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Abstract

For a graph G and any two vertices u and v in G, let dg(u,v)

denote the distance between them and let diam(G) be the diameter
of G. A multi-level distance labeling (or radio labeling) for G is a
function f that assigns to each vertex of G a positive integer such
that for any two distinct vertices v and v, dg(u,v) + |f(u) — f(v)| =
diam(G) + 1. The largest positive integer in the range of f is called
the span of f. The radio number of G, denoted rn(G), is the mini-
mum span of a multi-level distance labeling for G.
A helm graph H, is obtained from the wheel W, by attaching a ver-
tex of degree one to each of the n vertices of the cycle of the wheel.
In this paper the radio number of the helm graph is determined for
every n > 3: rn(Hs) = 13,rn(Hs) = 21 and rn(H,) = 4n + 2 for
every n > 5. Also, a lower bound of rn(G) related to the length
of a maximum hamiltonian path in the graph of distances of G is
proposed.
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1 Introduction

Multi-level distance labelings of graphs are motivated by restrictions inher-
ent in assigning channel frequencies for radio transmitters (2] and they can
be regarded as an extension of distance two labeling.

For a set of given cities (or stations), the task is to assign to each city a
channel, which is a positive integer, so that the interference is prohibited,
and the span of the channels assigned is minimized. To avoid interference,
to transmitters that are geographically close must be assigned channels
with large frequency differences, transmitters that are further apart may
receive channels with relatively close frequencies. This situation can be
physically modeled by considering the transmitters to be the vertices of
a graph. Positive integers are assigned to the vertices of the graph with
restriction between them and our goal is to minimize the largest integer
used.

Let G be a connected graph. For any two vertices « and v of G, d(u, v) rep-
resents the distance between them and diam(G) the diameter of G. A multi-
level distance labeling of G [1] is a one-to-one mapping f : V(G) — Z+
satisfying the condition

d(u,v) +f(u) — f(v)| = diam(G) +1 (1)

for every two distinct vertices u,v € V(G). The span of a multi-level
distance labeling f is the maximum integer in the range of f. The radio
number of G, denoted rn(G), is the lowest span in all multi-level distance
labelings of G. The inequality (1) will be referred as the multi-level distance
labeling condition (or the radio condition). Note that from this condition it
follows that all vertices must receive distinct labels, hence rn(G) > [V(G)|
for all graphs G. For a graph G and a multi-level distance labeling f of
G denote by S(G, f) the set of consecutive integers {m,m +1,..., M},
where m = min,ev () f(u) and M = maxyuev(g) f(u) is the span of f.
It is clear that 7n(G) = miny max S(G, f) and since (1) contains only the
difference of the labels, a multi-level distance labeling realizing rn(G) must
have m = 1. In [4] the radio number of paths and cycles was determined.
We shall use the terminology of monographs [5] and [6]. A complete survey
on multi-level distance labelings of graphs can be found in [3].

As diam(K,)=1, it is easy to see that the radio condition is satisfied if
the vertices of K, are labeled with consecutive integers 1,...,n, hence the
radio number of the complete graph on n vertices is rn(K,) = n [1]. The
star graph Sy, (n > 2) is the tree on n + 1 vertices K .
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Lemma 1.1 [1] rn(Sp) =n+2 forn > 2.

The wheel graph W,, (n > 3) consists of an n-cycle together with a center
vertex that is adjacent to all n vertices of the cycle. As W3 = K4 we have
rn(W3) = 4. Also, it is an easy exercise to show that rn(W,) = 7. For
larger wheels the radio number is given by the following lemma.

Lemma 1.2 (1] rn(W,) =n+2 forn > 5.

If G is a connected graph of order n, let DG represent the weighted
complete graph K, having V(K,) = V(G) and the length of an edge ij
defined by I(ij) = dg(4, 7). If Apmax(DG) denotes the maximum length of
a hamiltonian path in DG, the following result holds.

Theorem 1.3 rn(G) > (n — 1)(diam(G) + 1) — hpmax(DG) + 1.

