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Abstract

Let D be a digraph with order at least two, the transformation digraph
D*+- is the digraph with vertex set V(D)U A(D) in which (z,y) is an arc
of D+*= if one of the following conditions holds: (i) z,y € V(D), and (z,y)
is an arc of D; (ii) z,y € A(D), and the head of z is the tail of y; (iii) z €
V(D),y € A(D), and z is not the tail of y; (iv) x € A(D),y € V(D), and y
is not the head of z. In this paper we determine the regularity and diameter
of D*+—. Furthermore, we characterize maximally-arc-connected or super-
arc-connected D++~. We also give sufficient conditions for this kind of
transformation digraph to be maximally-connected or super-connected.
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1 Introduction

For graph-theoretical terminology and notation not defined here we follow
Bondy and Murty [2]. We consider only strict digraph D(digraph contains
no loops and no parallel arcs) with vertex set V(D) and arc set A(D).
Let D be a digraph, X,Y C V(D). Set
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Ep[X,Y]={e=(z,y) € A(D)|z € X,y €Y},
N#(X) = {z € V(D)\X|3 y € X such that (y,z) € A(D)},
Np(X) = {z € V(D)\X|3 y € X such that (z,y) € A(D)}.

If X = {2}, we write N}}(x) and Ny (z) instead of N ({z}) and N5 ({z}).
Let Ef(z) = E[{z}, V(D) \ {z}], Ep(z) = E[V(D) \ {z},{z}], d}(z) =
INB(z)| and dp(z) = INp(z)|. Then df(z) and dp(z) are the outde-
gree and indegree of z, respectively. Set ¢+(D) = min{d}(z) : = €
V(D)}, 6=(D) = min{dp(z) : = € V(D)}, §(D) = min{6—(D),s+(D)},
A*(D) = max{d}(z) : z € V(D)}, A~(D) = max{dp(z) : z € V(D)},
A(D) = max{A~(D), A*(D)}, which are called the minimum outdegree,
the minimum indegree, the minimum degree, the maximum outdegree, the
maximum indegree and the maximum degree of D, respectively.

An arc-cut of a strongly connected digraph D is a set of arcs whose
remove makes D not strongly connected. The arc-connectivity A(D) is the
minimum cardinality of an arc-cut over all arc-cuts of D. It is wellknown
that A(D) < (D). We call a digraph D mazimally-arc-connected, for
short, maz-), if A(D) = §(D). The connectivity x(D) and maz-& can be
similarly defined. A strongly connected digraph D is super-arc-connected,
for short, super-), if every minimum arc-cut is either Ef,(v) or Ep(v) for
some vertex v. A digraph D is said to be super-connected, for short, super-
&, if every minimum vertex-cut is either N} (v) or N (v) for some vertex
v.

In [5], Wu and Meng introduced a kinds of transformation graphs and
investigated some basic properties of them. Let G be a graph and z,y, z
be three variables taking values — or +. The transformation graph G=¥*
is the graph with vertex set V(G) U E(G), a and 3 are adjacent in G*¥*
if and only if one of the following holds: (i) o,8 € V(G), a and B are
adjacent in G if z = + while @ and £ are not adjacent in G if z = —. (ii)
a,f € E(G), a and B are adjacent in G if £ = + while o and 8 are not
adjacent in G if z = —. (iii) @ € V(G) and 8 € E(G), a and 8 are incident
in G if ¢ = 4+ while « and # are not incident in G if z = —. Clearly, Gt++
is the wellknown total graph of G.

Now, we give the corresponding definitions of transformation digraphs.

Let D = (V(D), A(D)) be a digraph, where |V(D)| = n, |A(D)| = m
and V(D) = {vy,v2, -+ ,vn}. The line digraph of D, denoted by L(D), is
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the digraph with vertex set V(L(D)) = {ai;|(v:,v;) is an arc in D}, and a
vertex a;; is adjacent to a vertex as in L(D) if and only if v; = v, in D.

Definition 1.1. Let D = (V(D), A(D)) be a digraph, z,y,z be three vari-
ables taking values — or +. The transformation digraph of D, denoted
by D*¥*, is a digraph with vertez set V(D*¥*) = V(D) U A(D). For any
vertez a,b € V(D*¥?), (a,b) € A(D®¥*) if and only if one of the following
four cases holds:

(i) If a € V(D) and b € V(D), then (a,b) € A(D) in D ifz = + and
(a,b) ¢ A(D) in D ifx = —.

