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Abstract

Let G be a nontrivial connected graph of order n, and & an integer
with 2 < k < n. For a set § of k vertices of G, let x(S) denote the
maximum number £ of edge-disjoint trees T1,T%,...,Te in G such
that V(T;) N V(T;) = S for every pair ¢,j of distinct integers with
1 <4,j < ¢. Chartrand et al. generalized the concept of connectivity
as follows: The k-connectivity, denoted by ki(G), of G is defined by
#x(G) =min{x(S)}, where the minimum is taken over all k-subsets
S of V(G). Thus &2(G) = x(G), where £(G) is the connectivity of G.
Moreover, £, (G) is the maximum number of edge-disjoint spanning
trees of G.

This paper mainly focus on the k-connectivity of complete bipar-
tite graphs Ko, where 1 < a < b. First, we obtain the number of
edge-disjoint spanning trees of K, which is l'c++b-T ], and specifi-
cally give the [:‘_‘-‘f?l-j edge-disjoint spanning trees. Then, based on
this result, we get the k-connectivity of Ko for all 2 < k < a +b.
Namely, if k > b—a+ 2 and a — b+ k is odd then xi(Kap) =

atboktl | (acbtbolbatk-l) | ifk > b-a+2anda-b+kis

even then Ki(Kap) = 2t2=% 4 L(“’bzf,zf_bl—)""'k)J, and ifk <b—a+2
then ki (Kap) = a.
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1 Introduction

We follow the terminology and notation of [1]. As usual, denote by
K, the complete bipartite graph with bipartition of sizes a and b. The
connectivity k(G) of a graph G is defined as the minimum cardinality of
a set Q) of vertices of G such that G — Q is disconnected or trivial. A
well-known theorem of Whitney [4] provides an equivalent definition of
the connectivity. For each 2-subset S = {u,v} of vertices of G, let x(S)
denote the maximum number of internally disjoint uv-paths in G. Then
£(G) =min{«(S)}, where the minimum is taken over all 2-subsets S of

G).

In [2], the authors generalized the concept of connectivity. Let G be a
nontrivial connected graph of order n, and k an integer with 2 < k < n.
For a set S of k vertices of G, let x(S) denote the maximum number £
of edge-disjoint trees T},T3,...,T¢ in G such that V(T;) N V(T;) = S for
every pair i, j of distinct integers with 1 < 7,5 < £ (Note that the trees are
vertex-disjoint in G\ S). A collection {T1,T5,...,T;} of trees in G with this
property is called an internally disjoint set of trees connecting S. The k-
connectivity, denoted by ki (G), of G is then defined as xx(G) =min{«x(S)},
where the minimum is taken over all k-subsets S of V(G). Thus, £2(G) =
#(G) and k,(G) is the maximum number of edge-disjoint spanning trees of

In [3], the authors focused on the investigation of x3(G) and mainly
studied the relationship between the 2-connectivity and the 3-connectivity
of a graph. They gave sharp upper and lower bounds for x3(G) for general
graphs G, and showed that if G is a connected planar graph, then K(G)—1 <
k3(G) £ &(G). Moreover, they studied the algorithmic aspects for k3(G)
and gave an algorithm to determine «3(G) for a general graph G.

Chartrand et al. in [2] proved that if G is the complete 3-partite graph
K3 4.5, then k3(G) = 6. They also gave a general result for the complete
graph K,:

Theorem 1.1. For every two integersn and k with2 < k < n,
kk(Kp) =n—[k/2].

Okamoto and Zhang in [5] investigated the generalized connectivity for
regular complete bipartite graphs K, ;. In this paper, we consider this
connectivity for general complete bipartite graphs K, ;. First, we give the
number of edge-disjoint spanning trees of K, p, namely tq.4+5(Ka,b)-

Theorem 1.2. For any two integers a and b,

ab

Karo(Kap) = o557

J.



Actually, we specifically give the | -5~ l_| edge-disjoint spanning trees
of K, . Then based on Theorem 1.2, we obtain the k-connectivity of K, 5
forall2<k<a+b.

2 Proof of Theorem 1.2

Without loss of generality, we may assume that @ < b. Since K, con-
tains ab edges and a spanning tree needs a+b—1 edges, the number of edge-
disjoint spanning trees of K, ; is at most | —% e l], namely, Kq4+5(Kap) <
la3o=T J Thus, it suffices to prove that ka15(Kap) > | 557 +b—1J To this end,
we want to find out all the [ +b_1j edge-disjoint spanning trees. K is a
star which has exactly [a -1l =1 spanmng tree. So we can restrict our
attention to K, for a > 2. Hence, | 75> =2 | <a. Let X = {z},%2,...,%a}
and Y = {yl,yg, -»Ys} be the blpartltlon of Kgp.

