ)‘v cees ds.z)), where dg)s >
dg_)q > 2 ds.z) is the rearrangement ofdg_):,—l, veey d&lz)_l_l—l, df,lz)_l_z, ceey ds,l).
If pa(r) is graphic, then 7 is potentially A; .-graphic.

Proof. It easily follows from the definition of pz(7) that 7 is potentially
Ay 1,.-graphic. O

Lemma 2.4 Let n >t+2and 7 = (dy,...,dn) € GS, with

o(r) > (t+1)(n—1)+2 ifnisoddortisodd,
"= (t+1)(n—1)+1 ifn and ¢ are even.

Then d2 >t+1 and dg+2 > 2.

Proof. Ifdy <t theno(x) <n—1+(n—-1t=(t+1)(n-1)
a contradiction. If d;y2 < 1, then by Theorem 2.2, o(7) = i =
Yt di 4 T yadi < (B8 + 1) + iy min{t +1,d}) + Dty di =
tt+1)+23 0 0t StHE+D)+2(n—t—1)=(E-2)(t+1)+2n =
E=DE+D+2m—(t+1) <(E-Ln+2n—(t+1)=(¢+1)(n—1),a
contradiction. O

Lemma 2.5 Let r >4, n>r+1and 7 = (dy,dz,...,dn) € NSy, be
a non-increasing sequence, where d; = r and o(7) is even.

(1) If dpy2 > 7 — 2, then m € GS,.

QEr—-1>2dy>---2drpa27r-2, then 7w € GS;,.

Proof. (1) Since 5 [(Ti';lﬂ—lﬁ] =r+1+ 25 <r+2, by Theorem
2.3, 7 € GS,.

(2) If dpyo > 7 — 2, then by (1), 7 € GS,,. Assume dy4 o <7 — 3. Let
x| = (d},db,...,d,_,) be the residual sequence obtained by laying off d;
from 7. Then o(n}) is even, and d} =da—1,d5 =d3—1,...,d; = drj1 — 1.
Clearly, r —2 > d} > --- > d. > r — 3. It follows from Theorem 2.4 that
7} € GSn—1, and ™ € GS, by Theorem 2.1. 0
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We now prove Theorem 1.4.
Proof of Theorem 1.4. By Theorem 1.3, it is enough to prove that
ift>23,n>t+4and 7 =(dy,dy,...,d,) € GS, with

o(m) > (t+1)(n—-1)+2 ifnisoddortisodd,
=l ¢+1)(n=1)+1 ifnandt areeven,

then 7 is potentially A, ;.-graphic. By Lemma 2.4, we have d, >t+1
and d;y5 > 2. Now use induction on ¢. If t = 3, then by Theorem 1.2 and
Lemma 2.1, 7 is potentially A, ; 3-graphic. In other words, Theorem 1.4
holds for ¢t = 3. Assume that ¢ > 4 and = is not potentially Aj,1,t-graphic.
We have

(1)di <n—-2and deyp = --- = dg,4+2. If dy = n — 1 or there exists
an integer k, t + 2 < k < d; + 1 such that di > di41, then the residual
sequence m; = (d},d5,...,d},_;) obtained by laying off d; from = satisfies
dy =dy —1,dj, =dg—1,...,d},; = dey3 — 1. By Theorem 2.1, w is
graphic, and hence 7] has a realization G’ such that the vertex with degree

1 is adjacent to those vertices having degrees dj, ... N AT d;,,l +1- We
now form a realization G of 7 from G’ by adding a new vertex of degree
d; and joining it to the vertices whose degrees are reduced by one in going
from 7 to m}. It is easy to see that G contains K ¢ as a subgraph. Hence
w is potentially A ;.-graphic, a contradiction. Thus, d < n — 2 and
dipo = - =dg 4.

(2) da < [M'zﬂi] -1. Ifdy > [Et;—""—l-], then d; +dz > n +t, and
so 7 is potentially A; ) ¢-graphic by Lemma 2.2, a contradiction. Hence,
dg < [ -1

(3) d2 = d3 = --- = diyo. If dy > ds, then d3 < [2EEL] — 2 and
the residual sequence 73 = (di,ds,...,d,,_,) obtained by laying off ds
from 7 satisfies d] =dy —1,dy =dpa —1,n—1 > (t— 1) +4 and o(w}) =
o(m)—2d3 > (t+1)(n—1)+1-(n+t+1)+4 > ((t—1)+1)((n—1)-1)+2.
By the induction hypothesis, 7} is potentially A; ; ;—;-graphic. It is easy
to get that 7 is potentially K, ;:-graphic, a contradiction. Hence dy =
d3. If there exists an integer k, 3 < k < ¢t + 1 such that dx > diq1,
then t + 1 < d3 < [24£+l] — 1, and it is easy to verify that the residual
sequence w3 = (d},d3,...,d;_;) obtained by laying off d3 from 7 satisfies
dy=di-1,dy=ds—1,n-12> (t—1)+4 and o(n}) = o(n) — 2d3 >
((t—1)+1)((r—1) — 1) + 2. By the induction hypothesis, 4 is potentially
Aj,1,t-1-graphic, and hence = is potentially K ; ;-graphic, a contradiction.
Thus, d2 = d3 == dt+2-

