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Abstract

The least common ancestor on two vertices, denoted lca(x, y), is a
well defined operation in a directed acyclic graph (dag) G. We
introduce U4 (S), a natural extension of lca(x,y) for any set S of
vertices. Given such a set Sy, one can iterate Si4q = Ujcq(Sy) in
order to obtain an increasing set sequence. G being finite, this
sequence has always a limit which defines a closure operator. Two
equivalent definitions of this operator are given and their
relationships with abstract convexity are shown. The good
properties of this operator permit to conceive an O(n-m) time
complexity algorithm to calculate its closure. This performance is
crucial in applications where dags of thousands of vertices are
employed. Two examples are given in the domain of life-science:
the first one concerns genes annotations' understanding by
restricting Gene Ontology, the second one deals with identifying
taxonomic group of environmental DNA sequences.

1 Introduction

In this paper we address the problem of efficiently computing the closure
of lca-type operators in directed acyclic graphs (dag) G = (V,E). Such
graphs appear in numerous applications such as: ontologies (semantic
representation), phylogeny networks (speciation histories) or inheritance
graphs (object programming languages). A least common ancestor of
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two vertices x and y, denoted Ica(x,y), is an ancestor of both vertices,
that has no proper descendant that is also an ancestor of x and y. Now,
let S be a set of vertices of interest of G. On one side, the set V of all
vertices contains all lca(x,y) for any couple x,y € S but, this does not
help to focus on relevant parts of G containing S. On the other side, fil-
tering G to keep only vertices of S gives few insight about the relation-
ships among vertices of S. In order to preserve those relationships, one

can consider the least overset S of S, that contains all lca(x,y) for any
x,y € S. For people used to convexity concepts, this sounds as: “... for
any two points in S, the segment relying them lies in s, Actually, we

show that it does not just “sounds as” and we define a set S that really
satisfies this property. First we define the operator:

Uica(S) = Uxyeslca(x, y).

Then, we show that the closure of this operator, denoted by S verifies the
four axioms of convex hull (see [1]):

(U1l 0=0,5cS;
(U.2) (monotonicity) S; €S, = S; €85,;
(U.3) (idempotence) (§) =S,

(U.4) (finiteness) if x € S, then there is a finite set F € §
such that x € U, (F).

The sets S that are equal to their closure (S = S) are called convex
and form a convex space verifying the following properties (this is a
classical result of convexity theory):

(C.1) @,V areconvex;

(C.2) if A, B are convex, then A N B is convex;

(C3) ifA; areconvexand A; € A, fori =1,2,...

then U;,4 4; is convex;

Thus, U, (S) and its closure have nice mathematical structures that are
exploited in our greedy algorithm to reach a low time complexity of
order O(n - m). Starting with a set S, of vertices and the topological
order of V, the algorithm decides once for all if a new vertex v is in the
Ujcq-closure of Sy or not. It is easy to define and calculate similarly the
Uyca-closure (greatest common descendant). One has just to reverse all
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the edges of G and apply the U, results and algorithm.

Of course, the operator Ica(x,y) is not new and there are several
good algorithms to calculate it. To the best of our knowledge, all the
efficient approaches to calculate lca(x,y) pass through the computation
of shortest paths. The main result of [2] is that, for any couple of vertices
X,y, a representative lca can be computed with time complexity
o(lV|®) with w = 2.688 (see [2, 3]). We stressed the word ‘representa-
tive’ because a couple of vertices can have more than one lca and, as
shown further, one of the main characteristics of our algorithm is that it
identifies all of them. Yet, the construction of {2] is interesting on its
own, since it transforms the Ica searching to a shortest path problem. An
improved version of the “one representative Ica” algorithm is given with
w = 2.575 (see [4]). This optimization relies on a novel reduction of all-
pairs lca problem to the problem of finding maximum witnesses for
Boolean matrix product. As the domain is active, actually [5] have given
an algorithm that calculates all lca(x,y) for all pairs of vertices with a
mean time complexity O(|V[3loglog(IV])) and worst time complexity
0(|V|3‘3399).