Proof: Let f be a multi-level distance labeling of G. Since f is injective
we can associate with f the hamiltonian path in DG, denoted by hp(f) :
Tiy s Tig,-- - Ti,, Where Ty T, ... Ti, i8 a permutation of V(G) such that
flzs,) < F(zi,) < ... < f(z:,). Applying (1) we can write

f(zik+l) - f(xik) 2 diam(G) +1- d(xik ’mik-n)
for every k = 1,...,n — 1. Adding up these inequalities we get
f(zi,) 2 (n — 1)(diam(G) + 1) - U(hp(f))) + (zi)

> (n —1)(diam(G) + 1) — hpmax(DG) + 1.
O

Although the determination of hpmax(DG) is an NP-hard problem, this
lower bound may be useful at least for small graphs, as we shall see in the
next section.

2  Multi-level distance labelings and radio
number of helm graphs

Helm graphs are obtained from wheels by attaching a pendant edge to
each vertex of the n-cycle. It follows that the helm graph denoted H,
has 2n + 1 vertices (n vertices of degree 4, n vertices of degree one
and one vertex of degree n) and 3n edges. We have diam(H3)=3 and
diam(H,)=4 for n > 4. We shall denote the central vertex by z; v1,...,vn
and u;,...,un are the vertices of degrees four and one, respectively,
such that w;uigy, Vivig1,uivi € E(Hy) forevery 1 < i < n—1. Also
Unl], UnV1, UnVn € E(Hy).
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Theorem 2.1 Forn >4, rn(H,) > 4n +2.

labeling f of H, must satisfy the radio condition
d(u,v) +|f(v) - f(v)| 2 5 (2)

for all distinct u,v € V(H,). We shall count the minimum number of
forbidden values in S(G, f). For example, if we label the central vertex z
with label a, then as d(z,v) < 2 for all vertices v # z, we cannot assign
any label from the set {a — 2,a — 1,a + 1,a + 2} to any other vertex v
since this contradicts condition (2) for the pair {z,v}. Hence in this case
the integers @ — 2,a — 1,a + 1,a + 2 are forbidden to be used as labels.
Also as d(v;,r) < 3 for all r # v;, one value above and one value below
f(w;) is forbidden to be used as a label for any vertex r. It follows that
for the center 2 we have at least two forbidden labels in S(G, f) and z has
exactly two forbidden labels only if f(z) is the lowest or the highest label.
Similarly, for any vertex from {vy,...,v,} there exists at least one forbidden
label: we have exactly one forbidden label only if its label is the lowest or
the highest label, otherwise there exist two forbidden labels in S(G, f).
Also note that any two forbidden labels in S(G, f) cannot coincide. If
is a forbidden label for z and 8 is a forbidden label for a vertex v; then
ae€{a—-2,a—1,a+1,a+2}and B € {b—1,b+1}, where f(2) =a and
. f(vi) =b. If o = § this would imply that d(z,v) + |f(z) — f(%)| < 4,
which contradicts the radio condition (2). Similarly, if 8; and B; are two
forbidden labels in S(G, f) corresponding to vertices v; and v; (i # j) then
Bi = B; would imply that |f(v) — f(v;)] < 2. Because d(v;,v;) < 2 we
deduce d(v;,v;) + |f(v:) — f(v;)| < 4, which again contradicts (2).
It follows that in S(G, f) there exist at least 2+ 1+2(n—1) = 2n + 1
forbidden labels, which implies |S(G, f)| > 4n + 2. Since S(G, f) is a set
of consecutive positive integers it follows that max S(G, f) > 4n+2, hence
rn(Hy) > 4n+ 2.

Proof: Assume n > 4. Because diam(H,)=4, any multi-level distance

O
Theorem 2.2 rn(H3) = 13.
Proof: Since diam(H3)=3 the condition (1) becomes
d(u,v) + |(F(v) - F(0)| 2 4 3)

for every two distinct vertices u,v € V(Hj3). The multi-level distance la-
beling of Hj illustrated in Fig. 1 shows that rn(H3) < 13. If the central
vertex z has label a, since d(z,v) < 2 for all vertices v # z, if any positive
value from the set {a —1,a + 1} is assigned to any other vertex say v, then
the condition (3) for the pair {z,v} is not satisfied.
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Also since d(v;, ) < 2 for all v; and for any r # v;, if f(v;) = bthenbd—1
and b+1 cannot be assigned to any other vertex of H3. We deduce that the
center z and any vertex from {v;, v, vs} have at least one forbidden label in
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Figure 1: A multi-level distance labeling f of H3 with span(f)=13.