We can describe a spanning tree in K, ; by giving the set of neighbors
of z; for 1 £ j < a. Now we give the first spanning tree T} we find:

vertex | neighbors degree
T) Y1, Y2, -, Yd, d
23 Ydys Ydi+1s -+ Ydy+da—1 dy
I3 Ydy+da—1> Ydy+das - -5 Ydy+da+d3—2 d3
Tj Ydy+da++djm1—(G=2)) -+ Yditdattd;—(i-1) | &5
Zq Ydy+dat-r+dar—(a=2)s <+ Ydytdatotda—(a=1) de

where d; denotes the degree of z; in T,, anddy+do+---+d, =a+b-1.
To snmphfy the subscript, we denote ip = 1,4 =d;, i =dy +dp — 1,

o &5 =d1+d2+"~+dj—(j—1), venitg=di+da+---+ds~(a—1)=b.
Note that, i; — ;-1 = d; — 1. So in T3, the set of neighbors of z; is

{y‘ij_l ;yi,-_1+1, e :yij} for 1 S J S Q.
Here and in what follows, the subscript j of y; € Y is expressed modulo

b as one of 1,2,...,b. The subscript j # O of i; is expressed modulo a as
one of 1,2,...,a. And the subscript j of d; is expressed modulo a as one
of1,2,...,a

Then we can describe the second spanning tree 75 we find. In 75,
the set of neighbors of x; is {yi;4+1, Y42, »¥i;,41} for 1 <j<a-1
and the set of neighbors of o is {¥i,+1, Yi,+2, -+ ¥ia,,}- Note that
Yi.+1 = 1. Therefore dp, (z;) = ij41—i;+1=djp 1 for1<j<a—1and
de(xa) =ig41—1+1=4d;.

We can see that T and T} are edge-disjoint, if and only if for every
vertex z;, dj +d;41 < b. If T; and T are edge-disjoint, then we continue to
find T3. In T3, the set of neighbors of =; is {¥i;,,+2, Yij4143s -+ Yijpat+2}
for 1 < j < a—2, the set of neighbors of Za—1 i {Yi, +2; Yia+3) +++) Yiegr+1}
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and the set of neighbors of Za i8 {Vi, ;1415 Yiep142s -+ 1 Yia +2+1}. Note that
Yie+2 = Y2. Therefore d'p, (:cj) = ij+2 - ij.,.l +1= dj+2 for 1 < ] <a- 2,
de(xa_l) =tdg41+1-24+1= d; and de(a:a) = ig42 —ta41 +1 =
9 —11+1=ds.

We can see that T3 and T, T are edge-disjoint, if and only if for every
vertex z;j, dj +d;j41 +djp2 < b. If T3 and Ty, T3 are edge-disjoint, then we
continue to find T4. Continuing the procedure, our goal is to find the max-
imum !, such that 7; and 7}, T5,. .., Ti-; are edge-disjoint. In T}, the set of
neighbors of z; is {¥i;,,_,4(1-1)s Yijprmatls- -+ r Yigu_ 14~} for1 <j<a-—
l+1, the set of neighbors of Ta—142 I8 {Ui, +(1-1)» Yia+lr- -+ 1 Vi1 +(1—-2)} a0d
the set of neighbors of z; is {¥i,,,_,+(-2)s Yijp1a+(=1)s- -+ Yispr_14+(-2)
fora — 1+ 3 < j < a. Note that y;, +(,_1) = y1—1. Therefore dp,(z;) =
tjpl—1 — fjpt—2 +1 =djpyr1 for 1 < j < a-1+1, dr(Za—i42) =
tat1 + (1 —2)—(1-1)+1=4d; and dr,(zj) = tj1-1 —Gjp—2+1 =
tjtl-1-a — tj4l—2-a + 1 = djj1-1-q, for a =1 +3 < j < a. That is, we
want to find the maximum !, such that d; +dj41 + - - +djp1—1 < b for any
1<j<a.

Let D} = dj+d;j41+--+djs—1. It can be observed that D} = Df,, if
and only 1f d;j = dj++. We will show that for any fixed integer t 1<t<a,
by assigning appropnate values to d;, we can make | D} — D‘ |< 1 for any
integers 1 < 4,5 < a. We describe the method for assigning values to d;
and prove its validity for two cases. Consider the numbers 1,¢ + 1,2t +
1,...,(a — 1)t + 1, where addition is performed modulo a.

Case 1. 1,t+1,2t +1,...,(a — 1)t + 1 are pairwise distinct.

Then we can assign the values to d; as follows: Let a +b—1=ka +¢,
where k, ¢ are integers, and 0 < ¢ < a—1. Then a+b—1 = (k+1)c+k(a—c).
Ifc=0,letd;=kforalll1<j<a. Ifc>0,let d;_1y41 =k +1 for all
1 < i< ¢, and let the other d; = k.

Ifc=0,dj =kforall<j<a Then Df = D for any integers
1<4,j<a.

If ¢ > 0, we construct a weighted cycle: C = z1Z¢41%2t41 - - - T(a—1)t41%1
and W(Z(i—1)e+1) = d(i—1ye41 for 1 < i < a. According to the assignment,
we have w(z;) = w(:cH.l) = W(T(c-1)t+1) = k + 1 and w(Ter41) =
w(x(c+1):+1) == w(-'b‘(a-l)t+1) =k.