Remind that we need the Uj,-closure of a set S (denoted by S)and a
straightforward way to use the above subroutines would have a complex-
ity of at least 0(]V|3-3*%?) for computation time and O(|V|?) for memory
space (in order to store pre-computed lca). Our algorithm does not need
to calculate [ca(x,y) for any couple of vertices x,y. It constructs S by
using the closure and convexity axioms above, in particular (U.2), (U.3)
and (C.2), (C.3). This solution has lower time — O(|S||E|) - and space
- 0(|S||V|) — complexity. The advantage of this solution is even more
relevant in practice, since for most real cases |S| « |V| and for most dag
|E] « |V?.

The paper is organized as follows: section 2 gives the definitions and
properties of U,.,-closure; section 3 gives an efficient algorithm to com-
pute this closure and its proof of correctness; applications of our results
are provided in section 4; concluding remarks are given in section 5.
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2 Least common ancestor operator and its closure

2.1 Preliminary definitions

In this section, we give the definitions of two generalized common op-
erators: least common ancestor (Ica) and greatest common descendant
(gcd) for a direct acyclic graph (dag). The following definitions are pro-
vided to make the paper self-contained. For further definitions on graphs
see [6]. Given a dag G = (V,E) and an edge (x,y) we say that x is the
child and y is the parent. The indegree dg (v) (outdegree df(v)) of a
vertex v is the number of edges with head v (tail v). When G contains a
directed (v, u)-path, the vertex u is said to be an ancestor of v and the
vertex v is a descendant of u. For a non-empty subset W of V, the sub-
graph of G whose vertex set is W and whose edge set is the set of edges
of G that have both ends in W is called the subgraph of G induced by W
and is denoted G[W].

Given a vertex v of the dag G = (V,E), the set Ag(v) denotes the
subset of ancestors of v in G. The generalization of this definition to a
set S € V of vertices is straightforward, i.e. A5(S) = NyesAg(v). For
simplicity, we will omit index G from the notations whenever there is no
ambiguity.

Definition 2.1.1. [2] The least common ancestors lca(S) of a vertex
subset §  V with respect to adag G = (V, E) are the vertices u € A(S),
such that d5;(u) = 0 in the graph H = G[A(S)] induced by A(S).

This definition generalizes the widely known concept of least com-
mon ancestor (see [2, 3]) for a couple of vertices, i.e. lca({x,y}) =
lca(x,y). It follows immediately from Definition 2.1.1 that x =
lca(x,y) if there is a directed (y, x)-path. By extension, we define
lca(x,x) = x for all x.

Note that, unless the dag G is a tree, lca(x, y) may contain several
vertices and the existence of a pair of vertices x,y €S such that
lca(x,y) = lca(S) is not guaranteed. For instance, in the example pre-
sented in Fig. 1, lca({C1,C2,C3}) = {A1,A2} while lca(C1,C2) =
{B1, A2}, lca(C1,C3) = {B2} and Ica(C2,(C3) = {A1, B3}. The notion of
least common semi-strict ancestors has been introduced in order to cha-
racterize a unique ancestor of a set of vertices for both tree and dag [7].
An alternative definition of the Ica in terms of partially ordered sets, has
been proposed by [8].
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2.2 Two equivalent definitions of Uy -closure in a dag

Closure operators are widely used in mathematics, especially in geome-
try. The best known example comes from convexity in a Euclidian space.
A lot of properties follow from the fact that a convex set, for example a
convex polygon, can be obtained by giving a finite set of points and the
segment operator s(x,¥). A natural question is whether these geometric
properties are preserved when extending convexity definition to graphs.
It turns out that with a little set of axioms, a lot of good properties of
convexity ([1, 9, 10]) can be transposed in discrete structures like graphs.
The richest transposition is obtained for graphs endowed with interval
convexities where the notion of segment s(x,y) is replaced by that of
interval I(x, y) that is the bunch of the shortest paths between x and y in
the given graph (see [10]). It is out of the scope of this paper to explore
these properties. Nevertheless, the definition of closure and its properties
show clearly that these objects are convex.

