The generalized connectivity of complete bipartite graphs*

Shasha Li, Wei Li, Xueliang Li Center for Combinatorics and LPMC-TJKLC Nankai University, Tianjin 300071, China.

Email: lss@cfc.nankai.edu.cn, liwei@cfc.nankai.edu.cn, lxl@nankai.edu.cn

Abstract

Let G be a nontrivial connected graph of order n, and k an integer with $2 \le k \le n$. For a set S of k vertices of G, let $\kappa(S)$ denote the maximum number ℓ of edge-disjoint trees T_1, T_2, \ldots, T_ℓ in G such that $V(T_i) \cap V(T_j) = S$ for every pair i, j of distinct integers with $1 \le i, j \le \ell$. Chartrand et al. generalized the concept of connectivity as follows: The k-connectivity, denoted by $\kappa_k(G)$, of G is defined by $\kappa_k(G) = \min\{\kappa(S)\}$, where the minimum is taken over all k-subsets S of V(G). Thus $\kappa_2(G) = \kappa(G)$, where $\kappa(G)$ is the connectivity of G. Moreover, $\kappa_n(G)$ is the maximum number of edge-disjoint spanning trees of G.

This paper mainly focus on the k-connectivity of complete bipartite graphs $K_{a,b}$, where $1 \leq a \leq b$. First, we obtain the number of edge-disjoint spanning trees of $K_{a,b}$, which is $\lfloor \frac{ab}{a+b-1} \rfloor$, and specifically give the $\lfloor \frac{ab}{a+b-1} \rfloor$ edge-disjoint spanning trees. Then, based on this result, we get the k-connectivity of $K_{a,b}$ for all $2 \leq k \leq a+b$. Namely, if k > b-a+2 and a-b+k is odd then $\kappa_k(K_{a,b}) = \frac{a+b-k+1}{2} + \lfloor \frac{(a-b+k-1)(b-a+k-1)}{4(k-1)} \rfloor$, if k > b-a+2 and a-b+k is even then $\kappa_k(K_{a,b}) = \frac{a+b-k}{2} + \lfloor \frac{(a-b+k)(b-a+k)}{4(k-1)} \rfloor$, and if $k \leq b-a+2$ then $\kappa_k(K_{a,b}) = a$.

Keywords: k-connectivity, complete bipartite graph, edge-disjoint spanning trees

AMS Subject Classification 2010: 05C40, 05C05.

^{*}Supported by NSFC No. 11071130.

1 Introduction

We follow the terminology and notation of [1]. As usual, denote by $K_{a,b}$ the complete bipartite graph with bipartition of sizes a and b. The connectivity $\kappa(G)$ of a graph G is defined as the minimum cardinality of a set G of vertices of G such that G-G is disconnected or trivial. A well-known theorem of Whitney [4] provides an equivalent definition of the connectivity. For each 2-subset $S = \{u, v\}$ of vertices of G, let $\kappa(S)$ denote the maximum number of internally disjoint uv-paths in G. Then $\kappa(G) = \min\{\kappa(S)\}$, where the minimum is taken over all 2-subsets S of V(G).

In [2], the authors generalized the concept of connectivity. Let G be a nontrivial connected graph of order n, and k an integer with $2 \le k \le n$. For a set S of k vertices of G, let $\kappa(S)$ denote the maximum number ℓ of edge-disjoint trees T_1, T_2, \ldots, T_ℓ in G such that $V(T_i) \cap V(T_j) = S$ for every pair i, j of distinct integers with $1 \le i, j \le \ell$ (Note that the trees are vertex-disjoint in $G \setminus S$). A collection $\{T_1, T_2, \ldots, T_\ell\}$ of trees in G with this property is called an internally disjoint set of trees connecting S. The k-connectivity, denoted by $\kappa_k(G)$, of G is then defined as $\kappa_k(G) = \min\{\kappa(S)\}$, where the minimum is taken over all k-subsets S of V(G). Thus, $\kappa_2(G) = \kappa(G)$ and $\kappa_n(G)$ is the maximum number of edge-disjoint spanning trees of G.

In [3], the authors focused on the investigation of $\kappa_3(G)$ and mainly studied the relationship between the 2-connectivity and the 3-connectivity of a graph. They gave sharp upper and lower bounds for $\kappa_3(G)$ for general graphs G, and showed that if G is a connected planar graph, then $\kappa(G)-1 \le \kappa_3(G) \le \kappa(G)$. Moreover, they studied the algorithmic aspects for $\kappa_3(G)$ and gave an algorithm to determine $\kappa_3(G)$ for a general graph G.

Chartrand et al. in [2] proved that if G is the complete 3-partite graph $K_{3,4,5}$, then $\kappa_3(G)=6$. They also gave a general result for the complete graph K_n :

Theorem 1.1. For every two integers n and k with $2 \le k \le n$,

$$\kappa_k(K_n) = n - \lceil k/2 \rceil.$$

Okamoto and Zhang in [5] investigated the generalized connectivity for regular complete bipartite graphs $K_{a,a}$. In this paper, we consider this connectivity for general complete bipartite graphs $K_{a,b}$. First, we give the number of edge-disjoint spanning trees of $K_{a,b}$, namely $\kappa_{a+b}(K_{a,b})$.

Theorem 1.2. For any two integers a and b,

$$\kappa_{a+b}(K_{a,b}) = \lfloor \frac{ab}{a+b-1} \rfloor.$$

Actually, we specifically give the $\lfloor \frac{ab}{a+b-1} \rfloor$ edge-disjoint spanning trees of $K_{a,b}$. Then based on Theorem 1.2, we obtain the k-connectivity of $K_{a,b}$ for all $2 \le k \le a+b$.

2 Proof of Theorem 1.2

Without loss of generality, we may assume that $a \leq b$. Since $K_{a,b}$ contains ab edges and a spanning tree needs a+b-1 edges, the number of edge-disjoint spanning trees of $K_{a,b}$ is at most $\lfloor \frac{ab}{a+b-1} \rfloor$, namely, $\kappa_{a+b}(K_{a,b}) \leq \lfloor \frac{ab}{a+b-1} \rfloor$. Thus, it suffices to prove that $\kappa_{a+b}(K_{a,b}) \geq \lfloor \frac{ab}{a+b-1} \rfloor$. To this end, we want to find out all the $\lfloor \frac{ab}{a+b-1} \rfloor$ edge-disjoint spanning trees. $K_{1,b}$ is a star which has exactly $\lfloor \frac{ab}{a+b-1} \rfloor = 1$ spanning tree. So we can restrict our attention to $K_{a,b}$ for $a \geq 2$. Hence, $\lfloor \frac{ab}{a+b-1} \rfloor < a$. Let $X = \{x_1, x_2, \ldots, x_a\}$ and $Y = \{y_1, y_2, \ldots, y_b\}$ be the bipartition of $K_{a,b}$.

We can describe a spanning tree in $K_{a,b}$ by giving the set of neighbors of x_j for $1 \le j \le a$. Now we give the first spanning tree T_1 we find:

vertex	neighbors	degree
$\overline{x_1}$	$y_1, y_2, \ldots, y_{d_1}$	d_1
x_2	$y_{d_1}, y_{d_1+1}, \ldots, y_{d_1+d_2-1}$	d_2
x_3	$y_{d_1+d_2-1}, y_{d_1+d_2}, \ldots, y_{d_1+d_2+d_3-2}$	d_3
• • •		
x_{j}	$y_{d_1+d_2+\cdots+d_{j-1}-(j-2)}, \ldots, y_{d_1+d_2+\cdots+d_{j}-(j-1)}$	d_j
• • •	•••	
x_a	$y_{d_1+d_2+\cdots+d_{a-1}-(a-2)}, \cdots, y_{d_1+d_2+\cdots+d_a-(a-1)}$	d_a

where d_j denotes the degree of x_j in T_1 , and $d_1 + d_2 + \cdots + d_a = a + b - 1$.