Since D} = D‘_H if and only if d; = d;., then D(‘ pe+1 = Dimnyesrin
if and only if w(z(i_1)e+1) = w(Zie41). Similarly, D(, Det1 = D(,_l)t st
1if and only if w(z(;i—1)e+1) = W(Zie41)+1, and D(‘ D1 = Df'-l)z 1411
if and only if w(z(i—1)e41) = W(Tie41) — 1. We know that w(z(c—1)e41) =
w(ch.l) +1, 'w(x(a_l)t“) = w(:z:;) —1, and w(z(,..l)t.,.l) = w(:t,t.n) for
1 <i<a-1andi#c For simplicity, let (¢ — 1)t + 1 = a (mod a),
(@ —1)t +1 = B (mod a). Therefore we can get D, = D, +1, Dj =
D[,,H —1and Dgi_1ye41 = D-1)e4141, for 1 £ i < a—1and i # ¢, namely,



fa<p,then Dl =Dy=-..=D, =D, ,+1=D, ,+1=--.
Dy+1=Dp,, =Dj,o=---=Difa>p,then D =D} =--. = B
D§+1_1=D5+2—1="'=D3*1 =D3+1=Dfx+2='” = Dg.

We have | D} — D} |[< 1 for any integers 1 <i,5 < a.

Case 2. Some of the numbers 1,t+1,2t+1,...,(a — 1)t +1 are equal.

Suppose that it + 1 = jt + 1(mod a) suchthat 0 < i< j<a -1 and
1,t4+1,2t+1,...,(j — 1)t + 1 are pairwise distinct integers (in Z,). We
claim that ¢ = 0. Otherwise (j —i}t+1=1(moda)and 0 < j—i < j—1,
a contradiction. Then1 < j<a-1.

Claim 1. it + 1 # 2 (mod a) for any integer i.

If it +1 = 2 (mod a), then we have it = 1 (mod a). Thus Ait +1 =
A+ 1 (mod a) for any integer A\. So jit +1 = j + 1 (mod a). Since
1<j<a-1,2<j+41 < a. On the other hand jt +1 = 1 (mod a),
namely jit + 1 =1 (mod a), a contradiction. Thus, it + 1 # 2 (mod a) for
any integer i.

Claim 2. 2,t+2,2t+2,...,{j — 1)t + 2 are pairwise distinct.

If 51t + 2 = jot + 2 (mod a), where 0 < j; < jp £ j—1, then jit+1=
jot +1 (mod a). But 1,t+1,2t +1,...,(j — 1)t + 1 are pairwise distinct,
a contradiction.

Claim 3. {1,t+1,2t+1,...,(j — 1)t +1}n{2,t + 2,2t +2,...,(j —
1)t +2} =0.

If iyt + 1 = izt + 2 (mod a), then (i1 — i)t +1 = 2 (mod a). But
it + 1 # 2 (mod a) for any integer i, a contradiction by Claim 1. Thus,
1,t+1,2t+1,...,( - 1)t +1,2,t +2,2t +2,...,(j — 1)t + 2 are pairwise
distinct.

Now, if 2 = -;e, thenweorder 1, ..., aby 1, +1,2¢+1,...,(j — 1)t +
1,2,142,2t42,...,(j—-1)t+2. If2 < %, we will prove that 1+it # 3 (mod a)
and 2 + it # 3 (mod a) for any integer 4.

Claim 4. If 2 < ¢, then 1+t #3 (mod a) and 2+ it # 3 (mod a) for
any integer :.

If 2 + it = 3 (mod a), then 1 + it = 2 (mod a), a contradiction by
Claim 1. If 1 4+ it = 3 (mod a), then we have it = 2 (mod a). Thus
Ait +1 = 2A + 1 (mod a) for any integer A. So jit + 1 = 25 + 1 (mod a).
Since 2 < 2j < a, 3 < 2j+1 < a. On the other hand jt +1 =1 (mod a),
namely jit + 1 = 1 (mod a), a contradiction. Hence, if 2 < %, then
1+ it # 3 (mod a) and 2 + it # 3 (mod a) for any integer .

If 3 = % then we order 1, ..., a by 1,t + 1,2t +1,...,(j — 1)t +
1,2,6+2,2t+2,...,(G - 1)t +2,3,t+3,2+3,...,(j — 1)t +3. If 3 < &,
then continue the similar discussion until we reach some integer s = 3.
Similarly, we can prove that p + it # ¢ (mod a) for 1 < p < ¢ £ 5. Thus
we can get the following claim:

Claim 5. 1, +1,2t+1,...,(G — 1)t +1,2,t + 2,2t +2,..., (5 — 1)t +
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2,...,8,t+s,2t+s,...,(j —1)t + s are pairwise distinct. And hence
{Let+1,2t+1,...,(i -1t +1}U{2,t+2, 2t+2 (-1t +2}u- U
{5t +% $2+%,.. =D+ 5 =1{12,.

The proof is similar to those of Clalms 2 3 and 4. Then we order
1,2,...,aby 1,t+1,2t4+1,...,(G 1)t +1,2,t + 2,2t +2,...,(j — 1)t +
2,...,s,t+s,2t+s,...,(j - l)t+s. Now, we can assign the values of d;
as follows:

Let a+b—1 = ka+ ¢, where k, c are integers, and 0 < ¢ < a—1. Then
a+b—1=(k+1)c+ k(a—c). In the case that ¢ = 0, let d; = k for all
1 < j < a. In the case that ¢ > 0 for the first ¢ numbers of our ordering, if
d; uses one of them as subscript, then d; =k +1, else d; = k.

