The Transformation Digraph D^{++-*}

Juan Liu^{1,2}, Jixiang Meng², Xindong Zhang¹,

- College of Mathematics Sciences, Xinjiang Normal University, Urumqi, Xinjiang, 830054, P.R.China
- College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang, 830046, P.R.China

Abstract

Let D be a digraph with order at least two, the transformation digraph D^{++-} is the digraph with vertex set $V(D) \cup A(D)$ in which (x, y) is an arc of D^{++-} if one of the following conditions holds: (i) $x, y \in V(D)$, and (x, y) is an arc of D; (ii) $x, y \in A(D)$, and the head of x is the tail of y; (iii) $x \in V(D), y \in A(D)$, and x is not the tail of y; (iv) $x \in A(D), y \in V(D)$, and y is not the head of x. In this paper we determine the regularity and diameter of D^{++-} . Furthermore, we characterize maximally-arc-connected or superarc-connected D^{++-} . We also give sufficient conditions for this kind of transformation digraph to be maximally-connected or super-connected.

Keywords: Transformation digraph; Super-arc-connected; Super-connected.

1 Introduction

For graph-theoretical terminology and notation not defined here we follow Bondy and Murty [2]. We consider only strict digraph D(digraph contains no loops and no parallel arcs) with vertex set V(D) and arc set A(D).

Let D be a digraph, $X, Y \subseteq V(D)$. Set

^{*}The research is supported by FSRPHEXJ (No.XJNU2010S30), China Postdoctoral Science Foundation (No.20100471000), Science Foundation for The Excellent Youth Scholars of Xinjiang Normal University (No.XJNU0920) and NSFXJ (No.2010211A06).
†Corresponding author. E-mail: liujuan1999@126.com.

$$\begin{split} E_D[X,Y] &= \{e = (x,y) \in A(D) | \ x \in X, y \in Y\}, \\ N_D^+(X) &= \{x \in V(D) \backslash X | \exists \ y \in X \text{ such that } (y,x) \in A(D)\}, \\ N_D^-(X) &= \{x \in V(D) \backslash X | \exists \ y \in X \text{ such that } (x,y) \in A(D)\}. \end{split}$$

If $X=\{x\}$, we write $N_D^+(x)$ and $N_D^-(x)$ instead of $N_D^+(\{x\})$ and $N_D^-(\{x\})$. Let $E_D^+(x)=E[\{x\},V(D)\setminus\{x\}],\,E_D^-(x)=E[V(D)\setminus\{x\},\{x\}],\,d_D^+(x)=|N_D^+(x)|$ and $d_D^-(x)=|N_D^-(x)|$. Then $d_D^+(x)$ and $d_D^-(x)$ are the outdegree and indegree of x, respectively. Set $\delta^+(D)=\min\{d_D^+(x):x\in V(D)\},\,\delta^-(D)=\min\{d_D^-(x):x\in V(D)\},\,\delta(D)=\min\{\delta^-(D),\delta^+(D)\},\,\Delta^+(D)=\max\{d_D^+(x):x\in V(D)\},\,\Delta^-(D)=\max\{d_D^-(x):x\in V(D)\},\,\Delta(D)=\max\{\Delta^-(D),\Delta^+(D)\},\,$ which are called the minimum outdegree, the minimum indegree, the minimum degree of D, respectively.

An arc-cut of a strongly connected digraph D is a set of arcs whose remove makes D not strongly connected. The arc-connectivity $\lambda(D)$ is the minimum cardinality of an arc-cut over all arc-cuts of D. It is wellknown that $\lambda(D) \leq \delta(D)$. We call a digraph D maximally-arc-connected, for short, $max-\lambda$, if $\lambda(D) = \delta(D)$. The connectivity $\kappa(D)$ and $max-\kappa$ can be similarly defined. A strongly connected digraph D is super-arc-connected, for short, $super-\lambda$, if every minimum arc-cut is either $E_D^+(v)$ or $E_D^-(v)$ for some vertex v. A digraph D is said to be super-connected, for short, $super-\kappa$, if every minimum vertex-cut is either $N_D^+(v)$ or $N_D^-(v)$ for some vertex v.