In the previous section, we provided an intuitive and natural defini-
tion of the least common ancestors of a set of vertices denoted as lca(S).
Yet, in applications, when considering a set of vertices S, every least
common ancestor of a pair of vertices of S is a key vertex to gain insight

! Figures were created using GraphViz, version 2.26 http://www.graphviz.org/
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into relationships among vertices of S. We thus now introduce a new
operator that makes use of the lca operator and generalizes it to a well
defined closure operator.

Definition 2.2.1. Let S be a subset of vertices of G. The U,.,-operator on
§ is defined as:

Uiea(S) = Ux,yes lea(x,y) (1
1t follows from this definition that S ¢ U, (S) and that the U,,-operator
is monotonous, i.e.:

ACSB = U[CQ(A) c Ulca(B)-
The Fig. 2 below illustrates the definition of the U.,-operator and em-
phasizes its difference with the standard lca operator. In this example,
given the set S = {C1,C2,C3}, U;.,(S) = {B1,B2,B3,(1,(C2,C3}, while
lea(S) = {41,A2}.

Fig. 2. U)., and lca are two different operators.

In some cases, having only U.,(S) and/or lca(S) is not enough to
understand all relationships among vertices of S. Such a case is depicted
in Fig. 3, where the vertex A is helpful for understanding C1 and C2
relationships but is neither included in U, (S) nor in lca(S). Vertex A is
of interest since A is the lca of B1 and B2, which in turn are [ca of two
vertices of S. This leads us to the following definition of the U, ,-closure
of S.
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Fig. 3. llustration of Uygq-closure

Let S be a subset of vertices of G and let consider the increasing set

sequence defined by:
So - S and Si+1 — U[Ca(sl),i = 0 1

Since G is finite and Vi S; € S;;4, there is a number ¢,0 < ¢ < |V|
such that Yk = ¢, S, = Ujq(S,). This fixpoint (or fixset) is reached
because of the monotonicity of Uj.q-operator. In fact, once this relation
holds for a given k it holds for all greater values. So, ¢ and S, are well
defined.

Definition 2.2.2. The number c is the closure index and the set S is
called the Ujg,-closure of S and is denoted by S.

It is clear from the Definition 2.2.1 that Up,(®) =@ and S S
Upea (S). Also, Uy, is monotonous and it verifies the finiteness property
because G is finite. Since U.1, U.2 and U.4 hold for the U ,-operator,
they also hold for its closure. Moreover, by definition of the closure,
S = 5= Upu(S:) = Utca(_) therefore the idempotence axiom U.3 is
also satisfied.

This definition provides a simple (and inefficient!) iterative algorithm
to compute Uj.q-closure. The time complexity of this algorithm is related
to the closure index. In the simple case when G is a tree, the closure
index cannot be greater than 1. The following lemma shows that this is
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no longer true in the general case.

Lemma 2.2.1. For a dag G = (V,E) and a set S €V, the number of
iterations needed to obtain S is O(|V]).

Proof. It is clear that S, increases with at least one vertex at each itera-
tion, hence proving that ¢ < (V| — |S]). On the other hand, as shown by
the example below, ¢ can be as large as (V| — |S])/2. It follows that the
number of iterations needed to obtain S is O(|V]). O

Fig. 4. The closure index can be proportional to |V|. Sg = {Ag, By}. At iteration &
two vertices {Ay, By} are added so that S, = {A,, ..., A, By, .. By}

There is an alternative (descending) way to define U, ,-closure. For this,
let the family of U;.,-closed sets containing S be denoted by:
L) ={LgV|SclandL = U, (L)} @

Now, we show that the family £(S) verifies the axioms C.1, C.2 and C.3.
The axiom C.1 is obvious from the definition. The axiom C.3 is con-
ceived originally in order to treat the case of infinite increasing set se-
quences in continuous spaces. As we are dealing with finite graphs, this
axiom is obviously verified. Nevertheless, it is the basis of our greedy
algorithm because, when treating the increasing set sequence of Uj.,-
closed sets, only the last one has to be stored for further treatment. The
following lemma gives the proof of axiom C.2.
Lemma 2.2.2. £(S)is non-empty and closed for the intersection,
ie. M,NeL(S)=MnN e L(S). .
Proof. £(S) is non-empty since V obviously belongs to £(S). Let us now
prove that M,N € L(S) = M N N € L(S).