Next, we will show that | D} — D‘ l< 1 for any integers 1 <i,j < a.

Ifc=0,d;j =kforall <] <a Then D} = D} for any integers
1<i,j<a.

If ¢ > 0, we construct s weighted cycles: C; = ZiT¢qi ... T(j~1)t+i%is
1<i<s,and w(:z:(p..l)t.,.,) = d(,,_l)H,,, 1< p<j. Since D} = D}, if and
only if d; = d; ¢, then D (p Dei = D(p_l)t +iq1 if and only if w(z(p_l),.,.,) =
W(Tpe+i). By the assignment, there is at most one cycle in which the vertices
have two distinct weights. If such cycle does not exist, clearly, we have
D(p_l)H_, = Dfy_1ypipr forall1<i<sand1<p <, namely, D} =
Di = ... = Dt. So we may assume that for some cycle C;, w(z(,- Vitr) =
'RD(ZE-YH.,-) +1 and w(T(j—1)t+r) = w(Zr) — 1. Similar to the proof of Case
1, we can get that | D} — D |< 1 for any integers 1 <i,j <.

Then, we can show that with the assxgnment we can get [ > |_a T

Let ' = | 5% <. We have D! 4+ D% ++--+ D% = (di +da+---+
dt')+(d2+d3+ +dt'+1)+ -+(de +d1+ +dt'-l) = t'(dy+do+: - +d,) =
t(a+b—1). )

Since for fixed t' = | =% j | D} —D‘ |< 1foranyintegers1 <4,j < a,

D;-S[t(atb—u]<t(otb-l)+lsma:— +1=b+1. ,

The third inequality holds since t' = [ﬁ%] < ;ff’:f. Since D} is an
integer, we have D;' <bforalll <j<a. Since! is the maximum integer

such that D‘ =dj +djt1+ -+ +djp—1 < bfor any 1 < j < a, then
l>t= [a +5-1)- So we can ﬁnd at least [ +b_1_| edge-disjoint spanning
trees of K, 5. And hence Kq45(Kap) = [ _| So we have proved that
Katb(Ka,p) = |-a+b—1.' 1

3 Main result

Next, we will calculate ki (K, p) for 2 < k < a+b.
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Recall that £x(G) = min{«(S)}, where the minimum is taken over all k-
element subsets S of V(G). X = {z),%3,...,z,} and Y = {y1,y2,..., ¥}
be the bipartition of K, ;. Actually, all vertices in X are equivalent and
all vertices in Y are equivalent. So instead of considering all k-element
subsets S of V(G), we can restrict our attention to the k-element subsets
S; = {z1,%2,.. ., Ti, Y1, Y2, - - , Yk—i} for 0 < i < k. Notice that, if ¢ > a
or k —¢ > b, then S; does not exist. So, we need only to consider S; for
max{0, k — b} <i < min{a, k}.

Now, let A be a maximum set of internally disjoint trees connecting S;.
Let Rl be the set of trees connecting S; whose vertex set is S;, let 2; be
the set of trees connecting S; whose vertex set is S; U {u}, where u ¢ S;
and let 2, be the set of trees connecting S; whose vertex set is S; U {u, v},
where u,v ¢ S; and they belong to distinct partitions.

Lemma 3.1. Let A be a mazimum set of internally disjoint trees con-
necting S;. Then we can always find a set A’ of internally disjoint trees
connecting S;, such that | A |=| A’ | and A’ C o U, UA,.

Proof. Let A= {T1,T>,...,Tp}. If for some tree T; in A, T; ¢ o U2, U,
then let V(T;) = S;UU UV, where UUV)NS; =0, UC X and VCY.
One of U and V can be empty but not both. If U and V are not empty,
let vy € U and v; € V. The tree T; with vertex set V(T}) = S; U {u1,v1}
and edge set E(T}) = {wiy1,..., U19k—i,V1Z1,...,V1Zi, ur1t1 } is a tree in
2o U Ay UAp. Since V(T;) N V(Tk) = S; and E(T;) N E(Ty) = 0 for
every tree Ti. € A, where k # j, T} will not contain u;,v; nor the edges
incident with u;,v;. Therefore, V(T})NV(T}) = S; and E(T})NE(T;) =0
for 1 < k < p,k # j. Ifone of U and V is empty, say V, let U =
{v1,u2,...,u4q}. Then we connect all neighbors of uz,...,u; to u; by
some new edges and delete ug,...,u, and any resulting multiple edges.
Obviously, the new graph we obtain is a tree T; € 2oU2l; U, that connects
S;. For every tree T} € A, where k # j, T will not contain u, nor the edges
incident with u;. Therefore, V(T}) NV (Tk) = S; and E(T)) N E(T;) =0
for 1 < k < p,k # j. Replacing each T; ¢ 2o U, U by T}, we finally
get the set A’ C g U R, U2, which has the same cardinality as A. |

So, we can assume that the maximum set A of internally disjoint trees
connecting S; is contained in 2o U2, U AUs.