In [5], Wu and Meng introduced a kinds of transformation graphs and investigated some basic properties of them. Let G be a graph and x,y,z be three variables taking values - or +. The transformation graph G^{xyz} is the graph with vertex set $V(G) \cup E(G)$, α and β are adjacent in G^{xyz} if and only if one of the following holds: (i) $\alpha, \beta \in V(G)$, α and β are adjacent in G if x = + while α and β are not adjacent in G if x = + while α and β are not adjacent in G if x = -. (iii) $\alpha \in V(G)$ and $\beta \in E(G)$, α and β are incident in G if x = + while α and β are not incident in G if x = -. Clearly, G^{+++} is the wellknown total graph of G.

Now, we give the corresponding definitions of transformation digraphs. Let D = (V(D), A(D)) be a digraph, where |V(D)| = n, |A(D)| = m and $V(D) = \{v_1, v_2, \dots, v_n\}$. The *line digraph* of D, denoted by L(D), is

the digraph with vertex set $V(L(D)) = \{a_{ij} | (v_i, v_j) \text{ is an arc in } D\}$, and a vertex a_{ij} is adjacent to a vertex a_{st} in L(D) if and only if $v_j = v_s$ in D.

Definition 1.1. Let D = (V(D), A(D)) be a digraph, x, y, z be three variables taking values - or +. The transformation digraph of D, denoted by D^{xyz} , is a digraph with vertex set $V(D^{xyz}) = V(D) \cup A(D)$. For any vertex $a, b \in V(D^{xyz})$, $(a, b) \in A(D^{xyz})$ if and only if one of the following four cases holds:

- (i) If $a \in V(D)$ and $b \in V(D)$, then $(a,b) \in A(D)$ in D if x = + and $(a,b) \notin A(D)$ in D if x = -.
- (ii) If $a \in A(D)$ and $b \in A(D)$, then the head of arc a is the tail of arc b in D if y = + and the head of arc a is not the tail of arc b in D if y = -.
- (iii) If $a \in V(D)$ and $b \in A(D)$, then a is the tail of arc b in D if z = + and a is not the tail of arc b in D if z = -.
- (iv) If $a \in A(D)$ and $b \in V(D)$, then b is the head of arc a in D if z = + and b is not the head of arc a in D if z = -.

Thus, as defined above, there are eight kinds of transformation digraphs, among which D^{+++} is usually known as the total digraph of D.

Wu and Meng [5] investigated some basic properties, including connectedness and diameters of G^{xyz} , Wu et al. [6] studied the connectivity, planarity, hamiltonity and isomorphism of G^{-++} . Chen [3] characterized the super-edge-connectivity of G^{xyz} . For transformation digraph, Liu and Meng [4] characterized super-arc-connected and super-connected total digraphs. In this paper we determine the regularity and diameter of D^{++-} . Furthermore, we characterize maximally-arc-connected or super-arc-connected D^{++-} . We also give sufficient conditions for this kind of transformation digraph to be maximally-connected or super-connected.

2 Regularity and Diameter of D^{++-}

By the definition of line digraph, we have $A(D) = V(L(D)) = \{a_{ij} | (v_i, v_j) \text{ is an arc in } D\}$. In fact, the digraph D^{++-} can be viewed as $V(D^{++-}) = V(D) \cup V(L(D))$ and $A(D^{++-}) = A(D) \cup A(L(D)) \cup A(D, L(D))$, where A(D, L(D)) denotes the arcs with one end in V(D) and the other end in V(L(D)).

