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Abstract

Motivated by the results from [J. Li, W. Shiu, W. Chan, The
Laplacian spectral radius of some graphs, Linear Algebra Appl. 431
(2009) 99-103.], we determine the extremal graphs with the second
largest Laplacian spectral radius among all bipartite graphs with
vertex connectivity k.
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1 Introduction

Let G be a simple connected graph. The number of vertices of G is de-
noted by |G|. The matrix L(G) = D(G) — A(G) is called the Laplacian
matriz of a graph G, where D(G) = diag(dy,u € V(G)) is the diagonal
matrix of vertex degrees of G and A(G) is the adjacency matrix of G.
The matrix L(G) is a positive semi-definite and singular matrix [3]. The
largest eigenvalue of L(G) is called the Laplacian spectral radius of G and
is denoted by A = A(G). Suppose Q(G) = D(G) + A(G), we call this ma-
trix the signless Laplacian matriz and its largest eigenvalue is denoted by
¢ = p(G). It is well-known that Q(G) is an irreducible non-negative ma-
trix, and therefore from the Perron-Frobenius theorem, there is a unique
positive unit eigenvector corresponding to x(G). For the background on
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the Laplacian eigenvalues of a graph, the reader may refer to [11] and the
references therein.

For a vertex v in G, N (v) denotes the set of neighbors of v and d,, denotes
the degree of v. Let G[S] denotes the subgraph induced by the vertex set
S, 8 C V(G). For k > 1, a graph G is k-connected if either G is a complete
graph K11, or G has at least k + 2 vertices and contains no (k — 1)-vertex
cut. Similarly, for k£ > 1, a graph G is k-edge-connected if it has at least
two vertices and does not contain (k — 1)-edge cut. The maximal value of
k for which a connected graph G is k-connected is the connectivity of G,
denoted by #(G). If G is disconnected, we define 5(G) = 0. The edge-
connectivity «(G) is defined analogously. For other notations in graph
theory, we follow [2]. If G is a graph of order n, then (1) (G) < #'(G) <
n—1;(2) K(G) =n—1, K'(G) =n —1 and G = K, are equivalent.

Therefore in the sequel, we assume 1 < k < n—2. If G is a bipartite
graph, then 1 < k < 3). We denote by VE the set of graphs of order
n with £(G) = k < n — 2, and by £X the set of graphs of order n with
K(G)=k<n-2.

Let K,m be a complete bipartite graph. Denote by B, (p > 1,k+1 >
1,1 > 0) the graph with p + k + ! + 1 vertices, obtained from Kp x4 by
adding a new vertex together with edges joining this vertex to k vertices of
the bipartition with k +{ vertices. If I =0, then B, & K11 . For k < p,
K(B:,’k) = k.

Figure 1: The graph B}, with 10 vertices.

In (1], Brualdi and Solheid proposed the following problem concerning
spectral radius: Given a set of graphs G find an upper bound for the spectral
radius of graphs in G and characterize the graphs in which the mazimal
spectral radius is attained. This problem is well studied, see for example
[4, 5, 10, 14]. For the Laplacian spectral radius of this problem, see [12,13].
Recently, Li et al. [8] determined the extremal graphs which maximize the
Laplacian spectral radius among all bipartite graphs with vertex and edge
connectivity k.

In this paper, we continue to estimate the Laplacian spectral radius of
graphs in V¥ and £% and we obtain the second largest value of the Laplacian
spectral radius for bipartite graphs with connectivity k.
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2 Bipartite graphs with <(G) =k

Lemma 2.1 [6] For a connected graph G, we have A(G) < u(G), with
equality if and only if G is bipartite.

Lemma 2.2 [3] Let K be a spanning subgraph of a connected graph G.
Then A(K) < XG).

Since Bn_k_, 1,x contains the complete bipartite graph Kn_x—1—1,k4i

as a subgraph, it follows that )\(B’ k11, k) 2 MEn—k-t-1641) =n-—1.

Lemma 2.3 The Laplacian spectral radius of B, _,_;_, , is the largest root
of the cubic equation f(z) = 0, where f(z) = z° + (I + 1 — 2n)a? + (n? —
In+kn—n—Fkl+1—k%*— k):z:+(kn+k:2n+kln kn?).