Next, we will define the standard structure of trees in 2y, 2; and s,
respectively.

Every tree in %g is of standard structure. A tree T in ?; with vertex
set V(T) = S; U {u}, where u € X \ S;, is of standard structure, if u is
adjacent to every vertex in S; NY. Since |E(T)| = |V(T)| -1 = k and
dr(u) = |S; NY| = k — i, there remains i edges incident with S; N X. We
know that |S; N X| = ¢ and each vertex must have degree at least 1 in T'.
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So every vertex in S; N X has degree 1. A tree T in 2; with vertex set
V(T) = S;U {v}, where v € Y'\ S;, is of standard structure, if v is adjacent
to every vertex in S; N X. Similarly, every vertex in S; NY has degree 1.
A tree T in 2, with vertex set V(T) = S; U {u, v}, where u € X \ S; and
v € Y\ S;, is of standard structure, if u is adjacent to every vertex in S;NY,
v is adjacent to every vertex in S; N X, and u is adjacent to v. We then
denote the resulting tree T by T, ,. Denote the set of trees in 2o, 2, and
2, with the standard structure by Ao, A; and Aj, respectively. Clearly,

Ao = o.

Lemma 3.2. Let A be a maximum set of internally disjoint trees connect-
ing S;, A C o UA; UU,. Then we can always find a set A” of internally
disjoint trees connecting S;, such that | A |=| A" | and A" C AgU A UA,.

Proof. Let A= {T1,T3,...,Tp}. Suppose that there is a tree T}; in A such
that T; € 2y, but T; ¢ A;. Let V(T};) = S; U {u}, where u € X \ S;. Note
that the case u € Y \ 3; is similar. Since T; ¢ A, there are some vertices
in S;NY, say vi,,...,¥,, not adjacent to u. Then we can connect y;, to
u by a new edge. It will produce a unique cycle. Delete the other edge
incident with y;, on the cycle. The graph remains a tree. Do the same
operation to ¥i,,...,¥;, in turn. Finally we get a tree T] whose vertex
set is S; U {u} and u is adjacent to every vertex in S; NY, that is, T is
of standard structure. For each tree T, € A\ {Tj}, clearly T,, does not
contain u nor the edges incident with u. So V(T}) N V(T,) = S; and
E(T})NE(T,) = 0. Suppose that there is a tree T; in A such that T; € 2,
butT ¢ Az. Let V(T;) = S; U {u,v}, whereu € X \ S; and v GY\S

Then TJ Ty,v is the tree in Ap whose vertex set is S; U {u,v}. For each
tree T,, € A\{T,} V(T}))nV(T,) = S; and E(T}) N E(T,) = 0. Replacing
each T; ¢ AgU A; UAz by T}, we finally get the set A” C AoU A3 U A2
which has the same cardinahty as A. [ |

So, we can assume that the maximum set A of internally disjoint trees
connecting S; is contained in Ag U A; U Ag. Namely, all trees in A are of
standard structure.

For simplicity, we denote the union of the vertex sets of all trees in set
A by V(A) and the union of the edge sets of all trees in set A by E(A). Let
Ag:=ANAg, A1 :=ANA; and A2:=ANAz. Then A=4UA; U A,.

Lemma 3.3. Let A C AgU.A;UA; be a mazimum set of internally disjoint
trees connecting S;. Then either X C V(A) orY C V(A).

Proof If X ZV(A)andY € V(A),let z € X \V(A) and y € Y \ V(4).
Then the tree Ty, , € Az with vertex set S;U{z, y} is a tree that connects S;.
Moreover, V (T, ,)NV(A) = S; and since all edges of T;;, , are incident with
zory,soT; , and T are edge-disjoint for any tree T € A. So, AU{T%, 4}
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is also a set of internally disjoint trees connecting S;, contradicting to the
maximality of A. |

So we conclude that if A is a maximum set of internally disjoint trees
connecting S;, then X C V(A) or Y C V(A).

Lemma 3.4. Let A C AgUA;UA; be a mazimum set of internally disjoint
trees connecting S;, and A = AgUAUA,. If there is a vertez z € X \V (A)
and a tree T € A, with verter set S; U {y}, where y € Y \ S;, then we can
find a mazimum set A' = AJUAJUA) of internally disjoint trees connecting
Si, such that Ay = Ao, |A}| = |A1| — 1, and |A| = |A2| + 1.

Proof. Let Ty, 4 be the tree in A, whose vertex set is S; U {z,y}. Then
A'= A\TU({T;, ,} is just the set we want. |

The case that there is a vertex y € Y \ V(A4) and a tree T € A; with
vertex set S; U {z}, where z € X \ §j, is similar.

Next, we will show that we can always find a maximum set A of in-
ternally disjoint trees connecting S;, such that all vertices in V(4,) \ S;
belong to the same partition. To show this, we need the following lemma.