Proposition 2.1. Let D be a digraph with n vertices and m arcs, then

(i)
$$|V(D^{++-})| = m + n$$
;

$$(ii) |A(D^{++-})| = 2mn - m + \sum_{x \in V(D)} d_D^+(x) d_D^-(x);$$

(iii) For
$$v \in V(D)$$
, $d_{D++-}^+(v) = d_{D++-}^-(v) = m$;

(iv) For
$$a_{ij} \in A(D)$$
, $d_{D++-}^+(a_{ij}) = d_D^+(v_j) + n - 1$, $d_{D++-}^-(a_{ij}) = d_D^-(v_i) + n - 1$.

Proof. (i) and (ii) can be obtained easily by the definition of D^{++-} . For $v \in V(D)$, since there are $d_D^+(v)$ out-arcs from v to vertices in V(D) and $m - d_D^+(v)$ out-arcs from v to vertices in V(L(D)), thus $d_{D^{++-}}^+(v) = d_D^+(v) + (m - d_D^+(v)) = m$. For $a_{ij} \in V(L(D))$, since $d_{L(D)}^+(a_{ij}) = d_D^+(v_j)$ and there are n-1 out-arcs from a_{ij} to vertices in V(D), thus $d_{D^{++-}}^+(a_{ij}) = d_D^+(v_j) + (|V(D)| - 1) = d_D^+(v_j) + n - 1$. Similarly, $d_{D^{++-}}^-(v) = d_D^-(v) + (|A(D)| - d_D^-(v)) = |A(D)| = m$, and $d_{D^{++-}}^-(a_{ij}) = d_D^-(v_i) + (|V(D)| - 1) = d_D^-(v_i) + n - 1$. \square

By Proposition 2.1, we have $\delta(D^{++-}) = \min\{m, \delta(D) + n - 1\}$ and $\Delta(D^{++-}) = \max\{m, \Delta(D) + n - 1\}$.

Theorem 2.2. Let D be a digraph with n vertices and m arcs, then D^{++-} is regular if and only if D is an m-n+1-regular digraph.

Proof. By Proposition 2.1, for any vertex $v \in V(D)$, $d_{D++-}^+(v) = d_{D++-}^-(v) = m$, and for any arc $a_{ij} = (v_i, v_j) \in A(D)$, $d_{D++-}^+(a_{ij}) = d_D^+(v_j) + n - 1$, $d_{D++-}^-(a_{ij}) = d_D^-(v_i) + n - 1$. Therefore, if D^{++-} is regular, then $d_D^+(v) = d_D^-(v) = m - n + 1$ for every vertex $v \in V(D)$, hence D is an m - n + 1-regular digraph. On the other hand, if D is an m - n + 1-regular digraph, then it is clear that D^{++-} is regular. \square

In the following theorem, denote by K_1 an isolated vertex, $\overrightarrow{S_{n_1}}$ a digraph with n_1 vertices, where $V(\overrightarrow{S_{n_1}}) = \{v_1, v_2, \cdots, v_{n_1}\}$ and $A(\overrightarrow{S_{n_1}}) = \{(v_1, v_j) \mid \forall v_j \in V(\overrightarrow{S_{n_1}}) \setminus \{v_1\}\}$. Denote by $\overleftarrow{S_{n_2}}$ a digraph with n_2 vertices, where $V(\overleftarrow{S_{n_2}}) = \{u_1, u_2, \cdots, u_{n_2}\}$ and $A(\overleftarrow{S_{n_2}}) = \{(u_j, u_1) \mid \forall u_j \in V(\overleftarrow{S_{n_2}}) \setminus \{u_1\}\}$.

Theorem 2.3. Let D be a digraph with at least one arc. Then $diam(D^{++-}) \le 3$, and the equality holds if and only if $D \cong m_1 \overrightarrow{S_{n_1}} \cup m_2 \overleftarrow{S_{n_2}} \cup m_3 K_1$ with at least two non-negative integers of $\{m_1, m_2, m_3\}$ which are not 0.