(ii) If a € A(D) and b € A(D), then the head of arc a is the tail of arc b
in D if y = + and the head of arc a is not the tail of arc b in D if y = ~.

(i) If a € V(D) and b € A(D), then a is the tail of arcb in D if 2 =+
and a is not the tail of arc b in D if z = —.

(i) If a € A(D) and b € V(D), then b is the head of arca in D if z = +
and b is not the head of arca in D if z = —.

Thus, as defined above, there are eight kinds of transformation digraphs,
among which D+ is usually known as the total digraph of D.

Wu and Meng [5] investigated some basic properties, including connect-
edness and diameters of G=¥*, Wu et al. [6] studied the connectivity,
planarity, hamiltonity and isomorphism of G=*+. Chen [3] character-
ized the super-edge-connectivity of G¥¥*. For transformation digraph, Liu
and Meng [4] characterized super-arc-connected and super-connected to-
tal digraphs. In this paper we determine the regularity and diameter of
D*+-. Furthermore, we characterize maximally-arc-connected or super-
arc-connected D+*+~. We also give sufficient conditions for this kind of
transformation digraph to be maximally-connected or super-connected.

2 Regularity and Diameter of D**+~

By the definition of line digraph, we have A(D) = V(L(D)) = {ai;|(v:,v;)
is an arc in D}. In fact, the digraph D**~ can be viewed as V(D**+~) =
V(D) UV(L(D)) and A(D++~) = A(D) U A(L(D)) U A(D, L(D)), where
A(D, L(D)) denotes the arcs with one end in V(D) and the other end in
V(L(D)).
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Proposition 2.1. Let D be a digraph with n vertices and m arcs, then
() V(D7) =m+n;
(i) |A(D**7)| = 2mn — m + ¥, ey (p) dh(2)dp (2);
(i#) For v € V(D), df,4-(v) = dpyy_(v) =m;
(iv) For ai; € A(D), dp 1 (ai;) = dp(v;)+n—1, dp,,—(as;) = dp(v:)+
n-1.

Proof. (i) and (ii) can be obtained easily by the definition of D*+-.
For v € V(D), since there are d},(v) out-arcs from v to vertices in V(D)
and m — d};(v) out-arcs from v to vertices in V(L(D)), thus dfie-(v)
df(v) + (m — d}(v)) = m. For a;; € V(L(D)), since dL(D)(a,,) =
dD(vj) and there are n — 1 out-arcs from a;; to vertices in V(D), thus
D++— (ai) = dp(v;) +(V(D)| - 1) = df(v;)+n—1. Similarly, dj p++- (V)
= dp(v) + (JA(D)| — dp(v)) = |A(D)| = m, and dp,, (ai;) = dp(v;) +
(VD) -1) =dp(w) +n-1.0
By Proposition 2.1, we have §(D**~) = min{m,8(D) + n — 1} and
A(D**~) = max{m,A(D) +n —1}.

Theorem 2.2. Let D be a digraph with n vertices and m arcs, then D7+~
is regular if and only if D is an m — n + 1-regular digraph.

Proof. By Proposition 2.1, for any vertex v € V(D), d},— (v) = dp44-(v)
= m, and for any arc ay; = (v;,v;) € A(D), d,,_(ai;) =d(v;) +n -1,
dp++-(aij) = dp(vi) + n — 1. Therefore, if DY+~ is regular, then df,(v) =
dp(v) = m —n + 1 for every vertex v € V(D), hence D is an m — n + 1-
regular digraph. On the other hand, if D is an m — n + 1-regular digraph,
then it is clear that D**~ is regular. O

In the following theorem, denote by K an isolated vertex, S_,,: a digraph
with ny vertlces where V(:S'-:) = {vl,vg, “+ ,Un, } and A(Sm) = {(v1,v5)]
Vv € V(Sn1 )\{v1}}. Denote by S Sna 2 digraph with ng vertlces, where
V(g;:) = {u,uz,--- )Ung } and A(SM) = {(uJ’ul)l Vuje V(Snz)\{ul}}'
Theorem 2.3. Let D be a digraph with at least one arc. Then dzam(D‘*""‘)
< 3, and the equality holds if and only if D = mIS,., Um2S,.2 Umga K, with
at least two non-negative integers of {m,,ma, m3} which are not 0.

To prove our result, we first prove the following two claims:
Claim 1. Let D be a digraph, D*+~ is strongly connected if and only if
D has at least one arc.
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Proof. If D contains no arc, then D**~ is not strongly connected. There-
fore, if D+~ is strongly connected, D must have at least one arc.

