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Abstract

A labelling of a graph over a field I, is a mapping of the edge set of
the graph into F. A labelling is called magic if for any vertex, the sum of
the labels of all the edges incident to it is the same. The class of all such
labellings forms a vector space over F and is called the magic space of the
graph. For finite graphs, the dimensional structure of the magic space is
well known. In this paper, we give the existence of magic labellings and
discuss the dimensional structure of the magic space of locally finite graphs.
In particular, for a class of locally finite graphs, we give an explicit basis
of the magic space.
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1 Introduction

The concept of magic graph is due to [8, Sedldéek]. He defined it to be a
graph for which a real valued edge labelling exists satisfying
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1. the distinct edges have distinct non-negative labels, and

2. the sum of the labels of the edges incident to any vertex is the same

for all vertices.

For finite graphs, the question of the precise structure of such labellings
was investigated from several viewpoints. In [10], Stewart omitted the
first condition and studied the properties of the real vector space of all
magic labellings of finite graphs. Several researchers, (see e.g., Stanley [9],
Murty [7], Kotzig and Rosa [6], Guy [3] and Doob (2], etc.) studied the
algebraic properties of graph labellings with different viewpoints. For fi-
nite graphs, Doob used the theory of matroids to study the dimensional
structure of magic labellings over an integral domain.

In this paper, we investigate the structure of magic labellings of a class
of locally finite graphs over a field F. Section 2 gives definitions and known
results for locally finite graphs. In Section 3, we define the notion of the
constrained labelling of a locally finite graph and prove that a constrained
labelling does exist for any locally finite graph. In Section 4, we prove that
for a certain class of locally finite graphs, the dimension of the magic-space
is always finite. In Section 5, we review a few results on matroid theory and
use it to show that for a certain class of locally finite graphs, the dimension
of the semi-magic space is exactly one more than the dimension of the
zero-magic space.

Throughout this paper, F will denote a field, 0 will denote the zero
element of the field, 1 will denote the multiplicative identity of the field
and the word graph will mean an undirected connected graph, without
loops or multi-edges. For all the graph-theoretic terms that have not been
defined but are used in the paper, see Harary [4].
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2 Preliminaries

Let S be a set. By |S|, we denote the number of elements in S. A graph
G = (V,E) is called a finite graph if |V| < oo (and so |E| < o0}, otherwise
G is called an infinite graph. A subgraph of an infinite graph G is called
a singly infinite path or a 1-way ray (see Figure 1) if it is isomorphic to
the graph R with vertex set V(R) = {v; : ¢ = 0,1,2,...} and edge set
E(R) = {e; = (vi,vi+1) : ©=0,1,2,...} and is called a doubly infinite path
or a 2-way ray (see Figure 2) if it is isomorphic to the graph R with vertex
set V(R) = {v; : ¢ = 0,£1,42,...} and edge set E(R) = {e; = (vi,¥i41) :
i=0,%1,+2,...}.
eg e €2
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Figure 1: A 1-way Ray

Figure 2: A 2-way Ray

For a vertex v of a graph G = (V, E), let dg(v) (in short d(v)) denote
the degree (or valency) of the vertex v in G. An infinite graph G is called
locally finite, if d(v) < oo, for all v € V. A 1-way ray R in a locally finite
graph G is called an independent ray, if all the vertices of R have degree
2 in G. An independent ray is called a mazimal independent ray, if it
is not properly contained in any other independent ray. With the above
definitions, we now state three main results of this area which we need for

our further use.

Theorem 2.1. [5, Kénig] Let G be a locally finite graph. Then the set

of vertices as well as the set of edges of G are always countably infinite.
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Theorem 2.2. [5, Konig] Let G be a locally finite graph. Then G al-
ways has a 1-way ray, where the initial vertex of this ray can be arbitrarily
specified.

Theorem 2.3. [5, Infinity Lemma] Let IT),II5,I13,... be a countably
infinite sequence of finite, nonempty and pairwise disjoint sets of points.
Let the points contained in these sets form the vertices of a graph G. If G
has the property that every point of Iln4y (n=1,2,...) is adjacent with
some point of I, by an edge of G, then G has a singly infinite path R with
V(R) = {vn : n=1,2,...} and E(R) = {en = (Un,n41) :n =1,2,...},

where v, €I, forn=1,2,....