To simplify the subscript, we denote $i_0 = 1$, $i_1 = d_1$, $i_2 = d_1 + d_2 - 1$, ..., $i_j = d_1 + d_2 + \cdots + d_j - (j-1), \ldots, i_a = d_1 + d_2 + \cdots + d_a - (a-1) = b$. Note that, $i_j - i_{j-1} = d_j - 1$. So in T_1 , the set of neighbors of x_j is $\{y_{i_{j-1}}, y_{i_{j-1}+1}, \ldots, y_{i_j}\}$ for $1 \le j \le a$.

Here and in what follows, the subscript j of $y_j \in Y$ is expressed modulo b as one of 1, 2, ..., b. The subscript $j \neq 0$ of i_j is expressed modulo a as one of 1, 2, ..., a. And the subscript j of d_j is expressed modulo a as one of 1, 2, ..., a.

Then we can describe the second spanning tree T_2 we find. In T_2 , the set of neighbors of x_j is $\{y_{i_j+1}, y_{i_j+2}, \ldots, y_{i_{j+1}+1}\}$ for $1 \leq j \leq a-1$ and the set of neighbors of x_a is $\{y_{i_a+1}, y_{i_a+2}, \ldots, y_{i_{a+1}}\}$. Note that $y_{i_a+1} = y_1$. Therefore $d_{T_2}(x_j) = i_{j+1} - i_j + 1 = d_{j+1}$ for $1 \leq j \leq a-1$ and $d_{T_2}(x_a) = i_{a+1} - 1 + 1 = d_1$.

We can see that T_2 and T_1 are edge-disjoint, if and only if for every vertex x_j , $d_j+d_{j+1} \leq b$. If T_2 and T_1 are edge-disjoint, then we continue to find T_3 . In T_3 , the set of neighbors of x_j is $\{y_{i_{j+1}+2}, y_{i_{j+1}+3}, \ldots, y_{i_{j+2}+2}\}$ for $1 \leq j \leq a-2$, the set of neighbors of x_{a-1} is $\{y_{i_a+2}, y_{i_a+3}, \ldots, y_{i_{a+1}+1}\}$

and the set of neighbors of x_a is $\{y_{i_{a+1}+1}, y_{i_{a+1}+2}, \ldots, y_{i_{a+2}+1}\}$. Note that $y_{i_a+2} = y_2$. Therefore $d_{T_3}(x_j) = i_{j+2} - i_{j+1} + 1 = d_{j+2}$ for $1 \le j \le a-2$, $d_{T_3}(x_{a-1}) = i_{a+1} + 1 - 2 + 1 = d_1$ and $d_{T_3}(x_a) = i_{a+2} - i_{a+1} + 1 = i_2 - i_1 + 1 = d_2$.

We can see that T_3 and T_1 , T_2 are edge-disjoint, if and only if for every vertex x_j , $d_j + d_{j+1} + d_{j+2} \le b$. If T_3 and T_1 , T_2 are edge-disjoint, then we continue to find T_4 . Continuing the procedure, our goal is to find the maximum l, such that T_l and $T_1, T_2, \ldots, T_{l-1}$ are edge-disjoint. In T_l , the set of neighbors of x_j is $\{y_{i_{j+l-2}+(l-1)}, y_{i_{j+l-2}+l}, \ldots, y_{i_{j+l-1}+(l-1)}\}$ for $1 \le j \le a - l+1$, the set of neighbors of x_{a-l+2} is $\{y_{i_{a}+(l-1)}, y_{i_{a}+l}, \ldots, y_{i_{a+1}+(l-2)}\}$ and the set of neighbors of x_j is $\{y_{i_{j+l-2}+(l-2)}, y_{i_{j+l-2}+(l-1)}, \ldots, y_{i_{j+l-1}+(l-2)}\}$ for $a-l+3 \le j \le a$. Note that $y_{i_a+(l-1)} = y_{l-1}$. Therefore $d_{T_l}(x_j) = i_{j+l-1} - i_{j+l-2} + 1 = d_{j+l-1}$ for $1 \le j \le a - l + 1$, $d_{T_l}(x_{a-l+2}) = i_{a+1} + (l-2) - (l-1) + 1 = d_1$ and $d_{T_l}(x_j) = i_{j+l-1} - i_{j+l-2} + 1 = i_{j+l-1-a} - i_{j+l-2-a} + 1 = d_{j+l-1-a}$, for $a-l+3 \le j \le a$. That is, we want to find the maximum l, such that $d_j + d_{j+1} + \cdots + d_{j+l-1} \le b$ for any $1 \le j \le a$.

Let $D_j^t = d_j + d_{j+1} + \cdots + d_{j+t-1}$. It can be observed that $D_j^t = D_{j+1}^t$ if and only if $d_j = d_{j+t}$. We will show that for any fixed integer t, $1 \le t < a$, by assigning appropriate values to d_j , we can make $|D_i^t - D_j^t| \le 1$ for any integers $1 \le i, j \le a$. We describe the method for assigning values to d_j and prove its validity for two cases. Consider the numbers $1, t+1, 2t+1, \ldots, (a-1)t+1$, where addition is performed modulo a.

Case 1. $1, t+1, 2t+1, \ldots, (a-1)t+1$ are pairwise distinct.

Then we can assign the values to d_j as follows: Let a+b-1=ka+c, where k,c are integers, and $0 \le c \le a-1$. Then a+b-1=(k+1)c+k(a-c). If c=0, let $d_j=k$ for all $1 \le j \le a$. If c>0, let $d_{(i-1)t+1}=k+1$ for all $1 \le i \le c$, and let the other $d_j=k$.

If c = 0, $d_j = k$ for all $1 \le j \le a$. Then $D_i^t = D_j^t$ for any integers $1 \le i, j \le a$.

If c > 0, we construct a weighted cycle: $C = x_1 x_{t+1} x_{2t+1} \dots x_{(a-1)t+1} x_1$ and $w(x_{(i-1)t+1}) = d_{(i-1)t+1}$ for $1 \le i \le a$. According to the assignment, we have $w(x_1) = w(x_{t+1}) = \dots = w(x_{(c-1)t+1}) = k+1$ and $w(x_{ct+1}) = w(x_{(c+1)t+1}) = \dots = w(x_{(a-1)t+1}) = k$.

Since $D_i^t = D_{i+1}^t$ if and only if $d_i = d_{i+t}$, then $D_{(i-1)t+1}^t = D_{(i-1)t+1+1}^t$ if and only if $w(x_{(i-1)t+1}) = w(x_{it+1})$. Similarly, $D_{(i-1)t+1}^t = D_{(i-1)t+1+1}^t + 1$ if and only if $w(x_{(i-1)t+1}) = w(x_{it+1}) + 1$, and $D_{(i-1)t+1}^t = D_{(i-1)t+1+1}^t - 1$ if and only if $w(x_{(i-1)t+1}) = w(x_{it+1}) - 1$. We know that $w(x_{(c-1)t+1}) = w(x_{it+1}) + 1$, $w(x_{(a-1)t+1}) = w(x_1) - 1$, and $w(x_{(i-1)t+1}) = w(x_{it+1})$ for $1 \le i \le a - 1$ and $i \ne c$. For simplicity, let $(c-1)t + 1 = \alpha \pmod{a}$, $(a-1)t + 1 = \beta \pmod{a}$. Therefore we can get $D_{\alpha}^t = D_{\alpha+1}^t + 1$, $D_{\beta}^t = D_{\beta+1}^t - 1$ and $D_{(i-1)t+1} = D_{(i-1)t+1+1}$, for $1 \le i \le a - 1$ and $i \ne c$, namely,

if $\alpha < \beta$, then $D_1^t = D_2^t = \cdots = D_{\alpha}^t = D_{\alpha+1}^t + 1 = D_{\alpha+2}^t + 1 = \cdots = D_{\beta}^t + 1 = D_{\beta+1}^t = D_{\beta+2}^t = \cdots = D_a^t$; if $\alpha > \beta$, then $D_1^t = D_2^t = \cdots = D_{\beta}^t = D_{\beta+1}^t - 1 = D_{\beta+2}^t - 1 = \cdots = D_{\alpha}^t - 1 = D_{\alpha+1}^t = D_{\alpha+2}^t = \cdots = D_a^t$.

