The full metamorphosis of λ -fold block designs with block size four into λ -fold 4-cycle systems

Selda Küçükçifçi* and Emine Şule Yazıcı

Department of Mathematics, Koç University
Rumelifeneri Yolu, 34450, Sarıyer, Istanbul, TURKEY
email: skucukcifci@ku.edu.tr and eyazici@ku.edu.tr

Charles Curtis Lindner

Department of Mathematics and Statistics, Auburn University Auburn, AL 36849-5307, USA

email: lindncc@auburn.edu

Abstract

Let (X,B) be a λ -fold block design with block size 4. If a pair of disjoint edges are removed from each block of B the resulting collection of 4-cycles C is a partial λ -fold 4-cycle system (X,C). If the deleted edges can be arranged into a collection of 4-cycles D, then $(X,C\cup D)$ is a λ -fold 4-cycle system [10]. Now for each block $b\in B$ specify a 1-factorization of b as $\{F_1(b),F_2(b),F_3(b)\}$ and define for each i=1,2,3, sets C_i and D_i as follows: for each $b\in B$, put the 4-cycle $b\setminus F_i(b)$ in C_i and the 2 edges belonging to $F_i(b)$ in D_i . If the edges in D_i can be arranged into a collection of 4-cycles D_i^* then $M_i=(X,C_i\cup D_i^*)$ is a λ -fold 4-cycle system, called the ith

^{*}Research supported by Turkish Academy of Sciences for the first author.

metamorphosis of (X, B). The full metamorphosis is the set of three metamorphoses $\{M_1, M_2, M_3\}$. We give a complete solution of the following problem: for which n and λ does there exist a λ -fold block design with block size 4 having a full metamorphosis into a λ -fold 4-cycle system?

1 Introduction

A λ -fold block design of order n and block size 4 is a pair (X, B), where B is a collection of edge disjoint copies of K_4 which partitions the edge set of λK_n with vertex set X. The copies of K_4 are called blocks. A λ -fold 4-cycle system of order n is a pair (X, C), where C is a collection of edge disjoint 4-cycles which partitions the edge set of λK_n with vertex set X. The spectrum for both λ -fold block designs and λ -fold 4-cycle systems, for all λ is known and can be found in [1].

Let (X,B) be a λ -fold block design with block size 4. If a pair of disjoint edges are removed from each block of B the resulting collection of 4-cycles C is a partial λ -fold 4-cycle system (X,C). If the deleted edges can be rearranged into a collection of 4-cycles D, then $(X,C\cup D)$ is a λ -fold 4-cycle system, called a metamorphosis of the λ -fold block design (X,B) into a λ -fold 4-cycle system. In [10] a complete solution is given to the following problem: For which n and λ does there exist a λ -fold block design with block size 4 having a metamorphosis into λ -fold 4-cycle system?

Now label the elements of each block b with b_1, b_2, b_3 , and b_4 (in any manner). For each block $b = [b_1, b_2, b_3, b_4]$ belonging to B let $\{F_1, F_2, F_3\}$ be the 1-factorization of b defined by $F_1 = \{\{b_1, b_2\}, \{b_3, b_4\}\}, F_2 = \{\{b_1, b_3\}, \{b_2, b_4\}\},$ and $F_3 = \{\{b_1, b_4\}, \{b_2, b_3\}\}$. For each i = 1, 2, 3 define a set of 4-cycles C_i and a set of deleted edges D_i as follows: for each 1-factor F_i of b, place the 4-cycle $b \setminus F_i$ in C_i and F_i in D_i . Then (X, C_i) is a partial

 λ -fold 4-cycle system. Now if the edges belonging to D_i can be rearranged into a collection of 4-cycles D_i^* , then $M_i = (X, C_i \cup D_i^*)$ is a λ -fold 4-cycle system called the *i*th metamorphosis of (X, B). The full metamorphosis of (X, B) is the set of three metamorphoses $\{M_1, M_2, M_3\}$.