3 Constrained labelling

Let G = (V,E) be a locally finite graph with vertex set V = {v; : ¢ =
0,1,...}. A sequencer = (T(”))uev = (r(vo),r(v1),...), where r(v;) € F,
for all 7 > 0, is called a constrained sequence of G over F. Let f be a
labelling of G, i.e., a mapping f : E — F, where f(e) € F is called the
label of the edge e. If f is defined in such a way that the sum of the labels
of the edges incident at v; is r(v;), for ¢ = 0,1,... then f is said to be
a constrained labelling of G with respect to the constrained sequence r.
In fact, f is a constrained labelling of G with respect to the constrained
sequence r if
> n(v,e)f(e) =r(v), for all v € V(G),
ecE(G)

where 7(v, €) is 1 if the vertex v is incident with the edge e and 0, otherwise.

In case of finite graphs, r is a finite sequence. For locally finite graphs,
the above sum is always well defined. The class of all such labellings of G,

corresponding to a constrained sequence r is denoted by R(G,r).



A graph G = (V, E) is called bipartite with a bipartition (S,U) if V =
SuU, SNU = 0 and every edge of G joins a vertex in S with a vertex in U.
In a connected graph, the bipartition is always unique. For finite graphs,

the following theorem is due to Doob [2], and will be useful in Section 4.

Theorem 3.1. Let G = (V, E) be a finite connected graph with a bipartition
(S,U) and let r = (r(v)), cv be a finite constrained sequence over F. Then

there ezists a constrained labelling of G with respect to r if and only if

2z r(v)= 2 r(v).

veS vel
We are now ready to state and prove our results related to constrained

labelling of locally finite graphs.

Lemma 3.2. Let r be a constrained sequence over F. Then there always
exists a constrained labelling of the 1-way ray, corresponding to the sequence

r.

Proof : Let P be a 1-way ray with edge set E(P) = {e; = (vi,vi41) :
i=0,1,2,...}. We exhibit a constrained labelling f of P, inductively as

follows. Define
f(eo) = (w0), fler) =r(v1)—r(vo) and for i > 1, f(eis1) = r(vit1)—f(e:i)-

Then by the principle of mathematical induction, it can be easily verified
that f is a constrained labelling of P. (]
For a vertex v of a graph G = (V, E), we define N;(v) = {u € V :
d(u,v) < i} for i =1,2,..., and is called the i-th neighbourhood of v. As
G is a locally finite graph, the set V;(v) is always finite for all v € V and for
alli =1,2,.... Theset B;(v) = N;(v)— N;_1(v) is called the i-th boundary
of v,i=1,2,..., with the convention that By(v) = {v}. A pendant vertex
of a graph G is a vertex of degree one.
Before stating and proving the main theorem of this section, we need to

state a few results. The proof of these results are given in (1].
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Lemma 3.3. Let G be a locally finite connected graph and let
r= ('r(v))v ev(©) be a constrained sequence over F. If for some vertez v,
any vertez of B;(v) is adjacent with some verter in Bi1(v), i = 1,2,...,

then there exists a constrained labelling of G with respect to the sequence r.

Before stating one more lemma and the main theorem, we need the
following definitions and notations. We give the proof of these two results
for the sake of completeness. Let G be a locally finite connected graph and
v € V(G).Let us designate a finite path P = vpv,v2...v5, Where v;v;41
is an edge of G for i = 0,1,...n — 1 in G, as an S-path, if the following

conditions are satisfied :
(i) there exists ¢ and j with ¢ < j such that vp € B;(v) and v, € B;(v),

(ii) for any other intermediate vertex vg, either vg,vk41 € B;(v) or vx €
By(v) for some ! with i <! < j—1 and in that case vx41 € Bi(v) U
Biy1(v).

We call vy and v,, as the first and last end vertices respectively, of the

S-path and other vertices as interior vertices.

Lemma 3.4. Let G be a locally finite connected graph and v € V(G). Let

W; be the set of those vertices belonging to B;(v) that are not adjacent to
o

any vertez of Biy1(v), i =1,2,... and let W = |J W;. Suppose W is an

=]
infinite set. Then there ezists a collection {P,, : w € W} where P, is a
1-way ray with initial vertex w, such that for any infinite subset W of W,

we get [ E(Py,)=0.
weW
Proof : Consider the sequence {B;(v) : i = 1,2,...}. Clearly this
sequence and so any tail viz. X; = {Bj4+i(v): i1=0,1,2,...}, 1 =1,2,...

of this sequence satisfy the conditions of Infinity Lemma. Now we define

Ry(v) = the class of all 1-way rays with initial vertex v ; and for j =
1,2,....