We have $|D_i^t - D_i^t| \le 1$ for any integers $1 \le i, j \le a$.

Case 2. Some of the numbers $1, t+1, 2t+1, \ldots, (a-1)t+1$ are equal. Suppose that $it+1=jt+1 \pmod a$ such that $0 \le i < j \le a-1$ and $1, t+1, 2t+1, \ldots, (j-1)t+1$ are pairwise distinct integers (in \mathbb{Z}_a). We claim that i=0. Otherwise $(j-i)t+1=1 \pmod a$ and $0 < j-i \le j-1$, a contradiction. Then $1 \le j \le a-1$.

Claim 1. $it + 1 \neq 2 \pmod{a}$ for any integer i.

If $it+1=2 \pmod a$, then we have $it=1 \pmod a$. Thus $\lambda it+1=\lambda+1 \pmod a$ for any integer λ . So $jit+1=j+1 \pmod a$. Since $1\leq j\leq a-1,\ 2\leq j+1\leq a$. On the other hand $jt+1=1 \pmod a$, namely $jit+1=1 \pmod a$, a contradiction. Thus, $it+1\neq 2 \pmod a$ for any integer i.

Claim 2. $2, t+2, 2t+2, \ldots, (j-1)t+2$ are pairwise distinct.

If $j_1t + 2 = j_2t + 2 \pmod{a}$, where $0 \le j_1 < j_2 \le j - 1$, then $j_1t + 1 = j_2t + 1 \pmod{a}$. But $1, t + 1, 2t + 1, \ldots, (j - 1)t + 1$ are pairwise distinct, a contradiction.

Claim 3. $\{1, t+1, 2t+1, \dots, (j-1)t+1\} \cap \{2, t+2, 2t+2, \dots, (j-1)t+2\} = \emptyset$.

If $i_1t+1=i_2t+2 \pmod a$, then $(i_1-i_2)t+1=2 \pmod a$. But $it+1\neq 2 \pmod a$ for any integer i, a contradiction by Claim 1. Thus, $1,t+1,2t+1,\ldots,(j-1)t+1,2,t+2,2t+2,\ldots,(j-1)t+2$ are pairwise distinct.

Now, if $2 = \frac{a}{j}$, then we order $1, \ldots, a$ by $1, t+1, 2t+1, \ldots, (j-1)t+1, 2, t+2, 2t+2, \ldots, (j-1)t+2$. If $2 < \frac{a}{j}$, we will prove that $1+it \neq 3 \pmod{a}$ and $2+it \neq 3 \pmod{a}$ for any integer i.

Claim 4. If $2 < \frac{a}{j}$, then $1 + it \neq 3 \pmod{a}$ and $2 + it \neq 3 \pmod{a}$ for any integer i.

If $2+it=3 \pmod a$, then $1+it=2 \pmod a$, a contradiction by Claim 1. If $1+it=3 \pmod a$, then we have $it=2 \pmod a$. Thus $\lambda it+1=2\lambda+1 \pmod a$ for any integer λ . So $jit+1=2j+1 \pmod a$. Since $2\leq 2j< a$, $3\leq 2j+1\leq a$. On the other hand $jt+1=1 \pmod a$, namely $jit+1=1 \pmod a$, a contradiction. Hence, if $2<\frac{a}{j}$, then $1+it\neq 3 \pmod a$ and $2+it\neq 3 \pmod a$ for any integer i.

If $3 = \frac{a}{j}$, then we order 1, ..., a by $1, t+1, 2t+1, \ldots, (j-1)t+1, 2, t+2, 2t+2, \ldots, (j-1)t+2, 3, t+3, 2t+3, \ldots, (j-1)t+3$. If $3 < \frac{a}{j}$, then continue the similar discussion until we reach some integer $s = \frac{d}{j}$. Similarly, we can prove that $p+it \neq q \pmod{a}$ for $1 \leq p < q \leq s$. Thus we can get the following claim:

Claim 5. $1, t+1, 2t+1, \ldots, (j-1)t+1, 2, t+2, 2t+2, \ldots, (j-1)t+1$

 $2, \ldots, s, t+s, 2t+s, \ldots, (j-1)t+s$ are pairwise distinct. And hence $\{1, t+1, 2t+1, \ldots, (j-1)t+1\} \cup \{2, t+2, 2t+2, \ldots, (j-1)t+2\} \cup \cdots \cup \{\frac{a}{i}, t+\frac{a}{i}, 2t+\frac{a}{i}, \ldots, (j-1)t+\frac{a}{i}\} = \{1, 2, \ldots, a\}.$

The proof is similar to those of Claims 2, 3 and 4. Then we order $1, 2, \ldots, a$ by $1, t+1, 2t+1, \ldots, (j-1)t+1, 2, t+2, 2t+2, \ldots, (j-1)t+2, \ldots, s, t+s, 2t+s, \ldots, (j-1)t+s$. Now, we can assign the values of d_j as follows:

Let a+b-1=ka+c, where k, c are integers, and $0 \le c \le a-1$. Then a+b-1=(k+1)c+k(a-c). In the case that c=0, let $d_j=k$ for all $1 \le j \le a$. In the case that c>0 for the first c numbers of our ordering, if d_j uses one of them as subscript, then $d_j=k+1$, else $d_j=k$.

Next, we will show that $|D_i^t - D_j^t| \le 1$ for any integers $1 \le i, j \le a$.

If c = 0, $d_j = k$ for all $1 \le j \le a$. Then $D_i^t = D_j^t$ for any integers $1 \le i, j \le a$.

If c>0, we construct s weighted cycles: $C_i=x_ix_{t+i}\dots x_{(j-1)t+i}x_i,$ $1\leq i\leq s$, and $w(x_{(p-1)t+i})=d_{(p-1)t+i},$ $1\leq p\leq j$. Since $D_i^t=D_{i+1}^t$ if and only if $d_i=d_{i+t}$, then $D_{(p-1)t+i}^t=D_{(p-1)t+i+1}^t$ if and only if $w(x_{(p-1)t+i})=w(x_{pt+i})$. By the assignment, there is at most one cycle in which the vertices have two distinct weights. If such cycle does not exist, clearly, we have $D_{(p-1)t+i}^t=D_{(p-1)t+i+1}^t$ for all $1\leq i\leq s$ and $1\leq p\leq j$, namely, $D_1^t=D_2^t=\dots=D_a^t$. So we may assume that for some cycle C_r , $w(x_{(\gamma-1)t+r})=w(x_{\gamma t+r})+1$ and $w(x_{(j-1)t+r})=w(x_r)-1$. Similar to the proof of Case 1, we can get that $|D_i^t-D_j^t|\leq 1$ for any integers $1\leq i,j\leq a$.