To prove our result, we first prove the following two claims:

Claim 1. Let D be a digraph, D^{++-} is strongly connected if and only if D has at least one arc.

Proof. If D contains no arc, then D^{++-} is not strongly connected. Therefore, if D^{++-} is strongly connected, D must have at least one arc.

On the other hand, Let $a_{ij} = (v_i, v_j)$ be an arc, then (v_i, v_j, a_{ij}, v_i) is a 3-cycle in D^{++-} .

For any $x, y \in V(L(D))$, if $(x, y) \in A(L(D))$, then $(x, y) \in A(D^{++-})$. Now we consider $(x, y) \notin A(L(D))$. Let $x = (v_s, v_t) \in A(D)$, $y = (u_s, u_t) \in A(D)$. If $v_s = u_s$ and $v_t \neq u_t$, then (x, u_t, y) is a path from x to y. If $v_s \neq u_s$, then (x, v_s, y) is a path from x to y.

For any $x \in V(D)$, $y \in V(L(D))$, let $y = (u_s, u_t) \in A(D)$. If $x = u_s$, then (x, u_t, y) is a path from x to y. If $x \neq u_s$, then $(x, y) \in A(D^{++-})$. Furthermore, if $x = u_t$, then (y, u_s, x) is a path from y to x. If $x \neq u_t$, then $(y, x) \in A(D^{++-})$.

For any $x, y \in V(D)$, if $(x, y) \in A(D)$, then $(x, y) \in A(D^{++-})$. Now we consider $(x, y) \notin A(D)$. If $x = v_i$ and $y \neq v_j$, then (x, v_j, a_{ij}, y) is a path from x to y. If $x \neq v_i$ and $y = v_j$, then (x, a_{ij}, v_i, y) is a path from x to y. If $x \neq v_i$ and $y \neq v_j$, then (x, a_{ij}, y) is a path from x to y. Thus D^{++-} is strongly connected. \square

Claim 2. Let D be a digraph with at least one arc. Then $diam(D^{++-}) = 3$ if and only if $D \cong m_1 \overrightarrow{S_{n_1}} \cup m_2 \overleftarrow{S_{n_2}} \cup m_3 K_1$ with at least two non-negative integers of $\{m_1, m_2, m_3\}$ which are not 0.

Proof. If $D \cong m_1 \overrightarrow{S_{n_1}} \cup m_2 \overleftarrow{S_{n_2}} \cup m_3 K_1$, then $diam(D^{++-}) = 3$. Conversely, if $diam(D^{++-}) = 3$, then there exist two vertices $x, y \in V(D^{++-})$ such that d(x,y) = 3. From the proof of Claim 1, we know that x,y must be in V(D). Then $(x,y) \notin A(D^{++-})$, $N_D^+(x) \cap N_D^-(y) = \emptyset$ and there is no arc $a = (u_i, u_j) \in A(D)$ such that $x \neq u_i, y \neq u_j$. Hence each arc of D satisfies that either its tail is x or its head is y, and $N_D^+(x) \cap N_D^-(y) = \emptyset$, ie. $D \cong m_1 \overrightarrow{S_{n_1}} \cup m_2 \overleftarrow{S_{n_2}} \cup m_3 K_1$ with at least two non-negative integers of $\{m_1, m_2, m_3\}$ which are not 0. \square

Proof of Theorem 2.3. Since D has at least one arc, $diam(D^{++-})$ is well defined by Claim 1. By the proof of Claim 1, we know that $diam(D^{++-}) \le 3$, by Claim 2 the equality holds if and only if $D \cong m_1 \overrightarrow{S_{n_1}} \cup m_2 \overrightarrow{S_{n_2}} \cup m_3 K_1$ with at least two non-negative integers of $\{m_1, m_2, m_3\}$ which are not 0. \square

Since there is no digraph D such that D^{++-} is a complete digraph, we have $diam(D^{++-}) \neq 1$ for any digraph D. We therefore deduce the following corollary.