e ScMnNN.AsScMandScN,ScMnN.

e MNN= Uyg,(MNN).

o M NN cUyg,(MnN),by the Uy, definition.
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o Uia(MNN)cMnN. This comes from the fact that the Uy,
preserves monotonicity:
MONCM= U (MnNSU(M)=M
MANcN=U,,MnN)CU,(N)=N
UeaMNN)c MU, ,MNN)cN = U, ,MnNN)cMnN.O

Definition 2.2.3. The U, -closure of S is the set § = Nyess) M.
Lemma 2.2.3. The two definitions of U;cq-closure are equivalent.

Proof. One need to show that § = 3.

e §c 8. By definition, § = Uy, (S) furthermore the monotonicity
of the set sequence Sp,S; ...,S ensures that S < S. Therefore
§ € L(S), thus proving that § c §.

e §5c§. By definition, S is included in every set of L(S) and thus
in their intersection. It follows that S;c S, and therefore
Uyca(S0)SU,cqa ( S), which can be rewritten S; < S. Applying the
Uica operator to both terms leads to S, ¢ S, Sz § and so on un-
til S, = S, thus proving that § ¢ $.o

These definitions and properties provide the framework for our algo-
rithm.

3 An Efficient algorithm to compute Uy, -closure

In our applications, we have encountered dags that may contain several
thousand of vertices. Thus, efficient algorithms are needed to compute
the Uj.q-closure. As mentioned in introduction, several good algorithms
exist to retrieve all the vertices v € lca(x,y). When calculating the Ujq-
closure, one could use one of these algorithms as a subroutine. This ap-
proach, detailed below, provides a straightforward solution to calculate
the Uq-closure and a (high) upper bound on time complexity. Then, we
introduce an optimized solution that takes advantages of convexity prop-
erties and topological vertex order. The main result is an algorithm with a
worst time complexity of order 0(|S]|E|).

3.1 Straightforward algorithm to compute Uy, -closure

In Algorithm 1 the Ica of each couple of vertices of § is computed once
leading to O(|V]?) calls of the lca(x,y) subroutine. It follows that the
time complexity of this algorithm is bounded by the preprocessing of the
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dag that allows obtaining the lca of two vertices in constant time. As
mentioned in the introduction, the best known solution to this pre-process
problem has a O(|V|333%%) worst time complexity and requires O(|V|?)
memory space.

Name: Straightforward_Uy, closure
Imput: a dag G and a set of vertices S of G
Result: 5.
Sk < S; Snew < Si Stmp < Ski
do
for each (x,y) € Si X Snew
Stmp < Semp U lca(x,y);
end
Snew « Stmp = Si;
Sk Ld St'mp;
while S, # 0

return S,
Algorithm 1. A straightforward Uj.,-closure algorithm

3.2 Optimized algorithm to compute Uy, -closure in O(|S||E|)

This subsection details an optimized algorithm that determines S for a
dag G = (V, E) in 0(|S||E|) time complexity. The key idea of this gree-
dy algorithm is that, though there are O(|V|?) couples of vertices, at
most 0(|V|) vertices can be added to S. Rather than computing lca for
each pair of vertices, our greedy algorithm considers each vertex and
decides whether or not it must be added to S. This can be done efficiently
by taking a topological vertex order induced by the dag.

Our Uy, -closure algorithm considers vertices in post order, i.e. a ver-
tex is never considered before considering all of its descendants. Indeed,
vertices of a dag can be ordered along a horizontal line such that all des-
cendants of a vertex are placed to its left. We call this a post order since,
as shown in [11], one can be efficiently obtained using the post-order
indices of a depth-first search. We give this classical ordering algorithm
(Algorithm 2) to make the paper self-contained.
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Name: postOrder Name: postOrderRec
Input: adag G Input: adag G, a vertex n of G
Result: the list of vertices of G Result: add the list of desc(n), in post
in postOrder order, to the postOrder list of G
G.postOrder « empty list mark »n as visited
for root in G.vertices() for s in children(n)
if root has no parent if s has not been visited
postOrderRec(roor) postOrderRec(s)
end end
return G.postOrder append n to the postOrder list of G

Algorithm 2. Post order implementation.