Then, we can show that, with the assignment we can get $l \ge \lfloor \frac{ab}{a+b-1} \rfloor$.

Let $t' = \lfloor \frac{ab}{a+b-1} \rfloor < a$. We have $D_1^{t'} + D_2^{t'} + \cdots + D_a^{t'} = (d_1 + d_2 + \cdots + d_{t'}) + (d_2 + d_3 + \cdots + d_{t'+1}) + \cdots + (d_a + d_1 + \cdots + d_{t'-1}) = t'(d_1 + d_2 + \cdots + d_a) = t'(a+b-1)$.

Since for fixed $t' = \lfloor \frac{ab}{a+b-1} \rfloor$, $\mid D_i^{t'} - D_j^{t'} \mid \leq 1$ for any integers $1 \leq i, j \leq a$, $D_j^{t'} \leq \lceil \frac{t'(a+b-1)}{a} \rceil < \frac{t'(a+b-1)}{a} + 1 \leq \frac{ab}{a+b-1} \frac{a+b-1}{a} + 1 = b+1.$

The third inequality holds since $t' = \lfloor \frac{ab}{a+b-1} \rfloor \leq \frac{ab}{a+b-1}$. Since $D_j^{t'}$ is an integer, we have $D_j^{t'} \leq b$ for all $1 \leq j \leq a$. Since l is the maximum integer such that $D_j^l = d_j + d_{j+1} + \cdots + d_{j+l-1} \leq b$ for any $1 \leq j \leq a$, then $l \geq t' = \lfloor \frac{ab}{a+b-1} \rfloor$. So we can find at least $\lfloor \frac{ab}{a+b-1} \rfloor$ edge-disjoint spanning trees of $K_{a,b}$. And hence $\kappa_{a+b}(K_{a,b}) \geq \lfloor \frac{ab}{a+b-1} \rfloor$. So we have proved that $\kappa_{a+b}(K_{a,b}) = \lfloor \frac{ab}{a+b-1} \rfloor$.

3 Main result

Next, we will calculate $\kappa_k(K_{a,b})$ for $2 \le k \le a + b$.

Recall that $\kappa_k(G) = \min\{\kappa(S)\}$, where the minimum is taken over all k-element subsets S of V(G). $X = \{x_1, x_2, \ldots, x_a\}$ and $Y = \{y_1, y_2, \ldots, y_b\}$ be the bipartition of $K_{a,b}$. Actually, all vertices in X are equivalent and all vertices in Y are equivalent. So instead of considering all k-element subsets S of V(G), we can restrict our attention to the k-element subsets $S_i = \{x_1, x_2, \ldots, x_i, y_1, y_2, \ldots, y_{k-i}\}$ for $0 \le i \le k$. Notice that, if i > a or k - i > b, then S_i does not exist. So, we need only to consider S_i for $\max\{0, k - b\} \le i \le \min\{a, k\}$.

Now, let A be a maximum set of internally disjoint trees connecting S_i . Let \mathfrak{A}_0 be the set of trees connecting S_i whose vertex set is S_i , let \mathfrak{A}_1 be the set of trees connecting S_i whose vertex set is $S_i \cup \{u\}$, where $u \notin S_i$ and let \mathfrak{A}_2 be the set of trees connecting S_i whose vertex set is $S_i \cup \{u, v\}$, where $u, v \notin S_i$ and they belong to distinct partitions.

Lemma 3.1. Let A be a maximum set of internally disjoint trees connecting S_i . Then we can always find a set A' of internally disjoint trees connecting S_i , such that |A| = |A'| and $A' \subset \mathfrak{A}_0 \cup \mathfrak{A}_1 \cup \mathfrak{A}_2$.

Proof. Let $A = \{T_1, T_2, \dots, T_p\}$. If for some tree T_j in $A, T_j \notin \mathfrak{A}_0 \cup \mathfrak{A}_1 \cup \mathfrak{A}_2$, then let $V(T_i) = S_i \cup U \cup V$, where $(U \cup V) \cap S_i = \emptyset$, $U \subseteq X$ and $V \subseteq Y$. One of U and V can be empty but not both. If U and V are not empty, let $u_1 \in U$ and $v_1 \in V$. The tree T_i' with vertex set $V(T_i') = S_i \cup \{u_1, v_1\}$ and edge set $E(T'_{i}) = \{u_{1}y_{1}, \dots, u_{1}y_{k-i}, v_{1}x_{1}, \dots, v_{1}x_{i}, u_{1}v_{1}\}$ is a tree in $\mathfrak{A}_0 \cup \mathfrak{A}_1 \cup \mathfrak{A}_2$. Since $V(T_i) \cap V(T_k) = S_i$ and $E(T_i) \cap E(T_k) = \emptyset$ for every tree $T_k \in A$, where $k \neq j$, T_k will not contain u_1, v_1 nor the edges incident with u_1, v_1 . Therefore, $V(T'_i) \cap V(T_k) = S_i$ and $E(T'_i) \cap E(T_k) = \emptyset$ for $1 \le k \le p, k \ne j$. If one of U and V is empty, say V, let U = $\{u_1, u_2, \ldots, u_q\}$. Then we connect all neighbors of u_2, \ldots, u_q to u_1 by some new edges and delete u_2, \ldots, u_q and any resulting multiple edges. Obviously, the new graph we obtain is a tree $T_i \in \mathfrak{A}_0 \cup \mathfrak{A}_1 \cup \mathfrak{A}_2$ that connects S_i . For every tree $T_k \in A$, where $k \neq j$, T_k will not contain u_1 nor the edges incident with u_1 . Therefore, $V(T_i') \cap V(T_k) = S_i$ and $E(T_i') \cap E(T_k) = \emptyset$ for $1 \leq k \leq p, k \neq j$. Replacing each $T_i \notin \mathfrak{A}_0 \cup \mathfrak{A}_1 \cup \mathfrak{A}_2$ by T_i' , we finally get the set $A' \subset \mathfrak{A}_0 \cup \mathfrak{A}_1 \cup \mathfrak{A}_2$ which has the same cardinality as A.

So, we can assume that the maximum set A of internally disjoint trees connecting S_i is contained in $\mathfrak{A}_0 \cup \mathfrak{A}_1 \cup \mathfrak{A}_2$.

Next, we will define the standard structure of trees in \mathfrak{A}_0 , \mathfrak{A}_1 and \mathfrak{A}_2 , respectively.

Every tree in \mathfrak{A}_0 is of standard structure. A tree T in \mathfrak{A}_1 with vertex set $V(T) = S_i \cup \{u\}$, where $u \in X \setminus S_i$, is of standard structure, if u is adjacent to every vertex in $S_i \cap Y$. Since |E(T)| = |V(T)| - 1 = k and $d_T(u) = |S_i \cap Y| = k - i$, there remains i edges incident with $S_i \cap X$. We know that $|S_i \cap X| = i$ and each vertex must have degree at least 1 in T.

So every vertex in $S_i \cap X$ has degree 1. A tree T in \mathfrak{A}_1 with vertex set $V(T) = S_i \cup \{v\}$, where $v \in Y \setminus S_i$, is of standard structure, if v is adjacent to every vertex in $S_i \cap X$. Similarly, every vertex in $S_i \cap Y$ has degree 1. A tree T in \mathfrak{A}_2 with vertex set $V(T) = S_i \cup \{u, v\}$, where $u \in X \setminus S_i$ and $v \in Y \setminus S_i$, is of standard structure, if u is adjacent to every vertex in $S_i \cap Y$, v is adjacent to every vertex in $S_i \cap X$, and u is adjacent to v. We then denote the resulting tree T by $T_{u,v}$. Denote the set of trees in \mathfrak{A}_0 , \mathfrak{A}_1 and \mathfrak{A}_2 , respectively. Clearly, $\mathfrak{A}_0 = \mathfrak{A}_0$.