R;j(v) = the class of all 1-way rays having initial vertex from B;(v) but the

rays does not contain any vertex from B;_;(v).

Then by Infinity Lemma, the sets R;(v) for j = 0,1,2,... are nonempty.
Let w € W. Then w € By(v), for some positive integer k. Let S,, be the
class of all S-paths that starts at a vertex u and ends at w, where u is
the initial vertex of some member of R;(v) for 0 < j < k. Then the class
S, is nonempty and finite. Let j = j(w) be the largest integer such that
there is an S-path, say S,, € S,, whose first end is the initial vertex of
some 1-way ray in R;(v). Let us choose an element P; € R;(v) that starts
at the first vertex of S, and form the 1-way ray P}’ by joining the initial
vertex of P; with the first end vertex of S,,. We now claim that the class
P= {PJ‘” :w € W} has the desired property.
Suppose the claim is not true. This implies that there exists an edge e = zy
and an infinite set {w,ws,...} € W suchthate € ﬁ E(P;:"" , where j =
j(wg). In this case, there exists [ > 0 such that xf; le By(v) or z € By(v)
and y € By (v) or y € By(v) and z € Bj41(v). Ase € ﬁ E(P}*) and jx
is the largest integer for which P}* is defined, we havekt=hlat; Jx <, for all
k=1,2,....

Let H be the subgraph of G having vertex set ktjl V(Sw.)—Ni—1(v) and

00
edge set |J E(Sw,) — E({Ni(v))), where (Ni(v)} is the subgraph induced
k=1
by Ni(v). Note that H is an infinite graph with at most finitely many
isolated vertices.

As H is an infinite graph, we need to consider the following two cases:

Case I: H has finitely many connected components.
In this case, one component, say H;, must be infinite. By the defini-
tion of Sy, , no interior vertex of S, which is also a vertex of H can
be the initial vertex of some 1-way ray. Therefore Theorem 2.2 implies

that the infinite component H; is not locally finite, a contradition to
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the fact that G is locally finite.

Case II: H has infinitely many connected components.
Becasue By(v) is a finite set, H cannot have infinitely many compo-

nents. Therefore this case is not possible.
Hence the class P has the desired property. )

Theorem 3.5. Let G = (V,E) be a locally finite graph and let r =
('r(v))u ey bea constrained sequence over F. Then there exists a constrained

labelling of G corresponding to r.

Proof : Let W be as in Lemma 3.4. Let us attach a new 1-way ray
to each vertex in W. Now apply Lemma 3.3 to the obtained graph and
remove all those rays again. As the new edges of the 1-way rays are not
incident with vertices in V — W, the resulting labelling, say f of G satisfies
the constrained conditions for all the vertices of V — W. Let us put

s(wj) =r(w;) = Y, nlwj,e)f(e), for j=1,2,....
e€E(G)

Case 1. W is an infinite set :
Let W = {w,ws,...}. Now for each j = 1,2,..., choose a 1-way ray P;
with initial vertex w; such that any edge e of G belong to finitely many
P;’s (existence of such P;’s is guaranteed by Lemma 3.4).
Let E(P;) = {eji| ;i is incident with ej41, i=1,2,...}. Let f; be the
labelling of G such that

b ={ i

—s(wj), ifis even,

and f(e) =0,if eg¢ E(P;).

o0
Now it is easy to observe that the sum f + ) f; is well defined, as any
20

(o]
edge belong to finitely many P;’s. Also f+ 3 f; is a labelling of G which
j=1
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satisfies the constrained conditions at each vertex.

Case II. W is a finite set :

Let W = {wq,ws,...,wi}. Now for 1 < j < k, we can choose any 1-way
ray P; with initial vertex w; and proceed exactly as in Case I to obtain a

constrained labelling of G with respect to the sequence r. 0

Corollary 3.6. Let G = (V,E) be a locally finite graph and let r =
(r(v))v cv be a constrained sequence over F. Then there exists a constrained
labelling of G corresponding to r such that the set of edges of G with non-

zero label is acyclic.

Proof : By Zorn’s Lemma, G has a spanning tree, say T. By The-
orem 3.5, there exists a labelling of T corresponding to the constrained
sequence r. This labelling is extended to the graph G by labelling all the
edges of G — T with zero. Clearly, this extension has the required prop-
erty. a

Remark 3.7. The above results are not always true for finite graphs. In
case of finite graphs, we get necessary and sufficient condition on the con-
strained sequence which depends on whether the graph considered is bipartite

or not. See [2] for details.