Name: Uj.,-closure
Input: adag G, a set S of vertices
Result: S4L = §

SA <9
P = postOrder(G)
fornin P
§P(n) « 9 /1 SP (n) is the set of descendants of n present in S
maxSP(n) «0 // maxSP(n) is the maximal value |S?(s)]
with s a child of n

for s in children(n)
5P(n) < SP(n) U SP(s) *
maxS® (n) « max( 1S°(s)l, maxS®(n) )

end

if neS OR |S°(n)|>maxSP(n) (**)

SP(n) « 5P (m) v {n}
SAL  GAL y {n}
end
end
return S4L

Algorithm 3. Computation of Uy, -closure

Proposition 3.2.1. (Proof of correctness). Given the inputs G = (V,E)
and S, the set S4* returned by Algorithm 3 is the closure of S with re-

spect to G, thatis SAL =S = §.
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Proof. Let P denote the array of vertices of G sorted by the postOrder
function. The U, -closure algorithm goes through P[1],..., P[k], ...,
P[|V]] gathering, for each k, a subset of S4- denoted S4X(k). It is clear
that S4% = SAL(]V|). We show by induction that:

SALk)=8n  P[1..k] and
SP(P[k]) =S ndesc(P[k]).k =1,2,...,|V] 3

In other words we want to show that § is constructed as an increasing
sequence. Bach term S4%(k) of this sequence is closed in the subgraph of
G induced by the vertices {P[1], ..., P[k]}. In fact, it cannot contain ver-
tices that are in {P[k + 1],..., P[|VI]}. The axiom C.3 says that when
taking the union of these terms, the result is the last one.

Thing | 9

1| | Lelelo]

= g il
“01 4| 2ficH 3 | pucz g".@lz :

“w

Fig. 5. U,y -closure algorithm: considering a vertex of S.

For each vertex n, the 3 following characteristics are displayed: its label, its rank in the
postOrder vector and its current set $°(n). This figure shows the information available at
the point (**) when processing the vertex C2 (dotted circle). At this step the two sets S? (D)
and S?(C3) have already been computed. The other S? sets are not yet initialized (marked
with '?). €3 has been identified as part of S (represented by a circle around it) and the
algorithm is considering whether or not 2 belongs to S, Since C2 € S the test line (**)
returns true and C2 will be included into 5.
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The statement (3) holds for k = 1.
Vertex P[1] has no descendant. It is kept in S4" if and only if P[1] €

S § (the line (**) of the algorithm.) Thus, $44(1) = § n P[1..1] and
SP(P[1]) = § n desc(P[1]).
Assuming that (3) holds for 1, ..., (k — 1), then it also holds for k.
Let n = P[k] be the current vertex and {s,, ..., s} be the set of imme-
diate descendants (children) of n. Since vertices are considered in post
order, all children of n are at the left of n in array P. When the algorithm
is considering n, all of its children sy, ..., s, have already been treated
and set S°(s;) has been recorded for each s; € {s,, ..., s,}. At the point
(**), the current recorded set for vertex n (see point (*)) is:

SP(n) = SP(s5;) U ..U S2(s,) @
The test at the point (**) of the algorithm is used to decide whether or
not n is in the closure and should be added to S°(n) and to S4~.

e Casen € S.nisadded to SAL(k) as well as to S°(n) and evident-
ly n € §n P[1..k) and SP(P[k]) = § n desc(P[k]) (see Fig. 5 for
an example).