By (1), (2) and (3), # = (dy,dy,...,d,) satisfies n — 2 > d} > dp =
d3=-=dyyp =" =dg422dg432> - >dp. Letdy=dy =-.. =
dg,42 =7T(2t+1). Clearly, d; +2 > 7+ 2 > t + 3. By the definition of
p2(7), we have po(m) = ((r — 2)‘,d$,2|_)3,...,d$,2)), where r —1 < dg,)a <.
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Let m, h and £ denote the term number of r, 7 — 1 and r — 2 appearing
in pa(w), respectively. Clearly, £ > t. If m = 0, then by the definition of
p2(m), it is easy to see that h+£ > (dy +2) —2 =d; >, and hence pa2(7)
is graphic by Theorem 2.4. Thus, 7 is potentially A, .-graphic by Lemma
2.3, a contradiction. Assume that m > 1. By the definition of pa(), we
have h > d; 4+ — 2(t + 1). We now consider the following cases.

Casel. di>7r+2 Thenm+h+£€>1+d+r—-2(t+1)+t=
dy +7—(t+1) > r+2. By Lemma 2.5(1), p2(w) is graphic, and hence 7
is potentially A 1 ¢-graphic, a contradiction.

Case 2. dy=r+1. Ifr>t+2, thenm+h+£21r+2 pa(m)
is graphic by Lemma 2.5(1), and hence 7 is potentially Ay,1,-graphic, a
contradiction. Ifr =t +1and m > 2, then m+h+ £ > r+2, pa(m) is
graphic and 7 is potentially A1 ¢-graphic, a contradiction. Ifr=t+1
and m = 1, then m + h + £ > r + 1, pa() is graphic by Lemma 2.5(1) or
Lemma 2.5(2), and 7 is potentially Aj,¢-graphic, a contradiction.

Case 8. dy=r. fr>t+2andm > 2, thenm+h+€27+2,
pa2(m) is graphic and 7 is potentially Aj1,-graphic, a contradiction. If
r>t+2andm =1, then m+h+£€ 27 +1, po(m) is graphic by
Lemma 2.5(1) or Lemma 2.5(2), and 7 is potentially Ay, .-graphic, & con-
tradiction. If r =t+1and m > 3, then m+ h+£ > 742, pa(m) is
graphic and 7 is potentially A;;¢-graphic, a contradiction. We now as-
sume that r =t + 1 and m = 2. In this case, if h > 1 or £ >t +1, then
m+h+¢ > 7+2, pz(m) is graphic and 7 is potentially Ajy,1,-graphic, a con-
tradiction. If h = 0 and £ = ¢, then pa(w) = ((t+1)?, (t - 1)‘,dg_)5, cers dg))
(in non-increasing order), where dfi)s < t—2. By Lemma 2.5(2), the resid-
ual sequence (t,(t — 2)‘,d§,2,,)5, vy ds.z)) obtained by laying off ¢ + 1 from
pa(r) is graphic. Thus, p2(r) is also graphic and = is potentially Aj -
graphic, a contradiction. Finally, we assume that r =t +1 and m = 1.
In this case, pa(m) = ((t — L)%t + 1,d§1)4,...,d$,2)), where dg)‘! <t If
t—-1< dﬁ),‘ < t, then by Lemma 2.5(2), p2(7) is graphic and = is po-
tentially A, ¢-graphic, a contradiction. If 1 < dﬁ)‘; < t — 2, then by
Theorem 2.4, the residual sequence ((t — 2)*, d£-2|-)4 - l,ds_z,_)s, e dD) ob-
tained by laying off t 4+ 1 from pp(w) is graphic, and hence p2(m) is also
graphic and = is potentially A, -graphic, a contradiction. If dﬁ)‘! =90,
then pa(m) = ((t — 1)%,¢ +1,0""*3) and m = ((t + 1)t+3,07~*=3). Thus,
o(m) = (t+1)(t + 3) < (t +1)(n — 1) + 1 < o(w), which is impossible. O
Acknowledgements The authors are grateful to the referee for his valu-
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