Lemma 3.2. Let A be a maximum set of internally disjoint trees connecting S_i , $A \subset \mathfrak{A}_0 \cup \mathfrak{A}_1 \cup \mathfrak{A}_2$. Then we can always find a set A'' of internally disjoint trees connecting S_i , such that |A| = |A''| and $A'' \subset A_0 \cup A_1 \cup A_2$.

Proof. Let $A = \{T_1, T_2, \dots, T_p\}$. Suppose that there is a tree T_j in A such that $T_j \in \mathfrak{A}_1$, but $T_j \notin \mathcal{A}_1$. Let $V(T_j) = S_i \cup \{u\}$, where $u \in X \setminus S_i$. Note that the case $u \in Y \setminus S_i$ is similar. Since $T_j \notin A_1$, there are some vertices in $S_i \cap Y$, say y_{i_1}, \ldots, y_{i_t} , not adjacent to u. Then we can connect y_{i_1} to u by a new edge. It will produce a unique cycle. Delete the other edge incident with y_i , on the cycle. The graph remains a tree. Do the same operation to y_{i_2}, \ldots, y_{i_t} in turn. Finally we get a tree T_i' whose vertex set is $S_i \cup \{u\}$ and u is adjacent to every vertex in $S_i \cap Y$, that is, T is of standard structure. For each tree $T_n \in A \setminus \{T_j\}$, clearly T_n does not contain u nor the edges incident with u. So $V(T_i) \cap V(T_n) = S_i$ and $E(T_i) \cap E(T_n) = \emptyset$. Suppose that there is a tree T_i in A such that $T_i \in \mathfrak{A}_2$, but $T_i \notin A_2$. Let $V(T_i) = S_i \cup \{u, v\}$, where $u \in X \setminus S_i$ and $v \in Y \setminus S_i$. Then $T'_i = T_{u,v}$ is the tree in A_2 whose vertex set is $S_i \cup \{u,v\}$. For each tree $T_n \in A \setminus \{T_j\}, V(T_j') \cap V(T_n) = S_i$ and $E(T_j') \cap E(T_n) = \emptyset$. Replacing each $T_j \notin A_0 \cup A_1 \cup A_2$ by T_j' , we finally get the set $A'' \subset A_0 \cup A_1 \cup A_2$ which has the same cardinality as A.

So, we can assume that the maximum set A of internally disjoint trees connecting S_i is contained in $A_0 \cup A_1 \cup A_2$. Namely, all trees in A are of standard structure.

For simplicity, we denote the union of the vertex sets of all trees in set A by V(A) and the union of the edge sets of all trees in set A by E(A). Let $A_0 := A \cap A_0$, $A_1 := A \cap A_1$ and $A_2 := A \cap A_2$. Then $A = A_0 \cup A_1 \cup A_2$.

Lemma 3.3. Let $A \subset A_0 \cup A_1 \cup A_2$ be a maximum set of internally disjoint trees connecting S_i . Then either $X \subseteq V(A)$ or $Y \subseteq V(A)$.

Proof. If $X \nsubseteq V(A)$ and $Y \nsubseteq V(A)$, let $x \in X \setminus V(A)$ and $y \in Y \setminus V(A)$. Then the tree $T_{x, y} \in A_2$ with vertex set $S_i \cup \{x, y\}$ is a tree that connects S_i . Moreover, $V(T_{x, y}) \cap V(A) = S_i$ and since all edges of $T_{x, y}$ are incident with x or y, so $T_{x, y}$ and T are edge-disjoint for any tree $T \in A$. So, $A \cup \{T_{x, y}\}$

is also a set of internally disjoint trees connecting S_i , contradicting to the maximality of A.

So we conclude that if A is a maximum set of internally disjoint trees connecting S_i , then $X \subseteq V(A)$ or $Y \subseteq V(A)$.

Lemma 3.4. Let $A \subset A_0 \cup A_1 \cup A_2$ be a maximum set of internally disjoint trees connecting S_i , and $A = A_0 \cup A_1 \cup A_2$. If there is a vertex $x \in X \setminus V(A)$ and a tree $T \in A_1$ with vertex set $S_i \cup \{y\}$, where $y \in Y \setminus S_i$, then we can find a maximum set $A' = A'_0 \cup A'_1 \cup A'_2$ of internally disjoint trees connecting S_i , such that $A'_0 = A_0$, $|A'_1| = |A_1| - 1$, and $|A'_2| = |A_2| + 1$.

Proof. Let $T_{x,y}$ be the tree in A_2 whose vertex set is $S_i \cup \{x,y\}$. Then $A' = A \setminus T \cup \{T_{x,y}\}$ is just the set we want.

The case that there is a vertex $y \in Y \setminus V(A)$ and a tree $T \in A_1$ with vertex set $S_i \cup \{x\}$, where $x \in X \setminus S_i$, is similar.

Next, we will show that we can always find a maximum set A of internally disjoint trees connecting S_i , such that all vertices in $V(A_1) \setminus S_i$ belong to the same partition. To show this, we need the following lemma.

Lemma 3.5. Let p, q be two nonnegative integers. If $p(k-1)+qi \leq i(k-i)$, and there are q vertices $u_1, u_2, \ldots, u_q \in X \setminus S_i$, then we can always find p trees T_1, T_2, \ldots, T_p in A_0 and q trees $T_{p+1}, T_{p+2}, \ldots, T_{p+q}$ in A_1 , such that $V(T_j) = S_i$ for $1 \leq j \leq p$, $V(T_{p+m}) = S_i \cup \{u_m\}$ for $1 \leq m \leq q$, and T_r and T_s are edge-disjoint for $1 \leq r < s \leq p+q$. Similarly, if $p(k-1)+q(k-i) \leq i(k-i)$, and there are q vertices $v_1, v_2, \ldots, v_q \in Y \setminus S_i$, then we can always find p trees T_1, T_2, \ldots, T_p in A_0 and q trees $T_{p+1}, T_{p+2}, \ldots, T_{p+q}$ in A_1 , such that $V(T_j) = S_i$ for $1 \leq j \leq p$, $V(T_{p+m}) = S_i \cup \{v_m\}$ for $1 \leq m \leq q$, and T_r and T_s are edge-disjoint for $1 \leq r < s \leq p+q$.

Proof. If $p(k-1)+qi \leq i(k-i)$, then $p(k-1) \leq i(k-i)$, namely $p \leq \lfloor \frac{i(k-i)}{k-1} \rfloor$. Then with the method which we used to find edge-disjoint spanning trees in the proof of Theorem 1.2, we can find p edge-disjoint trees T_1, T_2, \ldots, T_p in A_0 , just by taking a=i, b=k-i and t=p. Moreover, let D^p_s denote the number of edges incident with x_s in all of the p trees. Then according to the method, $|D^p_s - D^p_t| \leq 1$ for $1 \leq s, t \leq i$. Now, denote by B^p_s the number of edges incident with x_s which we have not used in the p trees. Then $|B^p_s - B^p_t| \leq 1$ for $1 \leq s, t \leq i$. Since $B^p_1 + B^p_2 + \cdots + B^p_i = i(k-i) - p(k-1) \geq qi, B^p_s \geq q$. Because for each tree in A_1 with vertex set $S_i \cup \{u\}$, where $u \in X \setminus S_i$, the vertices in $S_i \cap X$ all have degree 1, we can find q edge-disjoint trees $T_{p+1}, T_{p+2}, \ldots, T_{p+q}$ in A_1 . Since the edges in $T_{p+1}, T_{p+2}, \ldots, T_{p+q}$ are not used in T_1, T_2, \ldots, T_p for $1 \leq r < s \leq p+q$, T_r and T_s are edge-disjoint. The proof of the second part of the lemma is similar.