e Casen ¢S. In this case, assuming the induction hypothesis, at the
point (**), all the vertices of S® = SP(s;) U ..U S2(s,) are in §
and SP = SP(n) — {n} = § ndesc(n). The only thing remaining
to prove is that n will be included in S44(k) and in SP (n) if, and
only if, it is the least common ancestor of two vertices of 5P,

o If |S?(n)| > maxSP(n) then there are at least two vertices z,t of

SP, such that n = Ica(z,t) and n should be added to S4L(k) as
well as to S?(n). (see Fig. 6 for an example.)
As [SP(n)| > maxSP(n), there are at least two vertices z,t € S°
such that {z,t} & $°(s)),i = 1, ..., p. It follows that there are two
distinct children s;,s; of n such that z € S°(s), t € S°(s;). By
definition of the Ica, n € lca(z,t) if, and only if, n € A(z,t) and
n has no descendant in the ancestors set A(z)NA(t). The former
assertion is obvious, let us prove the latter by supposing that this
is not the case (reductio ad absurdum). So, there is a vertex
n' € A(z)NA(t) and a (n,n') directed path in G. This path neces-
sarily goes through a child s,, of n and, according to the induction
hypothesis, S°(sp) = S ndesc(sy). It follows that {z,t} S
5P(s,,), which is impossible.
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o If the test (**) is not true, then n is not in the closure and is added
neither to S nor to S4L. (see Fig. 7 for an example.)
The main thing to prove is that when |S?(n)| = maxS?(n), there
are not two vertices z,t of S?(n) such that n = lca(z,t). As
|S® (n)| = maxSP(n) then there is some i € {1,...,p} such that
S$P(n) = S2(s,). In this case, n cannot be the Ica of a couple of
vertices (z,t) because the vertex s; is (by construction) an ancestor
of z,t and a descendant of 7. It follows that n ¢ § and the proof is

complete. 0

Thing

an

(Bi){ s | tenucca

9

icn'@: cz [z 3 }%ﬁg

}9

(& 7 | cenveicicave | [ A2

]

nu {BICICY}

Fig. 6. Ujcy-closure algorithm: consider-
ing a vertex of §.

This figure displays information available
at the point (**) while processing the
vertex B1 (see Fig. 5 for legend). C1,C2
and €3 have been identified as part of the
Upcq-closure of S (encircled). The current
set S?(B1) is the union of S°(C1) and
52(C2). This union being larger than the
two sets used to deduce it, B1 is identified
as part of the Up,-closure of S and
$2(B1) will be updated accordingly.

Fig. 7. Uycq-closure algorithm: considering a
vertex that is not in §.

The algorithm is considering A1. At the point
(**), the set S?(A1) combines the three sets
§P(C1), $°(X) and S°(D). With the result-
ing set being equal to $2(X) and A1 ¢ S, Al
will not be added to the Uy -closure of S.
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Proposition 3.2.2. (Time complexity of Ucq-closure algorithm) For a
vertex set S in a dag G = (V,E), the Uy,-closure algorithm runs in
O(SIIED = O(IVIIED.

Proof. Obtaining the postorder vector of vertices is done through a clas-
sical depth first search traversal of the graph in O(|E|). The complexity
of the remaining part of the algorithm, made of two nested for loops, is
obviously determined by the number of executions of line (*).This line
computes, in linear time O(|V]), the union of two sets of at most |S]
elements and is executed for every child of every vertex, i.e. O(|E|)
times. It follows that the overall complexity of this algorithm
is 0(|S)|E]. O

Proposition 3.2.3. (Space complexity of Uq-closure algorithm) For a
vertex set S in a dag G = (V,E), the Uy,-closure algorithm requires
oSNV = 0(lV|?) memory space.

Proof. For each vertex, a subset of S is stored. In the worst case,
IS} = |V| leading to a complexity of O(|V[?). O

Note that in most real cases |S| <« |V |. Moreover, when all the parents of
a vertex n have been treated, the subset of S attached to n becomes use-
less. As a consequence, some memory space can be freed. This can be
easily done by maintaining a counter for each vertex initialized to its
number of parents. When treating a vertex, the counters of all of its child-
ren are decreased by one, and when a child reaches a zero value its mem-
ory is freed. This does not reduce the worst case complexity, since this
optimization is useless when the dag is made of one vertex that has
V| — 1 children, but it significantly reduces the memory space needed in
real applications.

3.3 Building a relevant excerpt of a dag from a subset of its vertices
When searching for the least relevant overset S, the Ujq-closure algo-
rithm described above provides an efficient solution to identify them.
Our set of relevant vertices is S, = §.