Remark 3.8. The above results are also true if we consider an Abelian

group in place of the field F.

4 The Zero Magic Space

Let G = (V, E) be a graph and consider the set A(G), of all functions with
the edge set as domain and the field IF as the co-domain. Then A(G) is a

vector space over [F, where the vector addition is defined by

(fr + f2) (e) = fi(e) + f2(e), forall fi,fo € A(G) and e € E,
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and the scalar multiplication is defined by
(zf)(e) ==z f(e), forall fe A(G), z€F ande€ E.

This vector space is called the edge space of G. It is easy to see that if G
is a finite graph then dim(A(G)) = |E|. In fact, if E = {e;, e2,...,en}, then
for 1 < i < n, the set of functions {f1, f2,..., fa}, defined by fi(e;) = 6j,
where 4;; is the Kronecker delta function, forms a basis of A(G). Using a
similar idea, it follows that if G is an infinite graph then dim(A(G)) = |E|.

We now look at a subset of A(G) defined by

Z(G)={f € A(G) | ) _n(v,e)f(e) =0, for all v € V}.
eck
It is clear that Z(G) is a vector subspace of A(G) over F. The elements
of Z(G) are called zero magic labellings. In fact, Z(G) = R(G,0), where
0 = (0,0,0,...) is the zero constrained sequence. Before coming to the

main result of this section, we need the following results and notations.
Lemma 4.1. [2] If T is a finite tree, then Z(T) = {0}.

Proof : It is immediate by induction on the number of edges, as every

finite tree has a vertex of degree one. O

Proposition 4.2. [2, Doob] Let G be a graph and r be a constrained
sequence over F. Then the set R(G,r) is a translation of Z(G).

Proof : Let f be a constrained labelling in R(G,r). If g is any other
element in R(G,r), then it is clear that g — f € Z(G). So, R(G,r) C f +
Z(G). The other inclusion is also obvious. Hence, R(G,r) is a translation
of Z(G). a

Lemma 4.3. Let T be a locally finite tree having only one maximal inde-

pendent ray, then Z(T) = {0}.
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Proof : As T has only one maximal independent ray, for any vertex v
in V(T'), we can find a positive integer %, such that the induced subgraph
(T — N;(v)) is a 1-way ray. As T is a tree, the induced subgraph (N;(v))
is also a tree. So by Lemma 4.1, Z({N;(v))) = {0}. Let e be the edge
joining a vertex in N;(v) with a vertex in N;y;(v). Now note that a tree
is a bipartite graph and therefore by Theorem 3.1, for any f € Z(T),
the restriction of f to (V;;1(v)) gives f(e) = 0. That is, f restricted to
{N;4+1(v)) is the zero function. Also f(e) = 0 implies that f is zero on the
edges of (T — N;41(v)). Hence f is identically zero i.e. Z(T)={0}. O

Now for a certain class of locally finite graphs, our goal is to find an
explicit basis of Z(G). For this purpose we need three special zero magic
labellings and a few definitions. Suppose —1 denotes the additive inverse

of the unity 1 in F, while 2 stands for 1 4 1.

1. Let R be a double ray. Then we have exactly one linearly independent
element in Z(R), say x, given as follows:
choose an edge e € E(R), and let x(e) = 1, and label the other edges
as in Figure 3. This particular labelling will be denoted by x..

& & e B

1 -1 1 -1 1

Figure 3: A zero magic labelling of a 2-way Ray.

2. Let Cy,, be an even cycle and let e be an edge of Cs,,. Then a labelling
of Co, is given in Figure 4, and is denoted by y..

3. Recall that a kite is a graph, which contains a cycle (called the head)
and a path (called the tail) that is attached to a vertex of the cycle.
A kite is called odd or even according as the cycle is odd or even

and is called an infinite kite if the path attached to it is a 1-way ray.
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V2n 1 V2n—1

Figure 4: A zero magic labelling of an even cycle.

Let K be an infinite odd kite. Then the labelling given in Figure 5,
denoted by z. is an element of Z(K).

U2n-1

Figure 5: A zero magic labelling of an infinite odd kite.

With the labellings as defined above, we state and prove the main the-

orem of this section.