Lemma 3.5. Let p, q be two nonnegative integers. If p(k—1)+qi < i(k—1),
and there are q vertices uy,ug, ..., %y € X \ S, then we can always find p
trees T1, T, ..., Tp in Ag and q trees Tpy1,Tpi2, ..., Tprq in Ay, such that
V(T;) = Si for1 < j <p, V(Tp4m) = SiU{upn} for1 <m < q, and T, and
T, are edge-disjoint for 1 <r < s < p+q. Similarly, if p(k—1)+q(k—1i) <
i(k — i), and there are g vertices vy,vs,...,9q € Y \ S;, then we can always
find p trees Ty, Ty,..., T, in Ao and g trees Ty, Tppo, ... Tpyq in Ai,
such that V(T;) = S; for 1 < j <p, V(Tp4m) = SiU{vm} for1 <m < g,
and T, and T, are edge-disjoint for 1 <r<s<p+gq.

Proof. If p(k — 1) + qi < i(k — %), then p(k — 1) < i(k — i), namely
p=< [1§,:°_;1'1J Then with the method which we used to find edge-disjoint
spanning trees in the proof of Theorem 1.2, we can find p edge-disjoint
trees T1,T2,...,T, in Ao, just by takinga =%, b =k —iand t = p.
Moreover, let D? denote the number of edges incident with z, in all of the
p trees. Then according to the method, |D? — D?| < 1for 1 < s,t < 4.
Now, denote by B? the number of edges incident with z, which we have
not used in the p trees. Then |[B? — B}| < 1 for 1 < s,t < i. Since
B +BY +.--+ BP = i(k —1i) — p(k — 1) > qi, B? > q. Because for each
tree in A; with vertex set S; U {u}, where u € X'\ S;, the vertices in S;n X
all have degree 1, we can find g edge-disjoint trees Tp41,Tp42,-- -, Iptq iR
Aj;. Since the edges in Tp41,Tp+2,. .., Tp+q are not used in Th,T3,...,Tp
for 1 <r <s<p+aq, T, and T, are edge-disjoint. The proof of the second
part of the lemma is similar. |
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Lemma 3.6. Let A C Ay U A; U A, be a mazimum set of internally
disjoint trees connecting S;, and A = Ag U A; U Ay. If there are s trees
T,T1s,...,Ts € Ay with verter set S,-U{ul}, S,'U{‘uz}, veey S;U{'u,} respec-
tively, where u; € X\S; for1 < j < s, andt trees Tyy1, Toq2,...,Tspe € Ay
with vertex set S; U {v1}, S; U {v2}, ..., S; U {v} respectively, where
v; €Y \S; for 1 < j <t. Then we can find a set A’ = Ay U A] U Aj
of internally disjoint trees connecting S;, such that |A| = |A’| and all ver-
tices in V(A]) \ S; belong to the same partition.

Proof. Let |Ap| = p. Since A is a set of internally disjoint trees connecting
S;, we have p(k — 1) + si 4 t(k — i) < i(k — i), where si denote the si
edges incident with z,,...,z; in Th,T5,...,T;, and t(k — i) denote the
t(k — i) edges incident with 3),...,¥%x—i in Top1,Tst2,. .., Toge. If 8 <
t, then p(k — 1) + si + s(k — i) + (t — s)(k — i) < i(k — i), and hence
(p+38)(k—1)+ (t — s)(k — i) < i(k —i). Obviously, there are t — s vertices
Us+1,Vs42,- .-,V € Y \ S;, and therefore by Lemma 3.5, we can find p + s
trees in Ag and t — s trees in A;, such that all these trees are internally
disjoint trees connecting S;. Now let Ay be the set of the p+ s trees in Ao,
A] be the set of the ¢ — s trees in A; and Aj := Ao U {Ty;.;,1 < j < s}.
Then A’ = Aj U A} U A} is just the set we want. The case that s > ¢ is
similar. |

From Lemmas 3.4 and 3.6, we can see that, if A’ is a set of internally
disjoint trees connecting S; which we find currently, X \ V(A) # 0 and
Y \ V(A) # 0, then no matter how many edges there are in E(K, [S;]) \
E(A’), we always add to A’ the trees in A rather than the trees in A4; to
form a larger set of internally disjoint trees connecting S;.

Lemma 3.7. Let A C AgUA)UA3 be a mazimum set of internally disjoint
trees connecting S;, and A= AgU A U Ay. IfV(A) C V(G) and Ag # 0,
then we can find a mazimum set A' = Ay U A} U A} of internally disjoint
trees connecting S;, such that |Ap| = |Ao|—1, |A}| = |A1|+1, and A = A,.

Proof. Let u € V(G)\ V(A) and T € Aq. Without loss of generality,
suppose u € X. Then we can add the edge uy; to T and get a tree T’ € 2.
Using the method in Lemma 3.2, we can transform T” into a tree T of
standard structure. Then T € A;. Let Aj := A4p \ T, A} := A, U {T"}
and A5 = A,. It is easy to see that A’ = AjU A} U A) is a set of internally
disjoint trees connecting S;. Since |Ap| = |4o| — 1, |A}| = |A1] + 1, and
Aj = Aj, A' is a maximum set of internally disjoint trees connecting S;. il

So, we can assume that for the maximum set A of internally disjoint
trees connecting S;, either V(4) = V(G) or A = @. Moreover, if A’
is a set of internally disjoint trees connecting S; which we find currently,
V(A’) C V(G) and the edges in E(K,;[S:]) \ E(A’) can form a tree T in
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Ao, then we will add to A’ the tree 7" in Lemma 3.7 rather than the tree
T to form a larger set of internally disjoint trees connecting S;.
Next, let us state and prove our main result.