In what follows, a λ -fold block design will always mean a λ -fold block design with block size 4 and we will denote K_4 by its vertex set and the 4-cycle with the edge set $\{\{a,b\},\{b,c\},\{c,d\},\{d,a\}\}$ by (a,b,c,d) or (a,d,c,b), or any cyclic shift of these. The following example illustrates the full metamorphosis of a block design of order 25.

Example 1.1 (Full metamorphosis of a block design of order 25 into a 4-cycle system.)

Let (X, B) be the block design with vertex set $X = \mathbb{Z}_{25}$ and block set B, where

 $B = \{[1,0,12,5], [2,1,13,6], [3,2,14,7], [4,3,10,8], [0,4,11,9], [6,5,17,10], [7,6,18,11], [8,7,19,12], [9,8,15,13], [5,9,16,14], [11,10,22,15], [12,11,23,16], [13,12,24,17], [14,13,20,18], [10,14,21,19], [16,15,2,20], [17,16,3,21], [18,17,4,22], [19,18,0,23], [15,19,1,24], [21,20,7,0], [22,21,8,1], [23,22,9,2], [24,23,5,3], [20,24,6,4], [2,0,24,10], [3,1,20,11], [4,2,21,12], [0,3,22,13], [1,4,23,14], [7,5,4,15], [8,6,0,16], [9,7,1,17], [5,8,2,18], [6,9,3,19], [12,10,9,20], [13,11,5,21], [14,12,6,22], [10,13,7,23], [11,14,8,24], [17,15,14,0], [18,16,10,1], [19,17,11,2], [15,18,12,3], [16,19,13,4], [22,20,19,5], [23,21,15,6], [24,22,16,7], [20,23,17,8], [21,24,18,9]\}. Then$

 $D_1^* = \{(2,3,1,0), (7,5,3,0), (14,13,4,0), (23,7,16,0), (10,11,2,1), (8,6,4,1), (24,10,17,1), (18,15,4,2), (20,11,9,2), (21,22,4,3), (19,5,12,3), (9,7,6,5), (21,24,8,5), (22,20,9,6), (15,22,13,6), (14,10,8,7), (17,18,9,8), (13,11,12,10), (18,16,14,11), (19,15,13,12), (21,23,14,12), (17,19,16,15), (23,24,17,16), (20,21,19,18), (24,22,23,20)\}.$

 $D_2^* = \{(8, 13, 5, 0), (11, 21, 10, 0), (19, 9, 15, 0), (22, 17, 20, 0), (9, 14, 6, 1), (16, 6, 11, 1), (21, 7, 12, 1), (23, 12, 15, 1), (7, 10, 5, 2), (24, 9, 12, 2), (17, 3, 13, 2), (22, 11, 16, 2), (18, 21, 6, 3), (14, 19, 8, 3), (23, 15, 20, 3), (10, 18, 7, 4), (18, 23, 9, 4), (19, 24, 14, 4), (24, 16, 21, 4), (20, 10, 15, 5), (24, 13, 16, 5), (20, 14, 17, 6), (22, 12, 17, 7), (22, 19, 11, 8), (23, 13, 18, 8)\}.$

 $D_3^* = \{(9,10,6,0), (13,20,12,0), (18,5,17,0), (24,15,21,0), (7,11,5,1), (19,7,13,1), (20,8,14,1), (22,14,18,1), (8,12,6,2), (15,3,10,2), (23,5,14,2), (21,13,19,2), (16,20,7,3), (11,17,9,3), (24,18,22,3), (16,22,5,4), (12,16,8,4), (17,23,11,4), (23,19,20,4), (24,12,18,6), (23,10,19,6), (24,11,15,7), (21,14,15,8), (21,17,13,9), (22,10,16,9)\}.$

The purpose of this paper is to give a complete solution to the following problem: For which n and λ does there exist a λ -fold block design having a full metamorphosis into a λ -fold 4-cycle system? If we can give a complete solution of this problem for $\lambda = 1, 2, 3, 4, 6$, and 12, we can paste these solutions together to get a solution for all other values of λ . We will organize our results into four sections, followed by a summary.