S(Hs, f) and this label is unique if and only if its label is the lowest or the
highest label. Otherwise, it has two forbidden labels in S(Hs, f). As in the
proof of Theorem 2.1 one can deduce that any two forbidden labels cannot
coincide. It follows that in S(Hs, f) there exist at least 1 +2-2+1 =6
forbidden labels, which implies |S(Ha, f)| > 6 + |V(H3)| = 13 for any
multi-level distance labeling f, hence rn(Hs) > 13. We conclude that
rn(H3) = 13.

o

Theorem 2.3 rn(H;) = 21.

Proof: We have diam(H,)=4 and any multi-level distance labeling f of
H, must satisfy condition (2). The multi-level distance labeling f of Hy
represented in Fig. 2a) shows that rn(H,) < 21.
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Figure 2: A multi-level distance labeling f of Hy with span(f)=21.

The bound rn(H,) > 18 provided by Theorem 2.1 is not sufficient to
prove the reverse inequality. We will find some more arguments to prove
that in fact rn(H,) > 21. In order to simplify the notation we shall refer to
the vertices of Hy denoted as in Fig. 2b). Let f be a multi-level distance
labeling of Hj. Firstly, we shall prove that there exist some new forbidden
labels associated with the vertices A, B, C, D, which are different from the
forbidden labels assigned to the vertices @, b, ¢,d and z as in Theorem 2.1.
Suppose that f(B) = z and f(z) < z. It follows that the forbidden labels
of z are less than or equal to x — 1. We shall consider two cases: «)
f(D)=z+1and B) f(D)#z+1.

a) In this case condition (2) implies that f(a), f(b), f(c), f(d), f(4), £(C),
f(2z) # £+ 2 and z + 2 is not a forbidden label for a, b, ¢,d, z (determined
as in Theorem 2.1). Indeed, if = + 2 would be a forbidden label for a, then
f(a) € {z+ 1,z + 3}. Since f(D) = z+ 1 we deduce that f(a) = z + 3.
In this case |f(a) — f(D)| + d(a,D) = 4 < 5, a contradiction. Similarly,
z + 2 is not a forbidden label for b,¢,d nor for z since f(z) < z. In this
case the forbidden label relatively to the diametral pair {B, D} is defined
to be z + 2.

B) If f(D) # = + 1 we shall also consider two subcases: £1) f(d) # = + 2
and 32) f(d) =z + 2.

B1) In this subcase = + 1 is defined to be a forbidden label relatively to
{B, D}, which is different from all forbidden labels of a, b, c, d, z (determined
as in Theorem 2.1). If z + 1 would be a forbidden label for a, then f(a) =
z+2 and |f(a) — f(B)| + d(a, B) = 4 < 5. A similar situation holds for c.
Also z + 1 cannot be a forbidden label for d since f(d) # z,z + 2.

B2) In this subcase we define z+4 to be new forbidden label having required
properties. This cannot be the label of any vertex of Hy and is different
from forbidden labels of a,b,¢,d, 2 since otherwise £ + 3 or z + 5 are the
labels of some vertices in the set {a, b, c} and this contradicts (2). The same
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construction can be performed relatively to D and the same diametral pair
{B, D}.