Lemma 3.6. Let $A \subset A_0 \cup A_1 \cup A_2$ be a maximum set of internally disjoint trees connecting S_i , and $A = A_0 \cup A_1 \cup A_2$. If there are s trees $T_1, T_2, \ldots, T_s \in A_1$ with vertex set $S_i \cup \{u_1\}$, $S_i \cup \{u_2\}$, ..., $S_i \cup \{u_s\}$ respectively, where $u_j \in X \setminus S_i$ for $1 \leq j \leq s$, and t trees $T_{s+1}, T_{s+2}, \ldots, T_{s+t} \in A_1$ with vertex set $S_i \cup \{v_1\}$, $S_i \cup \{v_2\}$, ..., $S_i \cup \{v_t\}$ respectively, where $v_j \in Y \setminus S_i$ for $1 \leq j \leq t$. Then we can find a set $A' = A'_0 \cup A'_1 \cup A'_2$ of internally disjoint trees connecting S_i , such that |A| = |A'| and all vertices in $V(A'_1) \setminus S_i$ belong to the same partition.

Proof. Let $|A_0| = p$. Since A is a set of internally disjoint trees connecting S_i , we have $p(k-1) + si + t(k-i) \le i(k-i)$, where si denote the si edges incident with x_1, \ldots, x_i in T_1, T_2, \ldots, T_s , and t(k-i) denote the t(k-i) edges incident with y_1, \ldots, y_{k-i} in $T_{s+1}, T_{s+2}, \ldots, T_{s+t}$. If $s \le t$, then $p(k-1) + si + s(k-i) + (t-s)(k-i) \le i(k-i)$, and hence $(p+s)(k-1) + (t-s)(k-i) \le i(k-i)$. Obviously, there are t-s vertices $v_{s+1}, v_{s+2}, \ldots, v_t \in Y \setminus S_i$, and therefore by Lemma 3.5, we can find p+s trees in A_0 and t-s trees in A_1 , such that all these trees are internally disjoint trees connecting S_i . Now let A'_0 be the set of the p+s trees in A_0 , A'_1 be the set of the t-s trees in A_1 and $A'_2 := A_2 \cup \{T_{u_j,v_j}, 1 \le j \le s\}$. Then $A' = A'_0 \cup A'_1 \cup A'_2$ is just the set we want. The case that s > t is similar.

From Lemmas 3.4 and 3.6, we can see that, if A' is a set of internally disjoint trees connecting S_i which we find currently, $X \setminus V(A) \neq \emptyset$ and $Y \setminus V(A) \neq \emptyset$, then no matter how many edges there are in $E(K_{a,b}[S_i]) \setminus E(A')$, we always add to A' the trees in A_2 rather than the trees in A_1 to form a larger set of internally disjoint trees connecting S_i .

Lemma 3.7. Let $A \subset A_0 \cup A_1 \cup A_2$ be a maximum set of internally disjoint trees connecting S_i , and $A = A_0 \cup A_1 \cup A_2$. If $V(A) \subset V(G)$ and $A_0 \neq \emptyset$, then we can find a maximum set $A' = A'_0 \cup A'_1 \cup A'_2$ of internally disjoint trees connecting S_i , such that $|A'_0| = |A_0| - 1$, $|A'_1| = |A_1| + 1$, and $A'_2 = A_2$.

Proof. Let $u \in V(G) \setminus V(A)$ and $T \in A_0$. Without loss of generality, suppose $u \in X$. Then we can add the edge uy_1 to T and get a tree $T' \in \mathfrak{A}_1$. Using the method in Lemma 3.2, we can transform T' into a tree T'' of standard structure. Then $T'' \in A_1$. Let $A'_0 := A_0 \setminus T$, $A'_1 := A_1 \cup \{T''\}$ and $A'_2 = A_2$. It is easy to see that $A' = A'_0 \cup A'_1 \cup A'_2$ is a set of internally disjoint trees connecting S_i . Since $|A'_0| = |A_0| - 1$, $|A'_1| = |A_1| + 1$, and $A'_2 = A_2$, A' is a maximum set of internally disjoint trees connecting S_i .

So, we can assume that for the maximum set A of internally disjoint trees connecting S_i , either V(A) = V(G) or $A_0 = \emptyset$. Moreover, if A' is a set of internally disjoint trees connecting S_i which we find currently, $V(A') \subset V(G)$ and the edges in $E(K_{a,b}[S_i]) \setminus E(A')$ can form a tree T in

 \mathcal{A}_0 , then we will add to A' the tree T'' in Lemma 3.7 rather than the tree T to form a larger set of internally disjoint trees connecting S_i .

Next, let us state and prove our main result.

Theorem 3.1. Given any two positive integers $a \leq b$, let $K_{a,b}$ denote a complete bipartite graph with a bipartition of sizes a and b, respectively. Then we have the following results: if k > b - a + 2 and a - b + k is odd, then

$$\kappa_k(K_{a,b}) = \frac{a+b-k+1}{2} + \lfloor \frac{(a-b+k-1)(b-a+k-1)}{4(k-1)} \rfloor;$$

if k > b - a + 2 and a - b + k is even, then

$$\kappa_k(K_{a,b}) = \frac{a+b-k}{2} + \lfloor \frac{(a-b+k)(b-a+k)}{4(k-1)} \rfloor;$$

and if $k \leq b - a + 2$, then

$$\kappa_k(K_{a,b}) = a.$$

Proof. Let $X = \{x_1, x_2, \dots, x_a\}$ and $Y = \{y_1, y_2, \dots, y_b\}$ be the bipartition of $K_{a,b}$. As we have mentioned, we can restrict our attention to the k-element subsets $S_i = \{x_1, x_2, \dots, x_i, y_1, y_2, \dots, y_{k-i}\}$ for $\max\{0, k-b\} \le i \le \min\{a, k\}$.

From the above lemmas, we can decide our principle to find the maximum set of internally disjoint trees connecting S_i . Namely, first we find as many trees in A_2 as possible, next we find as many trees in A_1 as possible, and finally we find as many trees in A_0 as possible. Let A be the maximum set of internally disjoint trees connecting S_i we finally find. We now compute |A|.

Case 1. $k \le b - a + 2$.

Obviously, $\kappa(S_0) = a$. For S_1 , since $k \le b - a + 2$, then $b - (k - 1) = b - k + 1 \ge a - 2 + 1 = a - 1$. So, $|A_2| = a - 1$. If b - k + 1 = a - 1, then $|A_1| = 0$ and $|A_0| = 1$. If b - k + 1 > a - 1, then $|A_1| = 1$ and $|A_0| = 0$. No matter which case happens, we have $\kappa(S_1) = |A_2| + |A_1| + |A_0| = a$.

For S_i , $i \ge 2$, since $k \le b-a+2$, then $b-(k-i) = b-k+i \ge a-2+i > a-i$. So, $|A_2| = a-i$. Since $b-k+i-(a-i) = b-a-k+2i \ge -2+2i \ge i$, then $|A_1| = i$ and $|A_0| = 0$. Thus $\kappa(S_i) = |A_2| + |A_1| + |A_0| = a$.

In summary, if $k \leq b - a + 2$, then $\kappa_k(G) = a$.