Then, one may need to extract the corresponding excerpt of the dag.
This reduced dag can be seen as a dedicated “view” of the largest dag
and can be used to speed up further analysis or to allow end user interac-
tion/visualization related to the task. This “relevant dag excerpt” must
preserve the partial order among vertices of S, that is induced by the
original dag even though some intermediary vertices have not been kept
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in S,.. More formally, given the dag G = (V,E) and a subset S, of V, we
define the relevant sub-dag G, = (V,, E,) as:
e =S5
e (u,v) € E, iff there is a directed path in G going from u to v
without crossing any vertices of V.

The set E,. of edges can be efficiently computed thanks to the topological
order induced by the dag. This time we will consider a vertex u only
after having considered all of its ascendants. Such an order can be ob-
tained by considering the post order vector from tail to head (reverse
post-order).

Name: relevantDagExcerpt

Input: adagG = (V,E) asetS, of relevant vertices
Result: G, = (V,,E,) the relevant dag excerpt.

V.« S5 6 — (Vi 0)
for each « in reverse(postOrder(G))
Vrpa(u) — @
for each fin parents(u)
iffev.
Vrra(W) — Vrpa(W)UVRra (f) ()
else
Vrra(W) — Vara(WUS
ifuel,.
foreach v in VRRA(u)
E, — E.U (wv)
return G,
Algorithm 4. Relevant dag excerpt algorithm

Let Vg4 (u) be the set of Relevant Reachable Ancestors of u containing
vertices that are present in V. and can be reached from u through a path
crossing no other vertices of V.. When considering vertices in reverse
post-order, the set Vg, (u) of the current vertex u is the union of the sets
Vrra(f) of all its parent vertices that are not in V., plus all its parent
vertices that are in V.. The set E,. is then constructed by adding, for each
vertex u of V., the edges (u, v) between u and any vertex v of Vg, (1)
as detailed in Algorithm 4.
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The complexity of this algorithm is similar to that of the U,.,-closure
(Algorithm 3). As for this latter algorithm, the key instruction, line (*),
computes the union of two sets of at most |V;| elements and is executed
for every parent of every vertex of the initial dag G i.e. O(|E]) times.

4 Building relevant sub-dag views based on closure: two
case studies

This section illustrates the usefulness of our approach for two biological
applications. The first one is related to ontology based annotation while
the second one is related to species identification for metagenomic analy-
sis.

4.1 Building sub-ontology to apprehend gene annotations

Ontologies are successfully used as semantic guides when navigating
through the huge and ever increasing quantity of digital documents [12].
They are a graph based representation of domain semantics where vertic-
es represent concepts of the fields and labeled edges represent concept
relationships. The is-a relationship is central in ontology for it is the sole
one that appears in formal ontology definition [13]; it is the sole that is
present in all ontologies; and it is by far the most widely used relation-
ship to link concepts. When restricted to is-a edges the ontology graph is
a dag that is often referred to as the backbone of the ontology [13, 14].
The need for sub-ontology extraction is clearly exposed in [15],
where authors point out the fact that an application focuses only on par-
ticular aspects of the whole ontology. Having concise and meaningful
sub-ontology is also crucial in any computer assisted ontology operation
needing a human expert, such as ontology design and evolution or visual
filtering within conceptual maps. When focusing on a subset of concepts
(e.g. those indexing a given document or those over represented in the
index of a set of documents) a graphical representation of their is-a rela-
tionships is very helpful. The most widespread solution is to display
those concepts of interest with all their ancestors. This rough solution is
(manually) used in many publications (e.g. [16, 17]) as well as within
Web based tools (http://www.informatics jax.org/GOgraphs/OrthoDisease).
The Uj.q-closure provides a more concise excerpt of the is-a dag by
keeping only ancestors that highlight relation among the concept of in-
terests. Indeed this ontology problematic was at the origin of our work on
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Ujcq-closure and we have developed a dedicated tool called OntoFocus.
To illustrate the relevance and scalability of this approach, OntoFocus
has been used to restrict the Gene Ontology (containing about 30,000
terms) to the 50 concepts of the BRCA1 gene associated with BReast
CAncer susceptibility according to the European Bioinformatics Institute
(http://www.ebi.ac.uk/GOA/.) The corresponding sub-ontology inferred
by OntoFocus in about one minute contains 92 relevant concepts.