Corollary 2.4. Let D be a digraph with at least one arc. Then $diam(D^{++-})$ = 2 if and only if $D \ncong m_1 \overrightarrow{S_{n_1}} \cup m_2 \overrightarrow{S_{n_2}} \cup m_3 K_1$ with at least two non-negative integers of $\{m_1, m_2, m_3\}$ which are not 0.

3 Super-arc-connected D^{++-}

In [3], Chen characterized super-edge-connected undirected transformation graph G^{++-} . For any given graph G with at least two edges, G^{++-} is super- λ if and only if $G \ncong 2K_2 \cup mK_1$, $K_{1,2} \cup mK_1$, $K_3 \cup mK_1$, $2K_3$, $K_2 \cup K_3$, $K_2 \cup P_3$, P_4 , where m is a non-negative integer. In the following, we will study super-arc-connected or maximally-arc-connected transformation digraphs D^{++-} .

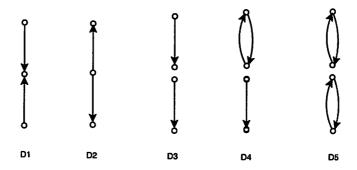


Figure 1

Theorem 3.1. Let D be a digraph with at least one arc. Then D^{++-} is super- λ if and only if D is not isomorphic to $\overrightarrow{C_2} \cup mK_1$ $(m \ge 0)$ or digraphs shown in Fig.1, where $\overrightarrow{C_2}$ denotes the directed cycle of length 2.

Proof. It is clear that if D is isomorphic to $\overrightarrow{C_2} \cup mK_1$ $(m \ge 0)$ or digraphs in Fig.1, then D^{++-} is not super- λ . On the other hand, if n=2, then it is evident that D^{++-} is super- λ only if $D \not\cong \overrightarrow{C_2}$. If n=3, it is easy to see that D^{++-} is super- λ only if D is not isomorphic to $\overrightarrow{C_2} \cup K_1$ or digraphs D1, D2 in Fig.1. Now we consider the case $n \ge 4$. In order to prove that D^{++-} is super- λ , it suffices to show that $\lambda(D^{++-}) \ge \delta(D^{++-})$ and every minimum arc-cut is either $E_D^+(v)$ or $E_D^-(v)$ for some vertex $v \in V(D^{++-})$. Let S be a minimum arc-cut of D^{++-} , then there exists a non-empty proper vertex

subset $X \subseteq V(D^{++-})$ such that the subdigraph induced by X in D^{++-} is strongly connected and there are no arcs from X to \overline{X} in $D^{++-} \setminus S$, where $\overline{X} = V(D^{++-}) \setminus X$.

We consider three cases.

Case 1. $X \subseteq V(D)$.

We claim that |X| = 1. In fact, if $2 \le |X| \le n - 1$, since every vertex $a \in V(L(D))$ has at least |X| - 1 in-neighbors in X, we have

$$|S| \ge |E[X, \overline{X} \cap V(D)]| + m(|X| - 1) \ge m \ge \min\{m, \delta(D) + n - 1\} = \delta(D^{++-}).$$

The above equality holds if and only if the following conditions hold:

- (1) $m \leq \delta(D) + n 1$;
- (2) |X| = 2, and the tails of all arcs of D are the vertices in X;
- $(3) E[X, \overline{X} \cap V(D)] = \emptyset.$

It is evident that the above three conditions hold if and only if $D \cong \overrightarrow{C_2} \cup mK_1$ $(m \geq 2)$, a contradiction.

If |X| = n, then

$$|S| \ge m(n-1) > m \ge \delta(D^{++-}),$$

a contradiction.

It follows that |X| = 1. Let $X = \{x\}$, then $S = E_{D^{++-}}^+(x)$.

Case 2. $X \subseteq V(L(D))$.