Theorem 4.4. Let G be a locally finite graph having finitely many cycles

and finitely many mazimal independent 1-way rays. Then the dimension
of Z(G) is always finite.

Proof : Let T be a spanning tree of G = (V, E). Suppose G has (n+1)

maximal independent rays and finitely many finite cycles. Let v € V. It is

evident that there exists a positive integer m, such that, G— N, (v) contains

(n+ 1) distinct components, where each component is an independent ray.

Let us denote the components of G — Np,(v) by P;, 1 <i < n+ 1. For any
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two distinct 1-way rays P; and P, it is obvious that there is a unique finite
path in T which joins P; and P; and therefore forms a double ray, which
we denote by P;;. From each P;, ¢ > 2, choose one e; € P; and form the
following sets:

Ey, = {e:2<i<n+1},

E; = {e€ E:{e}UE(T) contains an even cycle } and

E3 = {e€ E:{e}UE(T) contains an odd cycle }.

Figure 6: An example for clarity.

For 2 <i < n+1, consider the labelling x., of P;;. This labelling can
be extended to an element of Z(G), by labelling all other edges by 0, the
zero element of F. We denote this extension also by x.,. Similarly for each
e € B, we get an element y. of Z(G).

So far, we have used the sets E; and E; to get distinct elements of
Z(G). We will now use the set Ej3 to get another set of elements of Z(G).
Note that, each e € E3 give rise to an odd cycle. Since T is a spanning
tree, this cycle is connected to P; by a unique path, say Q. Then this odd
cycle along with @ and P, forms an infinite kite, say Cj.. For each of the
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Cie’s, we get the labelling z.. This labelling is also extended to the whole
of G, by simply labelling all other edges by 0 and the new labelling is also
denoted by z..

Note that for any e € E; U E; U E3, there is exactly one element of

{xc:e€ By} U {yc:e€ Ep}U{z.:e€ Es},

which is non zero at the edge e. Hence we conclude that this set is linearly

independent. We now wish to show that

Z(G‘)={Zaexe+ Za,ye+2aeze:ae€ﬁ?}.

e€E, ec By e€Es
Here, we only need to show that any element of Z(G) can be expressed as
the above sum.

Suppose f is any element of Z(G) and consider the labelling

9=f- [Z f@xe+ Y f@ ye+ T fe) ] € 2(G)

ecEy ecEz ecE;

Let T be the sub-tree of T, obtained by removing all the 1-way rays
having initial edges from F;. Then T is a tree having exactly one 1-way
ray. Hence by Lemma 4.3, Z(T) = {0}. It is clear that g(e) = 0, for any
edge e € E;UE>UE; and hence g(e) =0, for the edgesin P;, 2 < i < n-+1.
Hence the restriction of g to T is in Z(T) = {0}. Thus |

g=0=f=3 fle)xe+ D fle)ye+ Y fle) ze-
e€E, e€Ep e€E;

Thus the proof of the theorem is complete. 0

We now define the graph operation of joining two graphs. This opera-
tion is called amalgamation, and is defined as follows: let G; and G2 be any
two graphs. Without loss of generality, we can assume that G and G2 have

no common vertices or edges (for if they are not disjoint, we replace G2 by
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an isomorphic copy G that is disjoint from G; and form the amalgamation
of G; and G3). Select a vertex v; of G and a vertex v of Ga. Then the
amalgamation of G; and G, is formed by taking the disjoint union of G,
and G and then identifying v; with vo. With the above definition, we have

the following result:

Corollary 4.5. Let G be a locally finite graph. Let the graph G be obtained
by amalgamating some finite trees with some vertices of G. Then Z(G) is

isomorphic to Z (C~§')

Proof : Using the proof technique of Lemma 4.3, it is easy to observe
that for any f(# 0) € Z(B), f(e) = 0 if e is an edge of a finite tree that
are amalgamated with G. Hence Z(G) = Z(G). a

Remark 4.6. From Theorem 4.4, it follows that for locally finite graphs,
the structure of Z(G) is independent of the characteristic of the field FF.
But it is not the case for finite graphs. See [2] for further details.