On the other hand, Let a;; = (vi,v;) be an arc, then (vi,vj5,0i5,v;) is a
3-cycle in D¥+—,

For any z,y € V(L(D)), if (z,y) € A(L(D)), then (z,y) € A(D*+").
Now we consider (z,y) ¢ A(L(D)). Let £ = (vs,v;) € A(D), y = (us,ut) €
A(D). If v, = u, and v, # us, then (z,us,y) is a path from z to y. If
vs # Ug, then (z,vs,y) is a path from z to y.

For any z € V(D),y € V(L(D)), let y = (us,u;) € A(D). If z = u,,
then (z,u:,y) is a path from = to y. If z # u,, then (z,y) € A(D*+7).
Furthermore, if z = u,, then (y,us,z) is a path from y to x. If = # u,
then (y,z) € A(D*+7).

For any z,y € V(D), if (z,y) € A(D), then (z,y) € A(D**~). Now we
consider (z,y) ¢ A(D). If z = v; and y # v, then (z,v;,a;,y) is a path
from z to y. If z # v; and y = v;, then (z, ai;,v;,y) is a path from z to y.
If = # v; and y # vj, then (2, aij,y) is a path from z to y. Thus D+~ is
strongly connected. O
Claim 2. Let D be a digraph with at least one arc. Then diam(D**~) =3
if and only if D mIS_,.: U ngn-; UmaK) with at least two non-negative
integers of {m;, m2,ma} which are not 0.

Proof. If D & m1§,: UmgS<_,.2Um3K 1, then diam(D*+*+~) = 3. Conversely,
if diam(D**~) = 3, then there exist two vertices z,y € V(D**~) such
that d(z,y) = 3. From the proof of Claim 1, we know that z,y must be
in V(D). Then (z,y) ¢ A(D**7), Nj(z) N Np(y) = 0 and there is no
arc a = (u;,u;) € A(D) such that z # u;, y # u;. Hence each arc of D
satisfies that either its tail is z or its head is y, and Nf(z) " Np(y) = @
jie. D= mIZST: U mrzS‘_n2 UmsK, with at least two non-negative integers of
{m1, m2,m3} which are not 0. O

Proof of Theorem 2.3. Since D has at least one arc, diam(D+*7) is well
defined by Claim 1. By the proof of Claim 1, we know that dzam(D”‘*‘ ) <
3, by Claim 2 the equality holds if and only if D & ml.S',,1 Umg,S'n, Ums K
with at least two non-negative integers of {my,m2, m3} which are not 0. O

Since there is no digraph D such that D*¥*~ is a complete digraph,
we have diam(D*+~) # 1 for any digraph D. We therefore deduce the
following corollary.
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Corollary 2.4. Let D be a digraph with at least one arc. Then diam(D++~)
. . — “—

= 2 if and only if D 2 m) Sy, UmaSy,,Uma K with at least two non-negative

integers of {m1,ma, m3} which are not 0.

3 Super-arc-connected D+~

In (3], Chen characterized super-edge-connected undirected transformation
graph G**=. For any given graph G with at least two edges, G+~ is
super-A if and only if G 2 2K; UmK), Ky UmK,, K3 UmK,, 2Kj,
K3UK3, KoUP;, Py, where m is a non-negative integer. In the following, we
will study super-arc-connected or maximally-arc-connected transformation
digraphs D*++-,

D1 D2 D3 D4 D5

Figure 1

Theorem 3.1. Let D be a digraph with at least one arc. Then D*+— s

super-) if and only if D is not isomorphic to a;UmK 1 (m 2 0) or digraphs
—

shown in Fig.1, where Cy denotes the directed cycle of length 2.

Proof. It is clear that if D is isomorphic to 5‘; umkK; (m > 0) or digraphs
in Fig.1, then D**+~ is not super-A. On the other hand, if n = 2, then it is
evident that Dt~ is super-\ only if D & 6'_2) If n = 3, it is easy to see that
D**= is super-) only if D is not isomorphic to @UK 1 or digraphs D1, D2
in Fig.1. Now we consider the case n > 4. In order to prove that D¥+~ is
super-J, it suffices to show that A(D**+~) > §(D**+~) and every minimum
arc-cut is either Ef(v) or Ep(v) for some vertex v € V(D++~). Let S be
a minimum arc-cut of D**~, then there exists a non-empty proper vertex
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subset X C V(D**+-) such that the subdigraph induced by X in D**~ is
strongly connected and there are no arcs from X to X in D*t*—\ S, where
X =V(Dr )\ X.