Proof. By Lemma 2.1, we consider Q-matrix of Bn_k_ -1,k Let X be the
eigenvector of u(B._, _ 1-1,)- By symmetry, we can suppose the eigencom-
ponents corresponding to the vertices of degrees k,n—k—1l,n—k—I—1,k+!
are 1,2, T3, Z4, respectively. From the eigenvalue equation QX = pX, it
follows

pzy = kxi+kzo,
prz = (m—k—-Dzz+z1+(n—k—1-1)z4,
pry = (n—k-1l—-1z3+(n—k—-1-1)z4,
Hrgy = (k + l)$4 + kxg 4 lz3.
Simplifying the above equations, we have u—n+k+l—m = kk_(?:f(_:;kli g

or equivalently, p* + (1 +1 — 2n)u® + (—k — k2 -i- l—kl—n+kn-In+
n?)u? + (kn + kzn + kin — kn?)p = 0. Since A(B},_,_;_;;) = n —1, this
implies the result. B

Lemma 2.4 A(B._,_,_, ) is strictly decreasing with respect to l for 0 <
I<n—-k-2.

Proof. From Lemma 2.3, )\(B,’_"tlk_,_z,k) satisfies g(z) = 0, where g(z) =
B+ 2+1-2n)x?+ 2 —In+kn—2n—ki+1—k*—2k+1)z+ (2kn+
k%n + kln — kn?).

Let r(z) = f(z) — g(z) = —2% + (n + k — 1)z — kn, where f(z) is
as in Lemma 2.3. Since k < n — 2, it follows r'(z) = -2z +n+ k —
1 <0forz>n-—1. Since )\(Bfl_k_,_l'k) > MKp—k-t-1k41) =0 —1,
we have r(AM(BL_y_;_;;)) < r(n —1) = —k < 0. This is equivalent to
f (’\(sz-k-z—x,k)) =0< g(A(BL_k_,_l‘k)), therefore the largest root of
g(z) = 0 is less than A(B,_,_;_; ;), which implies the result. B
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Lemma 2.5 [7] Let G be a connected graph and u,v be two vertices of G.
Suppose v1,v2,..., vs € N(v) \(N(@)U{u}) (1 < s <d,), and G* is the
graph obtained from G by deleting the edges vv; and adding the edges uv;
(1Li<s). Let X = (z1,%2,...,%n)" be the principal eigenvector of Q(G),
where z; corresponds to v; (1 < i< n). If zy 2 x4, then u(G) < u(G*).

Theorem 2.6 Let G be a connected bipartite graph of order n with con-
nectivity k (1< k < [2]). Then we have

(1) MG) < n with equality holding if and only if G = Kj. .

(2) If G % Kgnk, then A(G) < z\(B,ll_k_&k) with equality holding if and
onlyif G=BL_; o .

Proof. The proof of the first part can be found in (8], and we will consider
the second part. Let G % Kj ,—r be the graph with maximal Laplacian
spectral radius among all bipartite graphs of order n with vertex connec-
tivity k, different from Kj ,—x. Let U be a vertex cut-set of G containing
k vertices, whose deletion yields the components G1,Ga,...,G; of G = U,
where s > 2.

If some component G; of G — U has at least two vertices, since G is
bipartite, then G —U is also bipartite, i.e., G; is bipartite. Note that G has
maximal Laplacian spectral radius, then G; must be complete bipartite.

If some component G; of G — U is a singleton, say G; = {w}, then w
joins all vertices of U (otherwise x(G) < k) and hence the subgraph G[U]
induced by U contains no edges.

Claim 1. If all components of G — U are singletons, then G & K ;.
So this is impossible.

Claim 2. If there exists one component, say Gy, of G — U such that
|G1] = 2, then G — U contains exactly two components.

Suppose that G; is complete bipartite with bipartition (V{!,V{?) and
8 > 3, we discuss in the following two cases.

Case 1: If there exists another component of G — U, say Gs, such that
|G2| = 2. Then G is complete bipartite with bipartition (V3!, V;?). Since
8 > 3, then there is a component G3 with |Gs| > 1.

If |Gs| = 1, say Gz = {w'}, then adding all possible edges between
V3 (perhaps V2 to make sure that the resulting graph is bipartite) and
w', we can get a bipartite graph G’ with more edges, and by Lemma 2.1
A(G) = u(G) < w(G") = M@'). This contradicts to the choice of G.

If |G3| > 2, then G5 is complete bipartite with bipartition (V3, V).
Adding all possible edges between V3! and V2, we get a new bipartite graph
with more edges and larger Laplacian spectral radius. This is again a
contradiction.
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Case 2: If Go,...,G, are singletons. Assume G; = {w;} for i =
2,...,s. Then dy, = k for i = 2,...,s; and G[U] is an empty graph since
G is bipartite. Adding all possible edges between U and Vi}; and between
ws and V2, we get a new graph G”, and by Lemma 2.1 A(G) = u(G) <
p(G") = M\(G"). This contradicts to the choice of G.

From Claim 2, we can suppose s = 2.