5 The Semi-Magic Space

If we consider the constrained sequence r = (r(v)),ev to be any constant
sequence, then | J R(G,r) is called the semi-magic space and is denoted by
S(G). That is, vile define
s@=J {f € AG)| Y n(v,e)f(e)=r, forallve V}.
reF e€E

It is easy to see that S(G) is a vector subspace of A(G). For a given
f € S(G), the constant vertex sum 7 of f is sometimes called the indez of
f

Now we wish to use matroid theory to investigate the dimensional struc-
ture of S(G). To do this, we start with a few definitions related with

matroid theory. For more details on matroid theory, see [11].
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A matroid M is a pair M = (E, C), where FE is a non-empty finite set,
usually called the set of edges and C is a certain class of subsets of E,
usually called the set of circuits (sometimes these are called atoms) such

that the following two conditions hold:
(i) no circuit properly contains another circuit.

(ii) if C; and C; are circuits, e; € C; N C; and e; € C) — Cy, then there
is a circuit C3 C C; U Cy, such that C3 N {e;,ex} = {e2}.

A dendroid D in a matroid M is a set of edges that has non-empty intersec-
tion with any circuit and is minimal with this property. Any two dendroids
in a matroid M have the same cardinality. This value is called the rank of
the matroid and is denoted by r(M).

We now give some more definitions which will help us to relate some
results on matroid theory with graph theory. A chain group on a finite set
E over an integral domain D is a set of maps f : £ — D, called chains,
which is closed under point wise addition and scalar multiplication. The
support of f, denoted s(f), is defined as s(f) = {e € E: f(e) # 0}. If
s(f) is empty, then f corresponds to the zero chain. A chain f is called
elementary if its support is nonempty and there is no non-zero chain g
such that s(g) ¢ s(f). That is, for any chain g, if s(g) C s(f) and if f is
elementary then either s(g) = s(f) or s(g) = 0.

Theorem 5.1. [11, Tutte] If N is a chain group on a nonempty set E over
an integral domain D, then the class M of the supports of all elementary

chains of N is a matroid on E.

If D is a dendroid of the matroid of a chain group, then for any e € D,
we can find a chain f, such that f.(e) # 0. Then the product w = [] fe(e)
eeD
is called the weight of the chains {f.: e € D}.
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Theorem 5.2. [11, Tutte] Given a dendroid D and a set of chains
{fe : e € D} of weight w; for any other chain g; there ezists a. € D,

for each e € D ; such that wg = Y acfe.
eeD

Now it is easy to see that if G = (V, E) is a finite graph, then we can
consider the labellings as chains in the straight forward manner and that
Z(G) and S(G) form chain groups. But if G is an infinite graph, we cannot
directly consider the labellings as chains, as in this case the edge set is an
infinite set. That is, in this case we can not give a matroid structure on
E(G) directly. But for a locally finite graph G, we observe that if there
are only finitely many maximal independent rays and finitely many cycles
in G, then it is nothing but a finite graph G with finitely many 1-way rays
attached to some vertices. Therefore, for a labelling of index r, as soon as
the label of the edges which joins a 1-way ray with G is known, the label
of all other edges of this ray is determined.

So, for a locally finite graph G, we consider a new finite graph formed
by replacing all the maximal independent rays of G by pendent edges (a
path of length one) such that restriction of having constant vertex sum at
the newly formed pendent vertices are omitted. The space of all labellings
of a finite graph having constant vertex sum at all but the newly formed
pendent vertices will be called the semi-restricted magic space. We shall
give an isomorphism of S(G) (or Z(G)) to the semi-restricted magic space
and use matroid theory to find out the dimension of this new semi-restricted
magic space. We start with the following:

Let G = (V, E) be a finite graph and let U C V. Define

Sy(G) = U{f € AG)| ) n(v,e)f(e)=r, forallveV — U}.

reF e€E(G)

Note that if U = @, then Sy(G) = S(G), the usual semi magic space
for finite graphs. So in what follows, the subset U of V is non-empty.
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It is easy to observe that Sy(G) is also a vector subspace of A(G). In
a similar way, we define Zy(G) as well. Note that for Zy(G), r = 0. If
U = {u} asingleton set, we denote Sy (G) and Zy(G) by Su.(G) and Z,(G),
respectively. It is worthwhile to note that if U is properly contained in
V, then for any f € Sy(G), there is some vertex where the vertex sum
is restricted. In such a case, for an f € Sy(G), the fixed vertex sum r
corresponding to the vertices of V — U is called the indez of f. If U =V,
an f € Sy(G) is called a labelling without an index. Before proceeding

further, we need the following lemmas and notations.

