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Abstract: The generating function for p-regular partitions is given by

P.qf
%L))“ . In this paper we will investigate the reciprocal of this
39
generating function. Several interesting results will be presented and
as a corollary of one of these we will get a parity result due to Sellers
for p-regular partitions with distinct parts.

A p-regular partition of n is a partition of n in which no part is divisible
by p [3, 4. The generating function for p-regular partitions is given by
) P.AP
pr (n)q" =—(((1—’—% where by(n) is used to denote the number of p-regular
n=0 SHE )M
partitions of n. In this paper we will investigate the reciprocal of this generating

function, namely % . Before we begin our investigation, let’s discuss
959 )s
what this generating function counts.

The generating function (q;q),, appears in Euler’s Pentagonal Number
Theorem [6] and counts the number of partitions of n into distinct parts where
those with an even number of parts are counted with weight 1 and those with an
odd number of parts are counted with weight —1. We will let Q(n) denote the
number of partitions of n into distinct parts and AQ(n) will denote the

coefficient of n in (q;q), . Thatis, AQ(n) will represent the difference between

the number of partitions of n into an even number of distinct parts and the
number of partitions of n into an odd number of distinct parts. Euler proved that

2
3 +k where k is an integer and AQ(n) = 0 for all other

AQ(n)=(-1)*ifn=

values of n.
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into distinct parts where none of the parts are divisible by p and those with an
even number of parts are counted with weight 1 and those with an odd number
of parts are counted with weight —1. Using the notation of Sellers [4], we will
let b, (n) denote the number of p-regular partitions of n with distinct parts.

Ab; (n) will be used to represent the difference between the number of p-regular

partitions of n into an even number of distinct parts and the number of p-regular

partitions of n into an odd number of distinct parts. Hence

-(;?+?‘)° =" Ab!(n)q" . Our first theorem looks at a sufficient condition for
;q ] a=0

Ab; (n) to be zero.

The generating function counts the number of partitions of n

Theorem 1
Ifp is a prime with p > 3, then Ab, (pk+r) =0if0<r<pand24r+1lisa

quadratic nonresidue modulo p.

Before we prove Theorem 1 let’s look at a parity result that follows
from this theorem. Since b, (n) is the sum of the number of p-regular partitions

of n into an even number of distinct parts and the number of p-regular partitions
of n into an odd number of distinct parts, we have b,(n) = Ab;(n) (mod 2). As
a corollary we obtain the following results of Sellers on the parity of the

S (1))
coefficients in —==2-=—,
@;9°).

Corollary 1
Ifp is a prime and p > 3, then b} (pk +r) =0 (mod 2) if0 <r<pand 24r + 1 is

a quadratic nonresidue modulo p.
The proof of Theorem 1 is essentially identical to Sellers’ proof of the

parity result except we are dealing with equality of two generating functions
instead of a congruence. We can rewrite our generating function as

S (39) 1 & Inem
Ab,(n)q" = = -D7q ? 0))
§ P @59°).  @:9°) .,.é
where the last series comes from Euler’s Pentagonal Number Theorem. Now on

3m’+m

the right hand side of (1) we will get pk + r as a exponent on q only if
=r (mod p) for some m in Z . Multiplying both sides of this congruence by 24
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and adding 1 to both sides we get (6m + 1) =24r + 1 (mod p) which gives the
desired result.

Now we will look at this generating function for specific values of p
including p =2 and p = 3. We will begin withp =2,

Theorem 2
(1) Ab}(2k) is nonnegative and equals the number of partitions of k into

parts not congruent to 0, 1,6, 7, 8,9, 10, 15 (mod 16) and
(2) Ab,(2k +1) <0 and|Ab;(2k +1)]| equals the number of partitions of k
into parts not congruent to 0, 2, 3, 5, 8, 11, 13, 14 (mod 16).

This theorem follows immediately by rewriting the generating function
for Ab; (n) .
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Equality (2) follows by separating the values of m into classes modulo 4 and
equality (3) follows by applying Watson’s c&uintuple product identity {7] to each
series difference. Now if we replace q by q'? in the first part of (3) and look at
what partitions are generated by the resulting function, we get the desired result
for Abj(2k). Similarly, when we divide the second part of (3) by q and then
replace q by q' we get the desired result for Ab}(2k +1).