Claim 3. G must be of the form B} _,_, ;-

Case 1: If |G1| > 2 and |Ga| = 1, suppose G2 = {w}, then G[U]
contains no edges and d,, = k. Adding all possible edges between U and
Vi!, we can get A(G) < A(B}_i_z4)- Thus in this case G must be of the
form BL_,_, -

Case 2: If |G1| > 2 and |G3| > 2, we will prove that G is of the form
B:,'k, where p+ ! + k + 1 = n. Finally, the result follows from Lemma 2.4.

Assume that every vertex in U is adjacent to every vertex in Vi CV(Gy)
and V}! C V(G,) since G has maximal Laplacian spectral radius.

If there exists one vertex vp in G — U such that d,, = k, suppose
vy € V} C V(G,) and N(vg) = {u1,uz,...,ux}. Since G is bipartite, it
follows {u1,u2,...,ux} is contained in the same partition set of G. Note
that N(vg) is also a vertex cut-set of G containing k vertices; G-y is
bipartite with {u,us, . .., ux} in the same partition set. Adding all possible
edges in G — vy to make it complete bipartite, we get the graph B:,’k and
AG) £ A(Bz‘,'k) from Lemma 2.1.

If all vertices from G — U have degree greater than k, we take two
vertices v, € Vi C V(G1), v2 € V3 C V(G2). Without loss of generality,
assume that z(v;) > z(vz) > 0, where z(u) is the eigencomponent of u(G)
corresponding to the vertex u. Suppose dy, = |V#| + s > k since dy, > &k,
where s (0 < s < k) is the total number of edges joining v2 and some
vertices of U. Now we arbitrarily pick a set W of |[VZ| — (k—s) > 0 vertices
in V. Deleting the edges between vz and vertices of W, and then adding
the edges between v; and the vertices of W, we get a bipartite graph G
in which the degree of v, is k. By Lemma 2.1 and Lemma 2.5, we have
MG) = (@) < pu(G) = X\(G). From above, it follows A(G) < /\(B,',’k).

From the above three claims, we get the result. B

Corollary 2.7 The Laplacian spectral radius of BL_,._, ; satisfies h(z) =
0, where h(z) = 23 + (2 — 2n)z? + (n? — 2n + kn + 1 — k* — 2k)z + (2kn +
k2n — kn2). Moreover,

T+ T2+ &n— T

2(n—1) ’

n—1<ABi s ox) <n—1+—

where T = kn — k2 — 2k > 0.
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Proof. From Lemma 2.3, we have B}_, ,, satisfies h(z) = 0. Since
B,‘,_k_g’k contains a complete bipartite graph K,_x_2 x+1, we haven—1 <
A(Bh_—ax) <7 Let A(BL_,_5;) =n—1+t, where 0 < t < 1. Taking
this into h(z) = 0, then ¢ satisfies m(t) = 0, where m(t) = t3 + (n — 1)¢2 +
(kn — k2 — 2k)t + 2k + k2 — kn.

Suppose that the three roots of m(t) = 0 are t,t3,¢3. If three roots
are real, then we can order them as ¢; > £ > t3. Otherwise, there is only
one real root ¢; and t3 + t3 and t3t3 are both real numbers. From Viéta’s
formulas, we have

tit+ita+t3 = —-n+1,
tito +tita +tats = kn—k% -2k,
titats = kn-— k2 — 2k.
Since n > k+2, it follows T = kn—k2—2k > 0. In order to estimate t;, first

note that tots =T —t)(ta +t3) =T — ti(—n+1- t1) > T+ (n—1)t;, and
consequently ¢; = % < oD Finally, by solving the last inequality,

we have t; < —+ V:(:ig"_l)r. This completes the proof. B

3 Concluding remarks

In this section, we present some properties of extremal graphs with maximal
Laplacian spectral radius and vertex (edge) connectivity k.

Lemma 3.1 [9] Let G be a connected graph. Then A\(G) = n if and only
if G contains K, as a spanning subgraph for some t.

Using this lemma, we have the following two results for general graphs.

Theorem 3.2 Let G be a connected graph in VX. G has the mazimal
Laplacian spectral radius if and only if G contains K; n_: as a spanning
subgraph for some t. Moreover, A(G) = n.

Theorem 3.3 Let G be a connected graph in EX. G has the mazimal Lapla-
cian spectral radius if and only if G contains K, —; as a spanning subgraph
Jor some t. Moreover, the minimum degree of G is k and A(G) = n.

Proof. The proof of the first part comes from that of Lemma 3.1. For the
later part, since G contains K; ,_. as a subgraph, we have that the diameter
of G is two. From Theorem 3.22 in [2] page 77, we get &'(G) equals to §(G),
the minimum vertex degree of G; while £'(G) = k, the result follows. Il
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