If $2 \le |X| \le m-1$, since every vertex $a \in X$ has n-1 out-neighbors in V(D), we have

$$|S| \ge |X|(n-1) + |E[X, \overline{X} \cap V(L(D))]| \ge 2(n-1) = n + (n-2) \ge n + \delta(D) - 1 \ge \delta(D^{++-}).$$

The above equality holds if and only if the following conditions hold:

- (1) |X| = 2;
- (2) $\delta(D) = n 1;$
- (3) $E[X, \overline{X} \cap V(L(D))] = \emptyset$.

It is evident that the above three conditions can not hold at the same time, a contradiction.

If |X| = m, then

$$|S| \ge m(n-1) > m \ge \delta(D^{++-}),$$

a contradiction.

Thus |X| = 1 and $S = E_{D^{++-}}^+(x)$, where $X = \{x\}$.

Case 3. $X \cap V(L(D)) \neq \emptyset$ and $X \cap V(D) \neq \emptyset$.

Let $|X \cap V(D)| = n_1$ and $|X \cap V(L(D))| = n_2$. If $V(D) \subseteq X$, then $\overline{X} \subseteq V(L(D))$. If $V(L(D)) \subseteq X$, then $\overline{X} \subseteq V(D)$, the result can be proved by a similar argument to Case 1 or Case 2. Thus we may suppose that $V(D) \nsubseteq X$ and $V(L(D)) \nsubseteq X$. Thus $1 \le n_1 \le n - 1$ and $1 \le n_2 \le m - 1$. Subcase 3.1. $n_1 = 1$.

If $n_2 = 1$, let $X \cap V(D) = \{v\}$, $X \cap V(L(D)) = \{a\}$. Since a has at least n-2 out-neighbors in $\overline{X} \cap V(D)$ and v has at least $m-d_D^+(v)-1$ out-neighbors in $\overline{X} \cap V(L(D))$, we have

$$|S| \geq d_D^+(v) + d_{L(D)}^+(a) + n - 2 + m - d_D^+(v) - 1$$

$$= d_{L(D)}^+(a) + n - 3 + m$$

$$> m \geq \delta(D^{++-}),$$

a contradiction.

If $2 \le n_2 \le n-1$, since for any $a \in X \cap V(L(D))$, a has at least n-2 out-neighbors in $\overline{X} \cap V(D)$, we have

$$|S| \geq d_D^+(v) + |E[X \cap V(L(D)), \overline{X} \cap V(L(D))]| + n_2(n-2)$$

$$\geq \delta(D) + 2(n-2) \geq \delta(D) + n - 1 + (n-3)$$

$$> \delta(D) + n - 1 \geq \delta(D^{++-}),$$

a contradiction.

Subcase 3.2. $2 \le n_1 \le n-2$.

Since for any $a \in X \cap V(L(D))$, a has at least $n - n_1 - 1$ out-neighbors in $\overline{X} \cap V(D)$, and for any $b \in \overline{X} \cap V(L(D))$, b has at least $n_1 - 1$ in-neighbors in $X \cap V(D)$, we have

$$|S| \geq |E[X \cap V(D), \overline{X} \cap V(D)]| + |E[X \cap V(L(D)), \overline{X} \cap V(L(D))]| + n_2(n - n_1 - 1) + (n_1 - 1)(m - n_2)$$

$$\geq n_2 + m - n_2 = m \geq \delta(D^{++-}),$$

and the above equality holds if and only if the following conditions hold:

$$(1) \ n_1=2, n=4;$$

(2)
$$E[X \cap V(D), \overline{X} \cap V(D)] = \emptyset$$
, and $E[X \cap V(L(D)), \overline{X} \cap V(L(D))] = \emptyset$;

(3) The heads of arcs corresponding to the vertices in $X \cap V(L(D))$ are the vertices in $\overline{X} \cap V(D)$. The tails of arcs corresponding to the vertices in $\overline{X} \cap V(L(D))$ are the vertices in $X \cap V(D)$.