Finally, the interested reader is referred to [3, 4, 5, 6, 8, 9, 12] for related work on metamorphosis problems and [7] on the full metamorphosis problem for triple systems.

$\mathbf{2} \quad \lambda = 1$

It is well-known that the spectrum for block designs is precisely the set of all $n \equiv 1$ or 4 (mod 12) and the spectrum for 4-cycle systems is the set of all $n \equiv 1 \pmod{8}$. Hence a necessary condition for the existence of a block design having a full metamorphosis into a 4-cycle system is $n \equiv 1 \pmod{24}$.

Example 1.1 gives a solution for n = 25 and the following examples give solutions for the cases n = 49,73, and 97.

Example 2.1 (Full metamorphosis of a block design of order 49 into a 4-cycle system.)

Let (X, B) be the block design with vertex set $X = \mathbb{Z}_{49}$, and block set B with starter blocks [0, 1, 3, 8], [0, 18, 4, 29], [0, 21, 6, 33], [0, 9, 19, 32].

Then the starter 4-cycles for D_1^* are (0,5,4,22), (0,9,34,13); for D_2^* are (0,3,7,26), (0,6,18,7); and for D_3^* are (0,15,31,2), (0,8,18,32).

Example 2.2 (Full metamorphosis of a block design of order 73 into a 4-cycle system.)

Let (X, B) be the block design with vertex set $X = \mathbb{Z}_{73}$, block set B with starter blocks [0, 1, 4, 6], [20, 7, 28, 0], [33, 9, 44, 0], [15, 25, 47, 0], [12, 46, 0, 30], [14, 50, 0, 31].

Then the starter 4-cycles for D_1^* are (0,1,3,13), (0,26,54,24), (0,29,65,31); for D_2^* are (0,4,12,5), (0,9,25,11), (0,12,44,19); and for D_3^* are (0,3,21,6), (0,17,44,21), (0,20,55,22).

Example 2.3 (A 4 – GDD of type $(2t)^4$ ($t \ge 2$, $t \ne 3$) having a full metamorphosis into a 4-cycle decomposisiton of $K_{2t,2t,2t,2t}$.)

Let $\mathcal{G} = (X, G, B)$ be a 4 - GDD of type $(2t)^4$, $t \geq 2$, $t \neq 3$ with $X = \{1, 2, ..., 2t\} \times \{1, 2, 3, 4\}$, groups $G_j = \{1, 2, ..., 2t\} \times \{j\}$, j = 1, 2, 3, 4, and $B = \{(a, 1), (b, 2), (a \circ_1 b, 3), (a \circ_2 b, 4)\}$, where $(\{1, 2, ..., 2t\}, \circ_1)$ and $(\{1, 2, ..., 2t\}, \circ_2)$ are two orthogonal quasigroups of order 2t [1]. Then for each block $b \in B$, consider $F_1 = \{\{(a, 1), (b, 2)\}, \{(a \circ_1 b, 3), (a \circ_2 b, 4)\}\}$, $F_2 = \{\{(a, 1), (a \circ_1 b, 3)\}, \{(b, 2), (a \circ_2 b, 4)\}\}$, and $F_3 = \{\{(a, 1), (a \circ_2 b, 4)\}, \{(b, 2), (a \circ_1 b, 3)\}\}$. These deleted edges can be easily rearranged into 4-cycles since there exists a 4-cycle decomposition of $K_{2t,2t}$ [11].

Example 2.4 (Full metamorphosis of a block design of order 97 into a 4-cycle system.)

Set
$$X = {\infty} \cup {(i, j) \mid 1 \le i \le 24, 1 \le j \le 4}$$
.

- (i) For each j=1,2,3, and 4, place a block design of order 25 having a full metamorphosis into a 4-cycle system on the set $\{\infty\} \cup \{(i,j) \mid 1 \le i \le 24\}$.
- (ii) Place a 4-GDD of type $(24)^4$ having a full metamorphosis into a 4-cycle decomposition of $K_{24,24,24,24}$ on $\{(i,j) \mid 1 \leq i \leq 24, 1 \leq j \leq 4\}$ with groups $G_j = \{(i,j) \mid 1 \leq i \leq 24\}, j = 1, 2, 3, 4$.