If f(z) > = we shall consider, by a similar reasoning,  — 2,z — 1 or
z — 4, respectively to be the new forbidden label of the pair {B,D}. A
similar construction can be made for the pair {A, C} of diametral vertices;
if f(A) = y then the forbidden label of this pair will be by definition
y+2,y+1lory+4(if f(z) <y) andy—2,y—1or y—4 (if f(2) > y),
respectively.
It is necessary to show that in all cases these forbidden labels of the pairs
{A,C} and {B, D} are different.
If f(z) < min(z,y), since |z — y| > 2 by (2) we can have equality between
some labels in the sets {z 4+ 1,z + 2,z + 4} and {y + 1,y + 2,y + 4} only
when: z +1 = y + 4 or equivalently, z = y + 3 (in this case we have
f(B) =z =y+3, f(c) =y +2 and (2) is not satisfied); z+2=y+4 or
equivalently, z = y+2 (when f(B) = f(c), which contradicts the injectivity
of f); the remaining two subcases are obtained by interchanging z and y
between them and may be solved in the same manner.
If f(z) > max(z,y) then the sets of labels are {z — 1,z — 2,z — 4} and

{y — 1,y — 2,y — 4} and this case may be settled in a similar way.
Suppose that z < f(z) < y; we get {z—1,z—2,z—4}N{y+1,y+2,y+4} =

9.

If f(z) # min(max)S(Hyf) and f(a),f(3), f(c) f(d) #
max(min)S(Hy, f) then three new forbidden values appear in S(Hs, f)
relatively to those considered in the proof of Theorem 2.1, hence in this
case |S(Hy, f)| = 21 and the result is proved.

Otherwise, we shall consider the following cases: 7) f(2) #
min(max)S(Hy, f) and one of f(a),...,f(d) equals max(min)S(Hy, f);
61) f(z) = min(max)S(Hy,f) and one of f(a),...,f(d) equals
max(min)S(Hy, f); 62) f(z) = min(max)S(Hy,f) and none of
f(a),..., f(d) is equal to max(min)S(Ha, f).

v) Without loss of generality let f(z) # minS(Hy, f) and f(b) =
max S(Hy, f). Condition (2) implies f(B) < f(b) —4. If f(z) < f(B) then
a forbidden label relatively to the diametral pair {B, D} belongs to the
set {f(B) + 1, f(B) + 2, f(B) + 4} C S(Hs, f). In this case vertex z has
two new forbidden labels since min S(Hy, f) < f(z) < maxS(H,, f). We
have a total of three new forbidden labels, which implies rn(H4) > 21.

If f(z) > f(B), then we have seen that the new forbidden label relatively
to {B, D} lies in the set {f(B) — 1, f(B) — 2, f(B) — 4} and it may be
possible that it does not belong to S(Hy, f). If f(z) < f(A), then the
forbidden value relatively to the diametral pair {A4,C} belongs to the set
{f(A) +1, f(A) + 2, f(A) + 4}. Condition (2) implies f(4) < f(b) — 3 and
the forbidden label relatively to {4, C} does not belong to S(Hj, f) when
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it is equal to f(A) + 4 and f(A) = f(b) — 3. This forbidden label may
appear when f(c) = f(A4)+2 = f(b) — 1, which contradicts f(c) < f(b) —4
deduced from (2).
If f(2) > f(A), then the forbidden label relatively to {A4,C} belongs to
{f(A) -1, f(A) — 2, f(A) — 4} and it may happen that it does not belong
to S(Hy, f). Condition (2) also provides |f(A) — f(B)| > 2.
If f(A) < f(B) then f(A) < f(B) — 2. Both forbidden labels relatively to
{B, D} and {A,C} do not belong to S(Hy, f) only if the forbidden label
relatively to {B, D} equals f(B) — 4 and f(4) € {f(B) — 2, f(B) — 3}.
But in this case f(d) = f(B) — 2, which implies f(4) = f(B) — 3. We
get |f(A) — f(d)] = 1, which contradicts (2). A similar conclusion holds if
f(A) > f(B), when f(B) = f(A) -3, f(c) = f(A) — 2 and this contradicts
(2).
Hence in case 7) three new forbidden labels appear, thus implying
61) Without loss of generality suppose that f(z) = 1 and f(a) =
max S(Hy, f). As in the proof of Theorem 1.3 consider the complete graph
Ky having vertex set V(Ks) = {z,a,b,¢,d, A, B,C, D}, where the length
in Ky of the edge uv is defined by lk,(u,v) = dg,(u,v) (defined above
as DH4). Each multi-level distance labeling f of H, induces a hamil-
tonian path in DHy having extremities z and a by ordering its vertices
2,%1,%2,...,27,a such that 1 = f(2) < f(z1) < ... < f(z7) < f(a).