From the above three cases we see that the heads and tails of arcs corresponding to the vertices in $X \cap V(L(D))$ are those in $\overline{X} \cap V(D)$, and the heads and tails of arcs corresponding to the vertices in $\overline{X} \cap V(L(D))$ are those in $X \cap V(D)$. Thus, it is evident that the above three cases hold if and only if D is isomorphic to D3, D4, D5 in Fig.1.

Subcase 3.3.
$$n_1 = n - 1$$
.

In this case, the result follows by applying the result of Subcase 3.1 to the reverse digraph of D.

We thus conclude that if $D \ncong \overrightarrow{C_2} \cup mK_1 (m \ge 2)$ with $|V(D)| \ge 4$, then D^{++-} is super- λ . Hence if D is not isomorphic to $\overrightarrow{C_2} \cup mK_1 \ (m \ge 0)$ or digraphs in Fig.1, then D^{++-} is super- λ . \square

Corollary 3.2. Let D be a digraph with order at least two, then D^{++-} is $\max \lambda$ if and only if D has at least one arc.

Proof. If D contains no arc, then D^{++-} is not max- λ . If D is isomorphic to $\overrightarrow{C_2} \cup mK_1$ ($m \geq 0$) or digraphs in Fig.1, then D^{++-} is $max-\lambda$. Since super-arc-connected digraph is maximally arc-connected, hence if D is a digraph with at least one arc, then D^{++-} is max- λ . \square

4 Super-connected D⁺⁺⁻

In this section, we will study super-connected transformation digraph D^{++-} .

Theorem 4.1. Let D be a digraph with at least one arc. If $\lambda(D) = \delta(D) \ge 3$, then D^{++-} is super- κ .

Proof. Let T be a minimum vertex-cut of D^{++-} . Then there exists a non-empty proper vertex subset $X \subseteq V(D^{++-})$ such that there is no arc from X to \overline{X} in $D^{++-} \setminus T$ and $\overline{X} \neq \emptyset$, where $\overline{X} = V(D^{++-}) \setminus (X \cup T)$ and the subdigraph induced by X is strongly connected in D^{++-} .

Now we consider three cases.

Case 1. $X \subseteq V(D)$.

We claim that |X|=1. In fact, if $2 \le |X| \le n-1$, note that either $N_D^+(X)$ is a vertex-cut of D or $N_D^+(X)=V(D)\backslash X$, since $\lambda(D)=\delta(D)\ge 3$,

hence $N_D^+(X) \ge 1$, and for each vertex $a \in V(L(D))$, there is at least one in-neighbor of a in $V(D) \cap X$, we have

$$|T| \ge |N_D^+(X)| + m > m \ge \min\{m, \delta(D) + n - 1\} \ge \delta(D^{++-}), (1)$$

a contradiction.

If |X| = n, then for any vertex $a_{ij} \in V(L(D))$, there exists an arc $(v_j, a_{ij}) \in E[V(D), V(L(D))]$, so T must contain all vertices in V(L(D)), which is impossible.

It follows that |X| = 1. Let $X = \{x\}$, then $T = N_{D++-}^+(x)$.

Case 2. $X \subseteq V(L(D))$.

If $2 \leq |X| \leq m-1$, since the subdigraph induced by X is strongly connected, each vertex of D is out-neighbor of some vertex of X, then $V(D) \subseteq T$. If $N_{L(D)}^+(X) = V(L(D)) \setminus X$, then $\overline{X} = \emptyset$, a contradiction. If $N_{L(D)}^+(X) \neq V(L(D)) \setminus X$, then $|N_{L(D)}^+(X)| \geq \kappa(L(D))$, we have

$$|T| \ge |N_{L(D)}^+(X)| + n \ge \kappa(L(D)) + n \ge \lambda(D) + n$$

= $\delta(D) + n > \delta(D) - 1 + n \ge \delta(D^{++-}),$ (2)

a contradiction.