Combining (i) and (ii) gives a block design of order 97 having a full metamorphosis into a 4-cycle system.

With these examples in hand we can give a general construction for all of the remaining cases.

The 4mu + 1 Construction. Let n=4mu+1 and suppose there exist a 4-GDD of type m^u and a λ -fold block design of order 4m+1 having a full metamorphosis into a 4-cycle system. Set $X=\{\infty\}\cup\{(i,j)\mid 1\leq i\leq mu, 1\leq j\leq 4\}$. Then

- (i) On each set $\{\infty\} \cup \{(im+1,j), (im+2,j), ..., (im+m,j) \mid 1 \leq j \leq 4\}$, $0 \leq i \leq u-1$, place a block design of order 4m+1 having a full metamorphosis into a 4-cycle system.
- (ii) Take a 4-GDD of type m^u on $\{1, 2, ..., um\}$ with groups $\{im+1, im+2, ..., im+m\}$, $0 \le i \le u-1$. For each block $\{x, y, z, w\}$ in the 4-GDD, place a copy of $\mathcal G$ in Example 2.3 on the set $\{x, y, z, w\} \times \{1, 2, 3, 4\}$ with groups $\{x\} \times \{1, 2, 3, 4\}, \{y\} \times \{1, 2, 3, 4\}, \{z\} \times \{1, 2, 3, 4\}, \text{ and } \{w\} \times \{1, 2, 3, 4\}.$

Combining (i) and (ii) gives a λ -fold block design of order n having a full metamorphosis into a 4-cycle system.

Lemma 2.5 There exists a block design of order n having a full metamorphosis into a 4-cycle system if and only if $n \equiv 1 \pmod{24}$.

Proof There exist a 4-GDD of type 6^u for every $u \ge 5$ [1] and a block design of order 25 having a full metamorphosis into a 4-cycle system, therefore m=6 in the 4mu+1 Construction gives a λ -fold block design of order 24u+1 having a full metamorphosis into a 4-cycle system for all $u \ge 5$. The cases when u=1,2,3, and 4 are obtained in Examples 1.1, 2.1, 2.2, and 2.4.

$\lambda = 2$

It is well-known that the spectrum for 2-fold block designs is the set of all $n \equiv 1 \pmod{3}$ and the spectrum for 2-fold 4-cycle systems is the set of all $n \equiv 0$ or $1 \pmod{4}$. Hence $n \equiv 1$ or $4 \pmod{12}$ is necessary for the existence of a 2-fold block design having a full metamorphosis into a 2-fold 4-cycle system. The following lemma shows that this necessary condition is sufficient.

Lemma 3.1 There exists a 2-fold block design having a full metamorphosis into a 2-fold 4-cycle system if and only if $n \equiv 1$ or 4 (mod 12).

Proof Let (X, B) be the 2-fold block design of order 4 with blocks $\{1, 2, 3, 4\}$ and $\{1, 3, 4, 2\}$. Then $M_i = (X, C_i \cup D_i^*)$, where $D_1^* = \{(1, 2, 4, 3)\}$, $D_2^* = \{(1, 4, 2, 3)\}$, and $D_3^* = \{(1, 2, 3, 4)\}$ forms a full metamorphosis of a 2-fold block design of order 4 into a 2-fold 4-cycle system of order 4. Since the spectrum for block designs is $n \equiv 1$ or 4 (mod 12), doubling each block of a block design of the required order, labeling each pair of blocks similar to the block design of order 4, and placing a full metamorphosis of a 2-fold block design of order 4 into a 2-fold 4-cycle system of order 4 gives a full metamorphosis of a 2-fold block design into a 2-fold 4-cycle system.