GO_6643229

Fig. 8. Visualization of cellular component excerpt (GO_0005575).

GO-sub-ontologies constructed by OntoFocus using BRCA1 annotation (white colored
concepts). Blue colored concepts were added by OntoFocus to explicit semantic relation-
ships among whilte ones.

In Fig. 8 one of the three connected parts of the sub-ontology is pre-
sented, that corresponds to cellular components. As one may see, the
visualization is very comfortable and within human cognitive and per-
ceptive limits. The two other parts, not shown here, contain 15 and 63
terms, which also allow a comfortable visualization.

Several applications may be underlined. First of all, the user-centered
sub-ontology may be useful for biological users in exploiting annota-
tions. This highlights, for example, that several annotations are refine-
ments of the intracellular part (GO_0044424.) The same approach may
be used to simultaneously consider the annotation of several genes that
share some biological characteristics (e.g. genes having similar expres-
sion profiles in microarray experiments.)

4.2 Identifying taxonomic group of environmental DNA sequences
New high-throughput sequencing techniques allow to obtain millions of
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short portions of DNA genomes (or transcriptome) called reads. These
techniques can be used to sequence DNA of a single species. In that case
the quantity of obtained information allows assembling almost the whole
genome of this species. Alternatively, one can also choose to sequence
the whole set of genomes available in a given environment (e.g. human
guts, ocean or soil sample). This is particularly useful to study the evolu-
tion of the biodiversity of the sampled environment in response to some
changes (e.g. illness, climate change). In this latter case a key task is to
assign the sequenced reads to a given species or taxonomic group. This is
generally done based on a phylogenetic tree whose leaves represent to-
day species and internal vertices speciation events that define taxonomic
groups. To assign a taxonomic identity to a given read, the unknown
DNA sequence is compared to those of the phylogeny tree leaves that
are: colored in blue when similar to the read and in red otherwise. In the
easiest case there is a single blue leaf and the read will be annotated with
the corresponding species. For ambiguous reads, there are several blue
leaves and the read is traditionally annotated based on their Ica.

A recent paper described an original approach that performed better
on simulated and real datasets [18). The idea is to identify the internal
vertex n that best annotates a read based on the number of its blue des-
cendants (true positives), red descendants (false positives), as well as the
number of blue and red leaves that are not descendant of » (true and false
negatives). For doing so, it suffices to test what they also called “relevant
vertices” that are the least common ancestors of two or more blue leaves.
This can be seen as a particular case of our Uy, -closure when the dag is
a tree. Moreover they provide an algorithm to restrict the taxonomic tree
to this relevant set of vertices which is also a particular case of our more
general dag excerpt algorithm. Our work provides theoretical results and
an algorithm that extend their read annotation approach to the case where
the taxonomy is depicted by a phylogenetic network instead of a phylo-
genetic tree. Phylogenetic networks are dags whose leaves also represent
extant species that received more and more attention in evolutionary
biology (a recent book is entirely dedicated to them [19]). Indeed, by
authorizing a vertex to have several parents they allow to represent phy-
logenetic uncertainty (it is not clear which parent is the real one) and
complex biological events (such as species hybridization or lateral gene
transfers).
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5 Concluding remarks

This paper introduced the concept of Uj,-closure of a set S of vertices in
a dag and an optimized algorithm to identify it. This algorithm has the
best known time complexity O(|S||E[) while using only O(|V|?) memo-
ry space. This low complexity comes from the convexity properties of
the closure of U;c,-operator that allow to obtain a greedy algorithm.

Many applications may benefit from such an algorithm. Two of them,
developed in this paper, concern the life sciences domain. One is related
to the widespread Gene Ontology while the other is related to environ-
mental metagenomic analysis.

Future directions of our work include further study of the relationship
between the closure concept and convexity and related algorithm's opti-
mization.
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