Lemma 5.3. Let G = (V,E) be a finite graph, and U be a non-empty
proper subset of V. Then for any r € F, there is an element of Sy(G) with

index

Proof : Let T be a spanning tree of G and let u € U. Since a tree
is bipartite, by demanding the vertex sum r at all vertices but u and a

suitable vertex sum at u, Theorem 3.1 gives us a labelling as desired. O

Lemma 5.4. Let T be a finite tree and let u be a pendent vertex of T.
Then Z,(T) = {0}.

Proof : It is clear by Theorem 3.1. O
Let R be a 1-way ray with edge set E(R) = {(v;,vi+1) : ¢ > 1}. Then
the edges (vgi—1,v2:) and (vai,v2i41) for ¢ > 1 are called odd and even

edges of R respectively.

Proposition 5.5. Let G = (V, E) be a finite graph and U = {u,,...,ux} be
o non-empty finite subset of V and let G be the locally finite graph obtained
by amalgamating the pendent vertices of the 1-way rays Ry, Ry, ..., Rx at

the vertices uy,ug, ..., ur, respectively. Then the following holds:

1. Zy(G) = Z(G). In particular, if U = V then A(G) = Sy(G) =
Zv(G) = Z(G).
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2. If U is a proper subset of V then Sy(G) = S(G).
8. IfU =V then dim(Sy(G)) = dim(S(G)) — 1.

Proof : Forany f € Zy(G) and 1 < i < klet sf(u;) = 2 (us, e) f(e).
We use the s¢(u;)’s to define the isomorphisms and obtain t.he above men-
tioned results.

Part 1. Define T : Zy(G) — Z(G) by Ti(f) = f where f is a labelling
on G defined by

fle), ifee E(G)
f(e) =< =s7(u;), if ee E(R;)is an odd edge, 1 <i <k,

sf(u;), ifee E(R;)is anevenedge, 1<i<k.
It is easy to check that T} is an isomorphism. In particular, if U = V the
result follows from definition.
Part 2. Let U be a proper subset of V. For any f € Sy(G), let y be
the index of f. Define T : Sy(G) — S(G), by Ta(f) = f where f is a
labelling on G defined by

f(e), if e € E(G)
fley =< r;—sp(u;), ifee E(R:)isanodd edge, 1 <i <k,
sr(ug), if e € E(R;) is an even edge, 1 <i < k.

One can easily check that T5 is an isomorphism.

Part 3. We need to show dim(Sy(G)) = dim(S(é)) — 1. To do so, it is
sufficient to establish that S(G) = Z(G)@®W, where W is the 1-dimensional
subspace of Sy (G) spanned by f and

F(e) 1, ife€ F(R;)is an odd edge,
é) =
0, ife€ E(G) or e € E(R;) is an even edge.

Clearly Z(G) N W = {0}. Define T3 : Z(G) @ W —s S(G) by

Ts(f ®g)(e) = f(e) + g(e), whenever f € Z(G)and ge W.
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It can be easily verified that T3 is an isomorphism. Thus the proof of the

proposition is complete. O

Proposition 5.5 gives us relations between the magic spaces of a class
of locally finite graphs and the semi-restricted magic spaces of some finite
graphs. We use this and the theory of matroids to find an explicit basis of
S(G). To do so, we define three special semi-restricted zero magic labellings
(as defined in Section 4) and use these labellings as the building blocks for

our required basis.

(i) Let P be a finite path. If both the pendent vertices v and v of P are
not restricted, then Z{, ,}(P) has exactly one linearly independent
element. This element is defined as follows: choose any non-pendent
edge e € E(P), and put x(e) = 1 and label the other edges as in
Figure 7. We denote this particular labelling by x..

ue &

& —® -9V

-1
Figure 7: A semi-restricted zero magic labelling of a Path.

(ii) For any even cycle we already know the labelling y. from Section 4.

(iii) For a kite K with an odd cycle (an odd kite) in which the pendent
vertex v has no restriction, choose an edge e from the cycle and form

the labelling as in Figure 8. We denote this labelling by z..

With the help of the above defined labellings, we now have the proof of

the main theorem of this section.

Theorem 5.6. Let G = (V, E) be a finite graph with at least one pendent

vertez. Let U be a non-empty subset of the set of all pendent vertices of G.
Then dim(Sy(G)) = 1 + dim(Zy(G)).
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V2n-1

Figure 8: A semi-restricted zero magic labelling of an odd kite.

Proof : We prove the theorem by constructing an explicit basis of
Zy(Q) and Sy(G).