If |X| = m. then for any vertex $v_i \in V(D)$, there exists an arc $(a_{ij}, v_i) \in E[V(L(D)), V(D)]$, so T must contain all vertices in V(D), which is impossible.

Thus |X| = 1 and $T = N_{D++-}^+(x)$, where $X = \{x\}$.

Case 3. $X \cap V(L(D)) \neq \emptyset$ and $X \cap V(D) \neq \emptyset$.

If $|X\cap V(D)|\geq 2$, each vertex in $V(L(D))\backslash X$ is the out-neighbor of some vertex in $X\cap V(D)$, then $\overline{X}\subseteq V(D)$, the result can be proved by a similar argument to Case 1. Now we consider $|X\cap V(D)|=1$, let $X\cap V(D)=\{x\}$. Since $X\cap V(L(D))\neq\emptyset$, there is at most one vertex in $V(D)\setminus\{x\}$ which is not out-neighbor of X. If $V(D)\backslash\{x\}\subseteq N_{D++-}^+(X)$, then $\overline{X}\subseteq V(L(D))$, the result can be proved by a similar argument to Case 2. Otherwise there is only one vertex $y\in V(D)\backslash\{x\}$ such that $y\notin N_{D++-}^+(X)$, all vertices in $X\cap V(L(D))$ are taking y as head. Thus $X\cap V(L(D))$ is an independent set. It is easy to see that $N_{L(D)}^+(X\cap V(L(D)))=E_D^+(y)$, for any $a\in X\cap V(L(D))$, $N_{L(D)}^+(a)=E_D^+(y)=d_D^+(y)$. Since D is a strict digraph, there is at most one arc b such that $b=(y,x)\in A(D)$, we have

$$|T| \ge n - 2 + d_D^+(y) + d_D^-(x) - 1 \ge n + \delta(D) > \delta(D) - 1 + n \ge \delta(D^{++-}),$$
(3)

a contradiction. We thus conclude that if $\lambda(D) = \delta(D) \geq 3$, then D^{++-} is super- κ . \square

By the proof of Theorem 4.1, we can obtain the following corollary.

Corollary 4.2. Let D be a digraph with at least one arc. If $\lambda(D) \geq \delta(D) - 1 \geq 1$, then D^{++-} is max- κ .

Proof. If $\lambda(D) \geq \delta(D) - 1 \geq 1$, then (1),(2),(3) will hold in the following forms,

$$|T| \ge |N_D^+(X)| + m \ge m \ge \min\{m, \delta(D) + n - 1\} \ge \delta(D^{++-});$$
 (1')

$$|T| \geq |N_{L(D)}^+(X)| + n \geq \kappa(L(D)) + n \geq \lambda(D) + n \geq \delta(D) - 1 + n$$

$$\geq \delta(D^{++-}); \tag{2'}$$

$$|T| \ge n - 2 + d_D^+(y) + d_D^-(x) - 1 \ge \delta(D) - 1 + n \ge \delta(D^{++-}).$$
 (3')

Thus $\kappa(D^{++-}) \ge \delta(D^{++-})$ for each cases. Therefore, D^{++-} is max- $\kappa.\Box$

References

- [1] J.Bang-Jensen, G. Gutin, Digraphs: Theory, Algorithms and Applications, Athenaum Press Ltd, 2001.
- [2] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan, London, Elsevier, New York, 1976.
- [3] J. Chen, Super Edge-Connectivity of Two Class of Transformation Graphs, Ph. D.Thesis, Xinjiang University, 2006.
- [4] J. Liu and J. Meng, Super-Arc-Connected and Super-Connected Total Digraphs, to appear.
- [5] B. Wu and J. Meng, Basic Properties of Total Transformation Graphs, J. Math. Study, 34(2)(2001) 109-116.
- [6] B. Wu and L. Zhang, Z. Zhang, the Transformation Graph G^{xyz} When xyz = -++, Discrete Mathematics, 296(2005) 263-270.