We consider three cases.

Case 1. X C V(D).

We claim that |X| = 1. In fact, if 2 < |X| < n — 1, since every vertex
a € V(L(D)) has at least |X| — 1 in-neighbors in X, we have

S| 2 |E[X, XOV(D)]|[+m(X|~1) = m > min{m,6(D)+n—1} = 6(D**").

The above equality holds if and only if the following conditions hold:
(1)m<éD)+n-1;
(2) |X| =2, and the tails of all arcs of D are the vertices in X;
(3) EIX,XnV(D)=0.
It is evident that the above three conditions hold if and only if D = EJ; U
mK, (m > 2), a contradiction.
If |X| =mn, then

IS| > m(n—1)>m>§D*++7),

a contradiction.

It follows that | X| = 1. Let X = {z}, then S = E}.._(2).

Case 2. X C V(L(D)).

If 2 < |X| < m — 1, since every vertex a € X hasn —1 out-neighbors in
V(D), we have

18] > 1X|(n — 1) + |EX, X N V(LD 220 ~1) =n+(n—2)
n+68(D) — 1> §(D++-).

The above equality holds if and only if the following conditions hold:
(1) 1X] =2
(2)6(D)=n—-1;
(3) E[X,XnV(L(D))] = 0.
It is evident that the above three conditions can not hold at the same time,

a contradiction.
If | X| = m, then

|S] = m(n—1) >m > §(D**7),
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a contradiction.

Thus |X| =1and § = E},,_(z), where X = {z}.

Case 3. XNV(L(D))# @ and XNV (D) # .

Let | X NV(D)| = n, and |X N V(L(D))| = ne. If V(D) C X, then
X C V(L(D)). If V(L(D)) C X, then X C V(D), the result can be proved
by a similar argument to Case 1 or Case 2. Thus we may suppose that
VID)Z X and V(L(D)) € X. Thus 1<ny <n—1land1<ny <m—1.

Subcase 3.1. n; = 1.

Ifng =1, let X NV(D) = {v}, X nV(L(D)) = {a}. Since a has at
least n — 2 out-neighbors in X N V(D) and v has at least m — di(v) -1
out-neighbors in X N V(L(D)), we have

IS

v

di(v) + dZ(D)(a) +n-2+m-df(v) -1
dfpy@) +n—-3+m
> m>§DH),

a contradiction.
If 2 < ny < n -1, since for any a € X NV(L(D)), a has at least n — 2
out-neighbors in X N V(D), we have

5] dp(v) + |E[X NV(L(D)), X NV (L(D))]| + na(n —2)
8(D)+2(n—2) > 8(D)+n—1+ (n-3)

§(D)+n—12>§D*),

2
2

\'%

a contradiction.

Subcase 3.2. 2<n; <n-—-2.

Since for any a € X NV (L(D)), a has at least n —n; — 1 out-neighbors in
XNV(D), and for any b € X NV (L(D)), b has at least n; — 1 in-neighbors
in X NV(D), we have

ISt > |B[XnV(D),X nV(D)]| +|E[X nV(L(D)),X nV(L(D))]l
+ng(n — ny — 1) + (ny — 1)(m — ny)
2 Nedt+m—ng=m2> J(D'H'-),

and the above equality holds if and only if the following conditions hold:
N)nm=2,n=¢;
(2) EIXNnV(D),XNV(D)] =9, and E[X NV (L(D)), XNV (L(D))] = ;
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() The heads of arcs corresponding to the vertices in X N V(L(D)) are
the vertices in X N V(D). The tails of arcs corresponding to the vertices
in X N V(L(D)) are the vertices in X N V(D).

From the above three cases we see that the heads and tails of arcs cor-
responding to the vertices in X NV(L(D)) are those in X NV(D), and the
heads and tails of arcs corresponding to the vertices in X N V(L(D)) are
those in X N V(D). Thus, it is evident that the above three cases hold if
and only if D is isomorphic to D3, D4, D5 in Fig.1.

Subcase 3.3. n; =n-1.

In this case, the result follows by applying the result of Subcase 3.1 to
the reverse digraph of D.

We thus conclude that if D 2 Co UmK;(m > 2) with [V(D)| > 4, then
D++- is super-A. Hence if D is not isomorphic to 52) umK; (m = 0) or
digraphs in Fig.1, then D*+~ is super-A. O

Corollary 3.2. Let D be a digraph with order at least two, then D¥+~ is
maz-) if and only if D has at least one arc.