For p = 3 the theorem is

Theorem 3
(1) Ab;(3k)> 0 and equals the number of partitions of k into parts not

congruent to 0, 4, 5 (mod 9) ,
(2) Abj(3k+1) <0 and|Ab;(3k +1)| equals the number of partitions of k

into parts not congruent to 0, 2, 7 (mod 9), and
(3) Ab(3k+2) <0 and|Ab;(3k +2)| equals the number of partitions of k

into parts not congruent to 0, 1, 8 (mod 9).
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This theorem follows immediately by rewriting the generating function
for Abj(n).
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Equality (4) follows by separating the values of m into classes modulo 3 and
equallty (5) follows by applying Jacobn s triple product identity [5] to each
series. Now if we replace q by q' in the first part of (5) and look at what
partitions are generated by the resulting function, we get the desired result for
Ab;(3k). Similarly, when we divide the second part of (5) by q* and then

replace q by q'” we get the desired result for Ab; (3k +2) and when we divide
the third part of (5) by q and then replace q by q"* we get the desired result for
Ab; 3k +1).

For p =5 the theorem is

Theorem 4
(1) Abg(5k)> 0 and equals the number of partitions of k into parts which

can occur in two colors (say red and blue) and must be congruent to 1,
4 (mod 5),

(2) Aby(5k+1) <0 and|Ab;(5k +1) | equals the number of 5-regular
partitions of k,

(3) Ab;(5k+2) <0 and|Ab;(Sk +2)| equals the number of partitions of k
into parts which can occur in two colors and must be congruent to 2, 3
(mod 5), and

(4) Ab;(5k+3) = Ab;(5k+4) = 0 (which is a consequence of Theorem 1).

This theorem follows immediately by rewriting the generating function
for Abg(n).
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Equality (6) follows by separating the values of m into classes modulo 5 and
equalities (7) and (8) follow by rearranging the sums and applying Jacobi’s
triple product identity and Watson’s quintuple product identity. Now if we
replace q by q"* in the first part of (8) and look at what partitions are generated
by the resulting function, we get the desired result for Abg(5k). Similarly,
when we divide the second part of (8) by q and then replace q by q"* we get the
desired result for Ab;(Sk+1) and when we divide the third part of (8) by q* and

then replace q by q'* we get the desired result for Abj(5k +2). It should be

noted that the results for p =3 and p = 5 are the limiting cases of the Borwein
conjecture [1].

As p increases the proofs get more complicated, so we now state the
theorem for p = 7 without proof.

Theorem 5

(1) Ab}(7k)> 0 and equals the number of partitions of k where the parts
are congruent to +3 (mod 7) and appear in one color (say red) or the
parts are congruent to +1 (mod 7) and appear in two colors (say red or
blue),

(2) Ab,(7k+1) <0 and |Ab;(7k +1)] equals the number of partitions of k
where the parts can be congruent to +1 (mod 7) and are red or the parts
can be congruent to +2 (mod 7) and are red or blue,

(3) Abj(7k+2) <0 and|Ab}(7k +2)| equals the number of 7-regular

partitions of k,
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Theorem 5 (continued)
(4) Ab,(7k+5) >0 and | Ab;(7k +5) | equals the number of partitions of k

where the parts can be congruent to +2 (mod 7) and are red or the parts
can be congruent to +3 (mod 7) and are red or blue, and
(5) Aby(7k+3) = Abj(7k+4) = Abj(7k+6) =0.

We do not have to restrict our attention to prime values for p. We can
also look at what happens for composite values of p. The following theorem,
stated without proof, gives the results for p = 4.

Theorem 6
(1) Ab}(4k)> 0 and equals the number of partitions of k into parts not
congruent to 0, 3, 10, 13, 16, 19, 22, 29 (mod 32),
(2) Ab,(4k+1) <0 and|Ab](4k +1)| equals the number of partitions of k

into parts not congruent to 0, 1, 14, 15, 16, 17, 18, 31 (mod 32),

(3) Ab;(4k +2) <0 and|Ab,(4k +2)| equals the number of partitions of k
into parts not congruent to 0, 5, 6, 11, 16, 21, 26, 27 (mod 32), and

(4) Ab,(4k+3) <0 and|Ab,(4k +3)| equals the number of partitions of
k—1 into parts not congruent to 0, 2, 7, 9, 16, 23, 25, 30 (mod 32).

Several questions should have come to mind as you read this paper—
some of which I can answer and others I will leave as open problems.

(1) Is Ab; (pk +r) < 0 for all r satisfying 0 <r <p when p is composite?
The answer is no. For p =6 we have Abj(6k +r) >0 whenr=4, 5,
(2) For the values of p and r satisfying Ab, (pk +r) =0, can we find an

explicit bijection between those p-regular partitions with an even
number of distinct parts and those with an odd number of distinct parts?
Probably, since an explicit bijection exists for the zero coefficients in
the generating function (q;q), [2].

(3) For each prime p > 3, is there a value of r for which IAb{, (rk+ r)l =

by(k)?
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