4 $\lambda = 3$

The spectrum for 3-fold block designs is the set of all $n \equiv 0$ or $1 \pmod 4$ and the spectrum for 3-fold 4-cycle systems is the set of all $n \equiv 1 \pmod 8$. Hence $n \equiv 1 \pmod 8$ is necessary for the existence of a 3-fold block design having a full metamorphosis into a 3-fold 4-cycle system. We will consider n in modulo 24. So the cases to be considered are $n \equiv 1, 9$ and 17 (mod 24). When $n \equiv 1 \pmod {24}$ three copies of the solution in the case k = 1 will give the required full metamorphosis. For the remaining two cases we will need the following designs.

Example 4.1 (Full metamorphosis of a 3-fold block design of order 9 into a 4-cycle system.)

Let (X, B) be the block design with vertex set $X = \mathbb{Z}_9$ and block set B with starter blocks [0, 2, 1, 4] and [0, 4, 1, 6].

Then the starter 4-cycle for D_1^* is (0,4,8,2); for D_2^* is (0,1,3,2); and for D_3^* is (0,3,6,1).

Example 4.2 (Full metamorphosis of a 3-fold block design of order 17 into a 4-cycle system.)

Let (X, B) be the block design with vertex set $X = \mathbb{Z}_{17}$ and block set B with starter blocks [0, 1, 4, 6], [0, 8, 12, 2], [0, 4, 7, 16], and [0, 14, 8, 15].

Then the starter 4-cycles for D_1^* are (0,8,16,3), (0,1,3,10); for D_2^* are (1,0,5,10), (0,5,1,7); and for D_3^* are (0,1,7,11), (0,3,5,2).

Example 4.3 (Full metamorphosis of a 3-fold block design of order 33 into a 4-cycle system.)

Set
$$X = {\infty} \cup {(i, j) \mid 1 \le i \le 8, 1 \le j \le 4}$$
.

- (i) For each j=1,2,3, and 4, place a 3-fold block design of order 9 having a full metamorphosis into a 4-cycle system on each set $\{\infty\} \cup \{(i,j) \mid 1 \le i \le 8\}$.
- (ii) Place a 4-GDD of type 8^4 having a full metamorphosis into a 4-cycle decomposition of $3K_{8,8,8,8}$ on $\{(i,j) \mid 1 \leq i \leq 8, 1 \leq j \leq 4\}$ with groups $\{(i,j) \mid 1 \leq i \leq 8\}, j = 1,2,3$, and 4 (3 copies of a solution in Example 2.3).

Combining (i) and (ii) gives a 3-fold block design of order 33 having a full metamorphosis into a 4-cycle system.

Lemma 4.4 If $n \equiv 9 \pmod{24}$ then there exists a 3-fold block design of order n having a full metamorphosis into a 3-fold 4-cycle system.

Proof There exists a 4-GDD of type 2^u for every $u \equiv 1 \pmod{3}$ except u = 1 and 4 [1]. Also a 3-fold block design of order 9 having a full metamorphosis into a 4-cycle system has been constructed in Example 4.1. Therefore taking m = 2 and $u \equiv 1 \pmod{3}$ in the 4mu + 1 Construction gives a 3-fold block design of order 8u + 1 having a full metamorphosis into a 4-cycle system for all u except u = 1 and 4. The cases when u = 1, and 4 are obtained in Examples 4.1 and 4.3.

The remaining case $n \equiv 17 \pmod{24}$ will be split into the three cases $n \equiv 17 \pmod{48}$, $n \equiv 41 \pmod{96}$, and $n \equiv 89 \pmod{96}$.

Lemma 4.5 If $n \equiv 17 \pmod{48}$ then there exists a 3-fold block design of order n having a full metamorphosis into a 3-fold 4-cycle system.

Proof There exists a 4-GDD of type 4^u for every $u \equiv 1 \pmod{3}$ except u = 1 [1]. Also a 3-fold block design of order 17 having a full metamorphosis into a 4-cycle system has been constructed in Example 4.2. Therefore taking m = 4 and $u \equiv 1 \pmod{3}$ in the 4mu + 1 Construction gives a 3-fold block

design of order 16u + 1 having a full metamorphosis into a 4-cycle system for all u, except u = 1.