Theorem 3.1. Given any two positive integers a < b, let K, denote a
complete bipartite graph with a bipartition of sizes a and b, respectively.
Then we have the following results: if k >b—a+2 and a — b+ k is odd,
then

atb—k+l  (e—b+k-Db-atk-1),

wk(Kap) = 2 a(k-1)

ifk>b—a+2 and a — b+ k is even, then

a+b—k (a—b+k)b—a+k)
2 L 4(k—-1) I

£k (Kap) =

and if k < b—a+2, then
K'k(Ka.b) =a.

Proof. Let X = {z1,%3,...,Z.} and Y = {y1,¥2,..., 3} be the bipartition
of K, As we have mentioned, we can restrict our attention to the k-
element subsets S; = {z1,T2,...,%:, ¥1,¥2,- -, Yk—i} for max{0, k —b} <
i < min{a, k}.

From the above lemmas, we can decide our principle to find the maxi-
mum set of internally disjoint trees connecting S;. Namely, first we find as
many trees in Az as possible, next we find as many trees in A; as possible,
and finally we find as many trees in Ao as possible. Let A be the maxi-
mum set of internally disjoint trees connecting S; we finally find. We now
compute [A].

Case 1. k<b—a+2.

Obviously, k(Sp) = a. For S}, since k < b—a+2, then b— (k~1) =
b—k+1>a—-2+1=a—1.80,|A2l=a—1. Ifb—k+1=0a—1, then
|A1] =0and |Ao| =1. If b—k+1>a—1, then |A4;] =1 and |Ag| = 0.
No matter which case happens, we have £(S)) = |Az| + |A1]| + |4o| = a.

For S;,i > 2,sincek <b—a+2,thenb—(k—i) =b—k+i>a-2+i>
a—i.So, |A2| = a—i. Sinceb—k+i—(a—%) =b—a—k+2i > -2+2i > i,
then |A;| =i and |Ao| = 0. Thus &(S;) = |A2| +|A1]| + |4o| = a.

In summary, if £ < b —a + 2, then £x(G) =a.

Case 2. k>b—a+2.

First, let us compare &(S;) with £(Sk—;), for 0 < i < |£]. Ifa = b,
clearly, x(S;) = k(Sk—:). So we may assume that a < b.

For i =0, k(Sp) = a < b = K(Sk).

For 1 <i < |£], we will give the expressions of «(S;) and &(Sk-i).
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First for S;, since every pair of vertices u € X \ S; and v € Y \ S; can
form a tree Ty, 5, then |A2| = min{a —%,b — (k — ?)}. Namely,

|Ag| = a—1 if 1> a=btk .
2 b—k+4i if i< e=htk

Next, since every tree T' in A; has a vertex in V' \ (S; UV (Az)), we have

b—k+i—(a—i) if i>e=btk,
|AllS{ —i—(b—k+i) if i<e=5tk,

On the other hand, if the tree T has vertex set S; U {u}, where u € X'\ Sj,
then every vertex in S; N X is incident with one edge in E(S;), where E(S;)
denotes the set of edges whose ends are both in S;. And if the tree T has
vertex set S;U{v}, where v € Y'\ S;, then every vertex in S;NY is incident
with one edge in E(S;). Since every vertex in $; N X is incident with k —i
edges in E(S;) and every vertex in S;NY is incident with ¢ edges in E(S;),
we have

if §> a=btk .

i
<
|44] —{ k—i if i< o=btk
Combining the two inequalities, we get

\Ay] = min{b — a — k + 2,4} if i > e=ptk,
U7\ minfa—b+k—2i,k—i} if i <e=ptk

Thus
i if i>2a-b+k;
A1 =¢ b—a—k+2i 1f“—"’-+—<z<a b+k;
a—b+k—2i 1fz<°;"+—-
Finally, by Lemma 3.5 we have

i(k—i)~ A, k=1 if > a—bj:
| Ao| L | if ¢
0 lt!k—t!—lAdtJ lf Z< —b:t

Thus

0 if i>2a—-b+k;
|Ag| = { |L=tbmazke2lod) | 5 °--'L<z<a—b+k

lma_-”_"i-ﬁlkj if i< asbik

Hence

a if i>2a-b+k;
K(S))=< b—k+i+ | = b'“'k"'z’)](k—')j if a=ftk <i<a-b+k;
_z_i_l.lc—s— a—b+k 21)1 if i< “_-éi'_
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Notice that 2 > 1, and hence k —i < k — 1.

If 2=tk < j < g—b-tk, then [E=CmesttBIC—D ) <y (p_q_k42) =
a—b+k—iSo, k(S;)<b—-k+ita-bt+k—i=a.

Ifi < 2=btk thena—b+k—2i >0, k—i—(a—b+k—2) < k—i < k-1,
and hence | k"'(a'b;"k 2| <. So, k(Si) <a—i+i=a

Thus £(S;) < e for i > 1.

Next, considering .S'k_,, similarly, we have |Az| = min{a — (k —1),b—1}.