Case 2. k > b - a + 2.

First, let us compare $\kappa(S_i)$ with $\kappa(S_{k-i})$, for $0 \le i \le \lfloor \frac{k}{2} \rfloor$. If a = b, clearly, $\kappa(S_i) = \kappa(S_{k-i})$. So we may assume that a < b.

For i = 0, $\kappa(S_0) = a < b = \kappa(S_k)$.

For $1 \le i \le \lfloor \frac{k}{2} \rfloor$, we will give the expressions of $\kappa(S_i)$ and $\kappa(S_{k-i})$.

First for S_i , since every pair of vertices $u \in X \setminus S_i$ and $v \in Y \setminus S_i$ can form a tree $T_{u,v}$, then $|A_2| = \min\{a - i, b - (k - i)\}$. Namely,

$$|A_2| = \left\{ \begin{array}{ll} a-i & \text{if} \quad i \geq \frac{a-b+k}{2} \\ b-k+i & \text{if} \quad i < \frac{a-b+k}{2} \end{array} \right..$$

Next, since every tree T in A_1 has a vertex in $V \setminus (S_i \cup V(A_2))$, we have

$$|A_1| \leq \left\{ \begin{array}{ll} b-k+i-(a-i) & \text{if} \quad i \geq \frac{a-b+k}{2} \\ a-i-(b-k+i) & \text{if} \quad i < \frac{a-b+k}{2} \end{array} \right..$$

On the other hand, if the tree T has vertex set $S_i \cup \{u\}$, where $u \in X \setminus S_i$, then every vertex in $S_i \cap X$ is incident with one edge in $E(S_i)$, where $E(S_i)$ denotes the set of edges whose ends are both in S_i . And if the tree T has vertex set $S_i \cup \{v\}$, where $v \in Y \setminus S_i$, then every vertex in $S_i \cap Y$ is incident with one edge in $E(S_i)$. Since every vertex in $S_i \cap X$ is incident with k-i edges in $E(S_i)$ and every vertex in $S_i \cap Y$ is incident with i edges in $E(S_i)$, we have

$$|A_1| \le \left\{ \begin{array}{ll} i & \text{if } i \ge \frac{a-b+k}{2} ; \\ k-i & \text{if } i < \frac{a-b+k}{2} . \end{array} \right.$$

Combining the two inequalities, we get

$$|A_1| = \left\{ \begin{array}{ll} \min\{b-a-k+2i,i\} & \text{if } i \geq \frac{a-b+k}{2}; \\ \min\{a-b+k-2i,k-i\} & \text{if } i < \frac{a-b+k}{2}. \end{array} \right.$$

Thus

$$|A_1| = \begin{cases} i & \text{if } i \ge a - b + k ;\\ b - a - k + 2i & \text{if } \frac{a - b + k}{2} \le i < a - b + k ;\\ a - b + k - 2i & \text{if } i < \frac{a - b + k}{2} . \end{cases}$$

Finally, by Lemma 3.5 we have

$$|A_0| = \left\{ \begin{array}{ll} \lfloor \frac{i(k-i)-|A_1|(k-i)}{k-1} \rfloor & \text{if } i \geq \frac{a-b+k}{2} ; \\ \lfloor \frac{i(k-i)-|A_1|i}{k-1} \rfloor & \text{if } i < \frac{a-b+k}{2} . \end{array} \right.$$

Thus

$$|A_0| = \left\{ \begin{array}{ll} 0 & \text{if} \quad i \geq a-b+k \ ; \\ \lfloor \frac{[i-(b-a-k+2i)](k-i)}{k-1} \rfloor & \text{if} \quad \frac{a-b+k}{2} \leq i < a-b+k \ ; \\ \lfloor \frac{[k-i-(a-b+k-2i)]i}{k-1} \rfloor & \text{if} \quad i < \frac{a-b+k}{2} \ . \end{array} \right.$$

Hence

$$\kappa(S_i) = \begin{cases} a & \text{if } i \geq a - b + k; \\ b - k + i + \lfloor \frac{[i - (b - a - k + 2i)](k - i)}{k - 1} \rfloor & \text{if } \frac{a - b + k}{2} \leq i < a - b + k; \\ a - i + \lfloor \frac{[k - i - (a - b + k - 2i)]i}{k - 1} \rfloor & \text{if } i < \frac{a - b + k}{2}. \end{cases}$$

Notice that
$$i \geq 1$$
, and hence $k-i \leq k-1$.
If $\frac{a-b+k}{2} \leq i < a-b+k$, then $\lfloor \frac{[i-(b-a-k+2i)](k-i)}{k-1} \rfloor \leq i-(b-a-k+2i) = a-b+k-i$. So, $\kappa(S_i) \leq b-k+i+a-b+k-i=a$.

If $i < \frac{a-b+k}{2}$, then a-b+k-2i > 0, $k-i-(a-b+k-2i) < k-i \le k-1$, and hence $\lfloor \frac{[k-i-(a-b+k-2i)]i}{k-1} \rfloor \leq i$. So, $\kappa(S_i) \leq a-i+i=a$ Thus $\kappa(S_i) \leq a$ for $i \geq 1$.

Next, considering S_{k-i} , similarly, we have $|A_2| = \min\{a - (k-i), b - i\}$. Since a < b and $i \le \lfloor \frac{k}{2} \rfloor \le \lceil \frac{k}{2} \rceil \le k - i$, then b - i > a - (k - i). So $|A_2| = a - k + i$ and $|A_1| = \min\{\tilde{b} - i - (a - k + i), k - i\}$. Hence

$$|A_1| = \left\{ \begin{array}{ll} k-i & \text{if } i \leq b-a \ ; \\ b-a+k-2i & \text{if } i > b-a \ . \end{array} \right.$$

Moreover,

$$|A_0| = \left\{ \begin{array}{ll} 0 & \text{if } i \leq b-a \ ; \\ \lfloor \frac{[k-i-(b-a+k-2i)]i}{k-1} \rfloor & \text{if } i > b-a \ . \end{array} \right.$$

So,

$$\kappa(S_{k-i}) = \left\{ \begin{array}{ll} a & \text{if } i \leq b-a \ ; \\ b-i+\lfloor \frac{[k-i-(b-a+k-2i)]i}{k-1} \rfloor & \text{if } i > b-a \ . \end{array} \right.$$

Now, we can compare $\kappa(S_i)$ with $\kappa(S_{k-i})$. For $i \leq b-a$, $\kappa(S_{k-i})=a \geq a$ $\kappa(S_i)$. For i > b - a, there must be b - a < k - i, that is, i < a - b + k. Note that for any two real numbers $s, t, \lfloor s + t \rfloor \ge \lfloor s \rfloor + \lfloor t \rfloor$.

If $\frac{a-b+k}{2} \leq i < a-b+k$, then

$$\kappa(S_{k-i}) - \kappa(S_i) = b - i + \lfloor \frac{[k - i - (b - a + k - 2i)]i}{k - 1} \rfloor$$

$$-\{b - k + i + \lfloor \frac{[i - (b - a - k + 2i)](k - i)}{k - 1} \rfloor\}$$

$$\geq (k - 2i) + \lfloor \frac{(k - 2i)(b - a - k)}{k - 1} \rfloor$$

$$\geq (k - 2i) + \lfloor \frac{(k - 2i)(1 - k)}{k - 1} \rfloor = 0.$$

So, $\kappa(S_{k-i}) \geq \kappa(S_i)$. If $i < \frac{a-b+k}{2}$, then

$$\kappa(S_{k-i}) - \kappa(S_i) = b - i + \lfloor \frac{[k - i - (b - a + k - 2i)]i}{k - 1} \rfloor - \{a - i + \lfloor \frac{[k - i - (a - b + k - 2i)]i}{k - 1} \rfloor \}$$

$$\geq (b - a) + \lfloor \frac{(2i)(a - b)}{k - 1} \rfloor.$$

Since $i < \frac{a-b+k}{2}$, then $2i \le k-1$, and hence $\frac{(2i)(a-b)}{k-1} \ge a-b$. So, $\kappa(S_{k-i}) - \kappa(S_i) \ge b-a+a-b=0$. Thus, $\kappa(S_{k-i}) \ge \kappa(S_i)$.