Lemma 4.6 If $n \equiv 41 \pmod{96}$ then there exists a 3-fold block design of order n having a full metamorphosis into a 3-fold 4-cycle system.

Proof Set $X = {\infty} \cup {(i, j) \mid 1 \le i \le 12s + 5, 1 \le j \le 8}$.

- (i) For each i=1,2,...,12s+5, place a 3-fold block design of order 9 having a full metamorphosis into a 4-cycle system on each set $\{\infty\} \cup \{(i,j) \mid 1 \leq j \leq 8\}$.
- (ii) Take a 3-fold block design (S, B) of order 12s+5 [2]. For each block $\{x, y, z, w\}$ in B, place a 4-GDD of type 8^4 having a full metamorphosis into a 4-cycle decomposition of $3K_{8,8,8,8}$ (see Example 2.3) on $\{\{x\} \times \{1, 2, ..., 8\}\} \cup \{\{y\} \times \{1, 2, ..., 8\}\} \cup \{\{z\} \times \{1, 2, ..., 8\}\} \cup \{\{w\} \times \{1, 2, ..., 8\}\}$ with groups $\{x\} \times \{1, 2, ..., 8\}$, $\{y\} \times \{1, 2, ..., 8\}$, $\{z\} \times \{1, 2, ..., 8\}$, and $\{w\} \times \{1, 2, ..., 8\}$.

Combining (i) and (ii) gives a 3-fold block design of order 96s + 41 having a full metamorphosis into a 4-cycle system.

Finally, we will construct a 3-fold block design of order n having a full metamorphosis into a 3-fold 4-cycle system for n = 89, n = 185, and for all $n \equiv 89 \pmod{96}$, $n \ge 281$.

Example 4.7 There exists a 3-fold block design of order 89 having a full metamorphosis into a 3-fold 4-cycle system.

Let (P,G,B) be a transversal design TD(5,5) (5-GDD of type 5^5), where the groups are $G_i = \{1,2,3,4,5\} \times \{i\}$ for $1 \le i \le 5$. Consider the set of blocks $\widetilde{B} = \{\widetilde{b}_1,\widetilde{b}_2,...,\widetilde{b}_5\}$ containing the point (1,1). Now by deleting the points (1,1), (2,1), (3,1) in G_1 and considering the new groups as $\{(4,1),(5,1)\}$ and $\{\widetilde{b}_i \setminus \{(1,1)\}\}$ for $1 \le i \le 5$, we obtain a $\{4,5\}$ -GDD of type 2^14^5 . (Note that the blocks of the new GDD are G_i for $2 \le i \le 5$

with size 5 and the remaining blocks of (P, G, B); so that if they contain the point (4,1) or (5,1) they have size 5, otherwise 4.) Next we will apply Wilson's Construction and blow up every point by 4 and add an extra ∞ point. That is;

- (1) For each group of the $\{4,5\}$ -GDD of type 2^14^5 , blow every point in the group up by 4 and place a 3-fold block design of order 9 or 17 having a full metamorphosis into a 3-fold 4-cycle system on the points in the group together with the point ∞ .
- (2) For each block of the $\{4,5\}$ -GDD of type 2^14^5 , place a 4-GDD of type 4^4 or 4^5 having a full metamorphosis into a 4-cycle decomposition of $3K_{4,4,4,4}$ or $3K_{4,4,4,4,4}$ on the blown up points of the block.

Combining (1) and (2) gives a 3-fold block design of order 89 having a full metamorphosis into a 4-cycle system.

Example 4.8 There exists a 3-fold block design of order 185 having a full metamorphosis into a 3-fold 4-cycle system.