Sincea < band i < |£] < |'"'| <k-~ithenb—i>a-(k-1i). So
|A2l =a—k+1i and |4,] —mm{b—z— (@ —k +1),k — i}. Hence

A= E-i if i<b—a;
VT 1 b-—a+k-2 ifi>b—a.
Moreover,
Aol = 0 ifi<b-a;
[Ao| = |mizoatk=20li| ¢ S5 g
So,

s _foa . if i<b—a;
I‘&( k—t)’— b_i+|.k—i—(b;fil-k—2t tJ ifisb—a.

Now, we can compare £(S;) with £(Sk—:). For i < b —a, £(Sk—:) = a >
£(S;). For i > b — a, there must be b—a < k— i, that is, i <a — b+ k.
Note that for any two real numbers s,¢t, [s +t] > |s] + [¢].

If“—"z’i'—’? <i<a-—b+k,then

K(Sk—i) — k(S;) = —z+l_[k (bk al-l-k 2i)}i J
SO SEN] SURLLL L) )
> (k_%)"'l(k_m;)c(i;a_k)J
> (k-2 + | E22NH)
So, R(Sk—i) > K«(Si). Ifi< %ﬂ-, then
W(Shs) —K(S) = b—i+ t[k—i_(bk__al+k_2i)]ij
[k—i—(a—b+k—2))
—{a—i+| =) 1}

(28)(a —b)
==

v

(b—a)+



Since i < -“;g-'l'— then 2¢ < k — 1, and hence Qi)éfl;bl > a—b. So,
k(Sk—i) — £(S;) 2 b—a+a—b=0. Thus, K,(Sk_,) > k(S;).

In summary, k(Sk—;) = #&(S;) for 0 < i < |_ j So, in order to get
kx(G), it is enough to consider £(S;) for 0 <i < |_ IE

Next, let us compare £(S;) with £(Si41), for 0 <4 < |£] —1. Fori =0,
K(Si) =a > K(Siy1). For1<i< |k| -1,

a if i2a—-b+k;
I‘C(S.'): b— k-l-'l.-l-[“- b—a-—k+2t)l(k—a)J if -“—'Lt-<1.<a—b+k

a—i+ |-|k-1-!a—_bi|-k 2:":] if i< a“b:t

and
a if i2a-b+k-1;
b—k+i+1 . if e=htk 1<
K(Sign) = { +|EHI=Coahi2E-"D | and i<a—b+k—1;
a—i—1 if i<osftk_1,
+ l. [k=i— 1—(‘1—7:.’:1_21—2)] (tLl)J
S0, K(Sa—b+k) = K(Sa—btk+1) = -+ = K(Smin{a,k})) = &
Ifi< %ﬂ—l, then
K(Si) — k(Si+1) = a—i+ [[k = (ak——b1+ id 21)11] -{a—i-1)
k—i-1—(a—b+k—2—2)(i+1)
L — J
k-1
a—b-2i-1
> 14 @020 504 228 =0

So, £(S;) > &(Si+1). Namely, if a — b+ k is odd, we have x(So) = x(S51) >
cee > n(Sn_..%.k_a) > n(Su_u#_n ); and if @ — b+ k is even, we have x(Sp) >
k(S1) =2 K.(Sa-s;&k-q) > K.(S--a;k-z)

If a—b+k is even, then K(Sazpsr ;) = E*'—'1‘—+1+|_(b"""'k4(2){"*1_"“’_2)_I

and w(Semper) = etp=k 4 | GOSN |, Since (a —b+k)(b—a+k) -
(b—a+k—-2)(a—b+k—2) = (a—b+k)(b—a+k)—[(a—b+k)(b—a+k)—
2(b—a+k)—2(a—b+k—2)] = 4(k—1), we have (Sezpsr_;) = &(Sg_%j-_h_)
a;tb— +1 4 [(b—a+k—1)(c—b+u |

Ifa — b+ k is odd, then n(So-a#_ 1) =
= K(Sa—b*ktl )
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Ife=btk <i<a—-b+k~—1,then

n(S,-.,_l)—n(S,-) = b—k+'l+1
+L[i+1—(b—a—k+2i+2)](k—i—1)J

k-1
o i —a—-k+29))(k-1)
—{b—k+i+]| | Py 1}
> 1+|_(b—a_k2f-1'-21+1)J Zl"‘l.'ll;%]lf.l —0

So, k(Sit+1) = #(S;). Namely, if a — b+ & is odd, we have K(Sn—b%kil) <
N(Sn—bi;kis) < -+ L K(Sa—byk—1) £ @ = K(Sg—ptk), and if a— b+ k is even,
we have K(SE-TM&) < K(Sc-b%kiz) < oo L K(Sa—bik—1) € a = K(Sa—btkr)-

Thus, if k >b—a+2 and a — b+ % is odd,

Ki(Kap) = £(Sazsyeny ) = stbohtl 4| foobtbopCratho) |
andifk>b—a+2and a—b+kiseven,

rx(Kap) = R(Sa___;ﬂ) = ﬂ.g;k +| c-b:k ibl-a+k)J_

The proof is complete. |

Notice that, when & = a + b, the result coincides with Theorem 1.2.
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