For example, the multi-level distance labeling of Hy illustrated in Fig.
2 induces the hamiltonian path z,B,D,C, A,b,d,c,a. As in the proof
of Theorem 1.3 we get f(a) > 41 — l(z,z1,...,27,a). Hence we can
obtain a lower bound for rn(Hy) by considering a hamiltonian path of
maximum length having extremities z and a in DH,. Such a hamilto-
nian path is exactly z,B,D,C, A,b,d,c,a of length equal to 20, hence
rn(H4) = min f(a) > 41 — 20 = 21.
62) In this case suppose that f(z) = 1 and max S(Hy, f) = f(B).
A hamiltonian path of maximum length in DH, defined as above is
z,D,C, A, c,a,b,d, B of length equal to 20, hence f(B) > 41 — 20 = 21
and the proof is complete.
Note that this method cannot be applied to the case v since a hamil-
tonian path in DH4 having one extremity in a and other in ¢ is
a,C,A,D,B,d,b,z,c of length equal to 21, hence we can deduce only
rn(H4) = min f(c) > 41 - 21 = 20.
a

Another optimal multi-level distance labeling of Hj is represented in Fig. 3
and corresponds to the case when f(a) =1 and f(z) = max S(Hy, f) = 21.
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Figure 3: Another multi-level distance labeling of Hy with span(f)=21.

Theorem 2.4 rn(H,) = 4n + 2 for every n > 5.

Proof: We shall propose a multi-level distance labeling of H, with span
4n + 2, which implies rn(H,) < 4n + 2. By Theorem 2.1 the opposite
inequality is also valid, which will prove the equality.

Let n > 5. The multi-level distance labeling f : V(H,) — Z* is defined
as follows:

A . If nis odd: f(2) = 1,f(ugi-1) = 3+iforl1 <i < (n+1)/2
flug)=3+i+(n+1)/2for 1 <i< (n—1)/2; f(vai—1) =n+2+3i for
1<i<(n+1)/2, fluai) =n+2+3(n+1)/2+3ifor1 <i<(n—-1)/2.

B. If nis even: f(z) = 1,f(u2i-1) = 3+iforl < i < n/2
fluz) = 3+ n/2+ifor1 < i < nf2-2, flup—2) = n+3,
fup) = n+2; f(v2i-1) = n+2+3ifor 1 < i < n/f2; f(va) = n+2+3n/243i
for1<i<n/f2.

In both cases the span of f is equal to 4n + 2 and it is reached for f(v,—1)
or f(vyn) if n is odd or even, respectively.

For n = 5 and n = 6 the multi-level distance labeling of H,, described
above is illustrated in figures 4 and 5, respectively.
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Figure 4: An optimal multi-level distance labeling of Hs.
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8 7
26 20
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17, u
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23
9

Figure 5: An optimal multi-level distance labeling of Hg.

It is clear that (2) is satisfied ift u = z; {u,v} = a) {us,u;} since if
v; and v; are consecutive on the cycle then |f(u;) — f(u;)| > 2 and their
distance is equal to three and if v; and v; are non-consecutive their distance
is equal to four; b) {v;,v;} since if v;,v; are consecutive then d(v;,v;) = 1
and |f(v:) — f(v;)| 2 6; otherwise d(v;,v;) = 2 and |f(v;) — f(v;)| = 3; ¢)
{ui,v;} since the set of labels of the vertices u; and v; (1 £4,j < n)are
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equal to {4,5,...,n+ 3} and {n + 5,n +8,...,4n + 2}, respectively. We
have |d(u;) —d(v;)| = 4 unless f(u;) =n+3, f(v;) =n+5or f(u;)) =n+2
and f(v;) = n + 5. The corresponding pairs of vertices in these cases are
{tn-1,v1}, {n-3,v1} for n odd and {u,_2,v1}, {ttn,v1} for n even. The
condition (2) is verified in all these cases.

a
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