In summary, $\kappa(S_{k-i}) \geq \kappa(S_i)$ for $0 \leq i \leq \lfloor \frac{k}{2} \rfloor$. So, in order to get $\kappa_k(G)$, it is enough to consider $\kappa(S_i)$ for $0 \leq i \leq \lfloor \frac{k}{2} \rfloor$.

Next, let us compare $\kappa(S_i)$ with $\kappa(S_{i+1})$, for $0 \le i \le \lfloor \frac{k}{2} \rfloor - 1$. For i = 0, $\kappa(S_i) = a \ge \kappa(S_{i+1})$. For $1 \le i \le \lfloor \frac{k}{2} \rfloor - 1$,

$$\kappa(S_i) = \begin{cases} a & \text{if } i \geq a - b + k; \\ b - k + i + \lfloor \frac{[i - (b - a - k + 2i)](k - i)}{k - 1} \rfloor & \text{if } \frac{a - b + k}{2} \leq i < a - b + k; \\ a - i + \lfloor \frac{[k - i - (a - b + k - 2i)]i}{k - 1} \rfloor & \text{if } i < \frac{a - b + k}{2}. \end{cases}$$

and

$$\kappa(S_{i+1}) = \left\{ \begin{array}{ll} a & \text{if } i \geq a-b+k-1 \; ; \\ b-k+i+1 & \text{if } \frac{a-b+k}{2}-1 \leq i \\ + \lfloor \frac{[i+1-(b-a-k+2i+2)](k-i-1)}{k-1} \rfloor & \text{and } i < a-b+k-1 \; ; \\ a-i-1 & \text{if } i < \frac{a-b+k}{2}-1 \; . \\ + \lfloor \frac{[k-i-1-(a-b+k-2i-2)](i+1)}{k-1} \rfloor \end{array} \right.$$

So, $\kappa(S_{a-b+k}) = \kappa(S_{a-b+k+1}) = \cdots = \kappa(S_{\min\{a,k\}}) = a$. If $i < \frac{a-b+k}{2} - 1$, then

$$\kappa(S_{i}) - \kappa(S_{i+1}) = a - i + \lfloor \frac{[k - i - (a - b + k - 2i)]i}{k - 1} \rfloor - (a - i - 1)$$

$$- \lfloor \frac{[k - i - 1 - (a - b + k - 2i - 2)](i + 1)}{k - 1} \rfloor$$

$$\geq 1 + \lfloor \frac{(a - b - 2i - 1)}{k - 1} \rfloor \geq 1 + \lfloor \frac{1 - k}{k - 1} \rfloor = 0.$$

So, $\kappa(S_i) \geq \kappa(S_{i+1})$. Namely, if a-b+k is odd, we have $\kappa(S_0) \geq \kappa(S_1) \geq \cdots \geq \kappa(S_{\frac{a-b+k-3}{2}}) \geq \kappa(S_{\frac{a-b+k-1}{2}})$; and if a-b+k is even, we have $\kappa(S_0) \geq \kappa(S_1) \geq \cdots \geq \kappa(S_{\frac{a-b+k-4}{2}}) \geq \kappa(S_{\frac{a-b+k-2}{2}})$.

If a-b+k is even, then $\kappa(S_{\frac{a-b+k}{2}-1})=\frac{a+b-k}{2}+1+\lfloor\frac{(b-a+k-2)(a-b+k-2)}{4(k-1)}\rfloor$ and $\kappa(S_{\frac{a-b+k}{2}})=\frac{a+b-k}{2}+\lfloor\frac{(b-a+k)(a-b+k)}{4(k-1)}\rfloor$. Since $(a-b+k)(b-a+k)-(b-a+k-2)(a-b+k-2)=(a-b+k)(b-a+k)-\lfloor(a-b+k)(b-a+k)-(a-b+k-2)\rfloor=4(k-1)$, we have $\kappa(S_{\frac{a-b+k}{2}-1})=\kappa(S_{\frac{a-b+k}{2}-1})$. If a-b+k is odd, then $\kappa(S_{\frac{a-b+k-1}{2}})=\frac{a+b-k+1}{2}+\lfloor\frac{(b-a+k-1)(a-b+k-1)}{4(k-1)}\rfloor=\kappa(S_{\frac{a-b+k-1}{2}})$.

If
$$\frac{a-b+k}{2} \le i < a-b+k-1$$
, then
$$\kappa(S_{i+1}) - \kappa(S_i) = b-k+i+1 + \lfloor \frac{[i+1-(b-a-k+2i+2)](k-i-1)}{k-1} \rfloor -\{b-k+i+\lfloor \frac{[i-(b-a-k+2i)](k-i)}{k-1} \rfloor\}$$

$$\ge 1+\lfloor \frac{(b-a-2k+2i+1)}{k-1} \rfloor \ge 1+\lfloor \frac{1-k}{k-1} \rfloor = 0.$$

So, $\kappa(S_{i+1}) \geq \kappa(S_i)$. Namely, if a-b+k is odd, we have $\kappa(S_{\frac{a-b+k+1}{2}}) \leq \kappa(S_{\frac{a-b+k+3}{2}}) \leq \cdots \leq \kappa(S_{a-b+k-1}) \leq a = \kappa(S_{a-b+k})$, and if a-b+k is even, we have $\kappa(S_{\frac{a-b+k}{2}}) \leq \kappa(S_{\frac{a-b+k+2}{2}}) \leq \cdots \leq \kappa(S_{a-b+k-1}) \leq a = \kappa(S_{a-b+k})$. Thus, if k > b-a+2 and a-b+k is odd, $\kappa_k(K_{a,b}) = \kappa(S_{\frac{a-b+k-1}{2}}) = \frac{a+b-k+1}{2} + \lfloor \frac{(a-b+k-1)(b-a+k-1)}{4(k-1)} \rfloor,$ and if k > b-a+2 and a-b+k is even, $\kappa_k(K_{a,b}) = \kappa(S_{\frac{a-b+k}{2}}) = \frac{a+b-k}{2} + \lfloor \frac{(a-b+k)(b-a+k)}{4(k-1)} \rfloor.$ The proof is complete.

Notice that, when k = a + b, the result coincides with Theorem 1.2.

Acknowledgement: The authors are grateful to the referees for useful comments and suggestions, which helped to improve the presentation of the paper.

References

- [1] J.A. Bondy, U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.
- [2] G. Chartrand, F. Okamoto, P. Zhang, Rainbow trees in graphs and generalized connectivity, Networks 55(4)(2010), 360-367.
- [3] S. Li, X. Li, W. Zhou, Sharp bounds for the generalized connectivity $\kappa_3(G)$, Discrete Math. 310(2010), 2147–2163.
- [4] H. Whitney, Congruent graphs and the connectivity of graphs and the connectivity of graphs, Amer. J. Math. 54(1932), 150-168.
- [5] F. Okamoto, P. Zhang, The tree connectivity of regular complete bipartite graphs, J. Combin. Math. Combin. Comput. 74(2010), 279-293.