Proof. If D contains no arc, then D**~ is not max-A. If D is isomorphic
to 5; UmK; (m > 0) or digraphs in Fig.1, then D**~ is maz-A. Since
super-arc-connected digraph is maximally arc-connected, hence if D is a
digraph with at least one arc, then D**~ is max-A.00

4 Super-connected Dt~

In this section, we will study super-connected transformation digraph D+~

Theorem 4.1. Let D be a digraph with at least one arc. If \(D) = 6(D) >
3, then D+~ is super-s.

Proof. Let T be a minimum vertex-cut of D*+~. Then there exists a
non-empty proper vertex subset X C V(D*+~) such that there is no arc
from X to X in D*+~\ T and X # 0, where X = V(D+**+~)\(X UT) and
the subdigraph induced by X is strongly connected in D¥+~.

Now we consider three cases.

Case 1. X C V(D).

We claim that |X| = 1. In fact, if 2 < |X| < n — 1, note that either
N3 (X) is a vertex-cut of D or N} (X) = V(D)\X, since A\(D) = é(D) 2 3,
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hence N (X) > 1, and for each vertex a € V(L(D)), there is at least one
in-neighbor of a in V(D) N X, we have

IT] > INK(X)|+m>m>min{m,6(D)+n~1}>68D*t"), (1)

a contradiction.

If |[X| = n, then for any vertex a;; € V(L(D)) , there exists an arc
(vj,ai5) € E[V(D),V(L(D))], so T must contain all vertices in V(L(D)),
which is impossible.

It follows that |X| = 1. Let X = {z}, then T = N},,_(=z).

Case 2. X C V(L(D)).

If 2 < |X| £ m — 1, since the subdigraph induced by X is strongly
connected, each vertex of D is out-neighbor of some vertex of X, then
V(D) € T. If Nf p)(X) = V(L(D)) \ X, then X = 0, a contradiction. If
NZ'(D)(X) # V(L(D))\ X, then |NZ'(D)(X)| 2 k(L(D)), we have

ITI 2 |N, (D)(X)|+n>n(L(D))+n>)\(D)+n

=8(D) +n > 6(D) —1+n > §(D+), @

a contradiction.

If | X| = m. then for any vertex »; € V(D) , there exists an arc
(aij,vi) € E[V(L(D)), V (D))}, so T must contain all vertices in V' (D), which
is impossible.

Thus |[X|=1and T = NJ,,_(z), where X = {z}.

Case 3. XNV (L(D))# 0 and X NV(D) #£ 0.

If I XNV (D)| 2 2, each vertex in V/(L(D))\ X is the out-neighbor of some
vertex in X NV(D), then X C V(D), the result can be proved by a similar
argument to Case 1. Now we consider | XNV (D)| = 1, let XNV (D) = {z}.
Since X N V(L(D)) # O, there is at most one vertex in V(D) \ {x} which
is not out-neighbor of X. If V(D)\{z} C N},._(X), then X C V(L(D)),
the result can be proved by a similar argument to Case 2. Otherwise
there is only one vertex y € V(D)\{z} such that y ¢ N}, (X), all
vertices in X N V(L(D)) are taking y as head. Thus X N V(L(D)) is an
independent set. It is easy to see that NZ'( py(X NV(L(D))) = Ef(y), for
any a € X NV(L(D)),Nfpy(a) = Ef(y) = df(y). Since D is a strict
digraph, there is at most one arc b such that b = (y,z) € A(D), we have
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IT| > n—2+db(y) +dp(e) — 1> n+8(D)
>8(D) - 1+n > 8(D*+),

a contradiction. We thus conclude that if A(D) = §(D) > 3, then D**~ is
super-x. O

®3)

By the proof of Theorem 4.1, we can obtain the following corollary.
Corollary 4.2. Let D be a digraph with at least one arc. If A(D) >
8(D) —1>1, then D**~ is maz-k.

Proof. If A(D) > 6(D) — 1 > 1, then (1),(2),(3) will hold in the following
forms,

IT| > INH(X)|+m>m>min{m,6D)+n—-1}2§D*7); (1)
IT| > INfpy(X)|+n 2 K(LD))+n=XD)+n2éD)-1+n

> §(D++); (2')
IT| > n-2+db(y)+dp(@)—-126D)-1+n>6D*).  (3)

Thus x(D++~) > §(D*+~) for each cases. Therefore, D**~ is max-x.00
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