It is clear that Sy (G) and Zy(G) carry a matroid structure from the
concerned chain groups. We denote these matroids by Sy(G) and Zy(G)
itself. Let {e1,e2,...e;} be the set of pendent edges whose end vertices
belong to U and let v; € U be the pendent vertex incident with e;, 1 <i <
k. Let T be a spanning tree of G — {v2,vs,...v;}. Put D = E(G) — E(T).
We first show that D is a dendroid of Zy(G). Note that for any e € D,
E(T) U {e} contains either a path having e; and e; (2 < i < k) as pendent
edges or an even cycle or an odd kite with pendent edge e;. Let e € D be
such that E(T) U {e} contains a path, say P, having e; and some ¢; (2 <
i < k) as pendent edges. Let f. be the labelling of G where f, = x. on the
edges of P and f, = 0, elsewhere. Similarly in the other cases, f. be the

extension of y,. or z. respectively. We observe the following :

(i) Dn s(fe) = {e}, if e € D and E(T) U {e} contains a path having e,
and e; (2 < ¢ < k) as pendent edges.

(ii) DNns(f.) = {e}, ife € D and E(T) U {e} contains an even cycle.

(iii) Dns(f.) = {e}, if e € D and E(T") U {e} contains an odd kite with

e; as a pendent edge.
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By Lemma 5.4, Z,,(T) = {0}. Hence by Theorem 5.1, no circuit is con-
tained in E(T') and so we can conclude that D has non empty intersection
with every circuit. Again, if we remove an edge e from D, it is clear that
there would be a circuit of the form s(f.) which is disjoint from D. Hence
D is minimal and so it is a dendroid of Zy(G). Note that {f. : e € D}
is a set of chains (labellings) of weight 1. Therefore by Theorem 5.2, we
ensure that all these chains span Zy(G). Also s(f.) N D = {e} implies that
all these chains are linearly independent and hence form a basis of Zy (G).

Now we proceed to find out the rank of the matroid induced by Sy (G).
By Lemma 5.3, we get an element of Sy(T) with index = # 0, which can
be extended to f € Sy(G) by defining it as 0 on all edges in E(G) \ E(T).
Clearly s(f) C E(T). Let us choose an e € E(T) such that f(e) # 0, and
put D = DU {e}. We wish to show that D is a dendroid of Sy(G).

Suppose that g (# 0) € Sy(G) and s(g) N D = @. Since D is a dendroid
of Zy(G), g ¢ Zy(G) and so g has index s # 0. Therefore sf —rg € Zy(G).
Also the relations s(f) € E(T) and DN E(T) = @ imply that s(f)ND = 0.
Ass(g)ND =9, sf —rg is zero on every edge in D and s(sf —rg)ND = 0.
Thus, using the fact that sf — rg € Zy(G) and D is a dendroid of Zy(G),
we have sf = rg and g(e) # 0. Hence, D has non empty intersection with
every circuit in Sy(G).

Also from Zy(G) C Sy(G) and s(g) N D = @, we observe that Dis
minimal. Hence D is a dendroid of Sy(G). Clearly {fU{f. : e €
D} is a basis for the vector space Sy(G) over F. Hence dim(Sy(G)) =
dim(Zy(QG)) + 1. O

In the statement of Theorem 5.6, the set of unrestricted vertices were
taken as a subset of the pendent vertices. The next corollary shows that

this assumption is not necessary.

Corollary 5.7. Let G = (V, E) be a finite graph and U be a non-empty
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subset of V. Then dim(Sy(G)) = dim(Zy(G)) + 1.

Proof : If each vertex of U has degree one, the result follows from
Theorem 5.6. Otherwise, let U = {u1,u2,...,ux} be the set of non pendent
vertices of U. In this case, form a new graph G by amalgamating an
edge e; = (u;,v;) at each of the vertices u;, 1 < 7 < k and observe that
Su(G) = S5(G) and Zy(G) = Z5(G), where U = (U-0)U{vy, v, ..., vk}
Now the use of Theorem 5.6 gives the desired result. a

Theorem 5.8. Let G be a locally finite graph having finitely many mazimal
independent 1-way rays and finitely many cycles. Then dimension of S(G)
is exactly one more than that of Z(G).

Proof : The proof follows from Proposition 5.5 and Corollary 5.7. O

Remark 5.9. From Proposition 5.5 and Theorem 5.6, it is clear that given
any locally finite graph G having finitely many cycles and finitely many
mazimal independent rays, we can always construct an ezplicit basis of

5(G).
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