Let (P,G,B) be a transversal design TD(5,5) (5-GDD of type 5^5), where the groups are $G_i = \{1,2,...,5\} \times \{i\}$ for $1 \le i \le 5$. Now by deleting the points (1,1) and (2,1) in G_1 we obtain a $\{4,5\}$ -GDD of type 3^15^4 . (Note that the blocks are the remaining blocks of (P,G,B) and if these blocks contain a point in $\{(3,1), (4,1), (5,1)\}$ they have size 5, otherwise 4.) Next we will apply Wilson's Construction and blow up every point by 8 and add an extra ∞ point. That is;

- (1) For each group of the $\{4,5\}$ -GDD of type 3^15^4 , blow every point in the group up by 8 and place a 3-fold block design of order 25 or 41 having a full metamorphosis into a 3-fold 4-cycle system on the points in the group together with the point ∞ .
- (2) For each block of the {4,5}-GDD of type 3¹5⁴, place a 4-GDD of type 8⁴ or 8⁵ having a full metamorphosis into a 4-cycle decomposition of

 $3K_{8,8,8,8}$ or $3K_{8,8,8,8,8}$ on the blown up points of the block.

Combining (1) and (2) gives a 3-fold block design of order 185 having a full metamorphosis into a 4-cycle system.

Lemma 4.9 If $n \equiv 89 \pmod{96}$ then there exists a 3-fold block design of order n having a full metamorphosis into a 3-fold 4-cycle system.

Proof Let (P,G,B) be a transversal design TD(5,6s+4) (5-GDD of type $(6s+4)^5$) with $s \geq 2$, where the groups are $G_i = \{1,2,...,6s+4\} \times \{i\}$ for $1 \leq i \leq 5$. Now by deleting (x,1), $1 \leq x \leq 6s-2$ in G_1 , we obtain a $\{4,5\}$ -GDD of type $6^1(6s+4)^4$. (Note that the blocks are the remaining blocks of (P,G,B) and if these blocks contain a point in $\{(6s-1,1), (6s,1), (6s+1,1), (6s+2,1), (6s+3,1), (6s+4,1)\}$ they have size 5, otherwise 4.) Next we will apply Wilson's Construction and blow up every point by 4 and add an extra ∞ point. That is;

- (1) For each group of the $\{4,5\}$ -GDD of type $6^1(6s+4)^4$, blow every point in the group up by 4 and place a 3-fold block design of order 25 or 24s+17 on the points in the group together with the point ∞ (we obtain such a 3-fold block design of order 24s+17 either recursively throughout this construction or in Lemmas 4.5 and 4.6).
- (2) For each block of the $\{4,5\}$ -GDD of type $6^1(6s+4)^4$, place a 4-GDD of type 4^4 or 4^5 having a full metamorphosis into a 4-cycle decomposition of $3K_{4,4,4,4}$ or $3K_{4,4,4,4,4}$ on the blown up points of the block. Note also that a full metamorphosis into a 4-cycle decomposition of $3K_{4,4,4,4,4}$ and $3K_{8,8,8,8,8,8}$ can be easily obtained as in (ii) of the proof of Lemma 4.6.

Combining (1) and (2) and Examples 4.7 and 4.8 gives a 3-fold block design of order 96s + 89 having a full metamorphosis into a 4-cycle system.

5 $\lambda = 4, 5, \text{ and } 6$

The spectrum for 4-fold block designs is the set of all $n \equiv 1 \pmod{3}$ and the spectrum for 4-fold 4-cycle systems is the set of all $n \geq 4$. Hence $n \equiv 1 \pmod{3}$ is necessary for the existence of a 4-fold block design having a full metamorphosis into a 4-fold 4-cycle system. The following lemma shows that this necessary condition is sufficient.

Lemma 5.1 There exists a 4-fold block design having a full metamorphosis into a 4-fold 4-cycle system if and only if $n \equiv 1 \pmod{3}$.

Proof The spectrum for 2-fold block designs is $n \equiv 1 \pmod{3}$. So let (X, B) be a 2-fold block design and let (X, 2B) be a 4-fold block design obtained by doubling each block in B. The remainder of the proof is exactly the same as the proof of Lemma 3.1.

The spectrum for 6-fold block designs is the set of all $n \geq 4$ and the spectrum for 6-fold 4-cycle systems is the set of all $n \equiv 0$ or 1 (mod 4). Hence $n \equiv 0$ or 1 (mod 4) is necessary for the existence of a 6-fold block design having a full metamorphosis into a 6-fold 4-cycle system. The following lemma shows that this necessary condition is sufficient.

Lemma 5.2 There exists a 6-fold block design having a full metamorphosis into a 6-fold 4-cycle system if and only if $n \equiv 0$ or $1 \pmod{4}$.

Proof The spectrum for 3-fold block designs is $n \equiv 0$ or 1 (mod 4). So let (X, B) be a 3-fold block design and let (X, 2B) be a 6-fold block design obtained by doubling each block in B. The remainder of the proof is exactly the same as the proof of Lemma 3.1.

The spectrum for both 12-fold block designs and 12-fold 4-cycle systems is the set of all $n \geq 4$. Hence $n \geq 4$ is necessary for the existence of a 12-fold block design having a full metamorphosis into a 12-fold 4-cycle system. The following lemma shows that this necessary condition is sufficient.

Lemma 5.3 There exists a 12-fold block design having a full metamorphosis into a 12-fold 4-cycle system if and only if $n \geq 4$.

Proof The spectrum for 6-fold block designs is $n \geq 4$. So let (X, B) be a 6-fold block design and let (X, 2B) be a 12-fold block design obtained by doubling each block in B. The remainder of the proof is exactly the same as the proof of Lemma 3.1.

6 Summary

We can paste together solutions for $\lambda = 1, 2, 3, 4, 6$, and 12 to obtain solutions for all other values of λ . The following table gives a summary of the results in this paper.

	<u>, , , , , , , , , , , , , , , , , , , </u>
λ (mod 12)	Spectrum of λ -fold block designs having a full
	metamorphosis into a λ -fold 4-cycle system
1, 5, 7 or 11	$n \equiv 1 \pmod{24}$
2 or 10	$n \equiv 1 \text{ or } 4 \pmod{12}$
3 or 9	$n \equiv 1 \pmod{8}$
4 or 8	$n \equiv 1 \pmod{3}$
6	$n \equiv 0 \text{ or } 1 \pmod{4}$
0	$n \ge 4$

References

- [1] C. J. Colbourn, J. H. Dinitz (Eds), The CRC Handbook of Combinatorial Designs (1996), CRC Press, Boca Raton, FL.
- [2] H. Hanani, Balanced incomplete designs and related designs, Discrete Math., 11 (1975), 255-369.

- [3] S. Küçükçifçi, The metamorphosis of λ -fold block designs with block size four into maximum packings of λK_n with kites, Util. Math., 68 (2005), 165-195.
- [4] S. Küçükçifçi and C. C. Lindner, The metamorphosis of λ-fold block designs with block size four into λ-fold kite systems, JCMCC, 40 (2002), 241-252.
- [5] S. Küçükçifçi and C. C. Lindner, The metamorphosis of λ-fold block designs with block size four into K₄ \ e designs, λ ≥ 2, Util. Math., 63 (2003), 239-254.
- [6] S. Küçükçifçi, C. C. Lindner, and A. Rosa, The metamorphosis of λ-fold block designs with block size four into a maximum packing of λK_n with 4-cycles, Discrete Math., 278 (2004), 175-193.
- [7] C. C. Lindner, S. Küçükçifçi, and E. Ş. Yazıcı, The full metamorphosis of λ-fold block designs with block size four into λ-fold triple systems, (submitted for publication).
- [8] C. C. Lindner and A. Rosa, The metamorphosis of λ-fold block designs with block size four into λ-fold triple systems, J. Statist. Plann. Inference, 106 (2002), 69-76.
- [9] C. C. Lindner and A. Rosa, The metamorphosis of block designs with block size four into $(K_4 \setminus e)$ -designs, Util. Math., 61 (2002), 33-46.
- [10] C. C. Lindner and Anne Street, The metamorphosis of λ-fold block designs with block size four into λ-fold 4-cycle systems, Bulletin of the ICA, 28 (2000), 7-18.
- [11] D. Sotteau, Decompositions of $K_{m,n}$ ($K_{m,n}^*$) into cycles (circuits) of length 2k, J. Combinatorial Theory Ser. B, 30 (1981), 75-81.