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Abstract

To study orthogonal arrays and signed orthogonal arrays, Ray-Chaudhuri
and Singhi (1988 and 1994) considered some module spaces. Here, using a
linear algebraic approach we define an inclusion matrix and find its rank. In
the special case of Latin squares we show that there is a straightforward al-
gorithm for generating a basis for this matrix using the so-called intercalates.
We also extend this last idea.

Keywords: Orthogonal arrays, Latin squares, basis for inclusion matrix, Latin
trades

1 Introduction and preliminaries

To show the existence of signed orthogonal arrays, Ray-Chaudhuri and Singhi
considered a space of linear forms in variables and calculated its rank, see [13].
Later they pointed out an error in their calculation and provided a correction,
see [14]. Here we define a natural inclusion matrix corresponding to orthogo-
nal arrays and signed orthogonal arrays. We compute the rank of this matrix and
study bases of its null space. This provides helpful insight for studying these ob-
jects. In the special case of Latin squares we show that there is a straightforward
algorithm for generating a basis for this matrix using the so-called intercalates.
We also extend this idea for more general cases.

We follow the notations of [13] as much as possible. Let V := {0,1,...,v —
1} and V* be the set of all ordered k-tuples of the elements of V, ie., V¥ :=
{(:z:l,...,xk) I z; € Vi = 1,...,k}. Also, let Vlt = {(ul,...,ut)l I u; €
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V,i =1,...,t}, where I is a subset of size ¢ of the set {1,...,k}. For a pair of
elements of V* and V,‘, where I = {iy,...,%:} and {3 < --+ < i, we define:
(uay..- ue)r € (T1,...,2) = u; =2y, i=1,...,t

An orthogonal array OA(v,k,\) on a set V is a collection of k-tuples of el-
ements of V such that for each I C {1,...,k}, |I| = ¢, every element of V}
belongs to exactly A elements of the collection. Orthogonal arrays were first de-
fined by Rao [12] and have been used in studying designs and codes.

Next we define the z-inclusion matrix M(¢-(v, k)). Columns of this matrix cor-
respond to the elements of V¥ (in lexicographic order) and its rows correspond to
the elements of Uy V£, where the union is over all t-subsets of {1,...,k}. Theen-
tries of the matrix are O or 1, and are defined as follows. My, ,....u )5, (z1,.me) =
1l <= (ul,...,ut)ze(z:l,...,xk).

Example 1 In Figure 1, the matrix M(2-(3, 3)) is shown. To make it more read-

able, 0 entries of the matrix are represented by “-” signs. The “x” signs may be
ignored for time being, they will be explained in Section 2.
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Figure 1: M(2-(3,3))

A Latin square L of order v is a v X v array with entries chosen from a set,



say V' = {0,1,...,v — 1} in such a way that each element of V' occurs pre-
cisely once in each row and in each column of the array. For ease of exposi-
tion, a Latin square L will be represented by a set of ordered triples {(%, j; L) |
element L;; occurs in cell (z, j) of the array}.

It is folkloric that any Latin square of order v is equivalent to an OAs(v, 3,1). It
is easy to see that any OA, (v, k, A) can be thought of a solution to the equation

MF = )1, ¢))]

where M = M(t-(v, k)), T is a vector of appropriate size with all components
equal to 1, and F is a non-negative integer-valued frequency vector, i.e., F(x)
represents the number of times that OA contains the ordered k-tuple x. Our dis-
cussion will be based on the field of real numbers.

In Section 2 we find the nullity and the rank of M(¢-(v, k)). In Section 3 we
show that a very simple basis exists in the case of M(2-(v, 3)), i.e., when the OA
corresponds to a Latin square, which consist of so-called intercalates. In Section 4
we generalize the result of Section 3 for any M(¢-(v, t + 1)).

2 Orthogonal arrays

The main result of this section is the following theorem,

Theorem 1 The rank of the matrix M(t-(v, k)) is equal to

rank(M) = zt: (I:) (v =1)%.

=0

This theorem results from the following lemmas. But first we need the following
notations. For every ordered k-tuple x = (1, ...,z;), the set Fy is defined as

Fe={(z1,...,2) | 2z € {0,2;},i = 1,...,k}.

Also, we define Ax = {i | z; # 0}, Lx = |Ax|, and let Cx denote the column of
the matrix M corresponding to the k-tuple x.

Lemma 1 Forevery x € Fy, x # y, we have Ly < Ly and x <y, where <
denotes the lexicographic order.

Proof. Clearly, for every i, if z; # 0, then y; = z; # 0. Therefore, Ly £ Ly.
Now if the equality L, = L, holds, then for every non-zero y;, the corresponding
x; is non-zero and hence equal to y;. This implies x = vy, contradicting the
hypothesis. For the second part, notice that for every i, either z; = yi,or 0 =
x; < yi- Hence x <y and since x # y, we have x < y. [ ]



Lemma 2 The number of linearly independent rows of M(t-(v, k)) is at least the
number of columns Cyx with Ly < t.

Proof. We show that for every column Cx with Ly < ¢, there exists a correspond-
ing row such that its pivot 1 (that is the first 1 in that row) is in column Cx. These
rows are clearly linearly independent. Corresponding to the column Cx, we con-
struct an element u; = (u,...,u:)s of V} as follows. Since Ly < t, we can pick
aset I = {i1,...,4;} with Ax C I. Note that there may be more than one choice
for I, but choosing any of them will serve our purpose. For every j = 1,...,¢,
we let u; = z;;. This defines an element uy such that uy € x. Therefore, there
is a 1 in the intersection of the column Cy, and the row corresponding to uy in
M(t-(v, k)).

Next, we prove that every y such that u; € y satisfies x <X y. This would
imply that the first 1 in the row corresponding to u; lies in the column Cy, which
completes the proof. Since for every j = 1,...,t, u; = z;; and u; = y;;, we
have z; = y; for every i € I. Also, since z; = 0 for every ¢ ¢ I, we have
z; € {0,y;} for every i, or in other words, x € Fy. Therefore, by Lemma 1,
xXy. ]

Lemma 3 rank(M(t-(v,k))) = Tio (5)(v — 1)L

Proof. By Lemma 2, the rank of M is at least the number of columns Cx with
Ly < &. Itis easy to note that the number of vectors x for which Ly = i is equal
to (¥) (v — 1)%. This completés the proof of the lemma. ]

As it can be noted in Figure 1, in each column Cx where at least one of the
components of x is 0, i.e. Ly < 2, there exists at least one row having a pivot 1
in that column. For example for the column Coyo both (0,1)(; 23 and (1,0)¢2,3}
rows have such property. All such columns and one of the rows corresponding to
that column are indicated with a “x” sign and such 1’s are shown in bold face and
underlined.

To show the other direction in Theorem 1, we prove the following lemma.

Lemma 4 For every vector x € V* with Ly > t, we have

> (-1kcy =0. 2

YEFx

Where 0 is a vector of appropriate size with all components equal 1o 0.

Proof. It is enough to focus on a fixed row, say uy, and count the number of ones
in the intersection of this row and columns Cj, for y € Fx, by taking the signs in



the above expression into account, and show that the corresponding entry in the
left-hand side of the above equation is 0.

Consider a row uy with I = {iy,...,4;} wherei; < --- < ;.

If there is an element i; € I\ Ay such that u; # 0, then all the entries in the
intersection of this row and columns Cy withy € F are 0, since for all such y,
¥i; is 0 and therefore is not equal to u;. Thus, the entry in the left-hand side of
Equation (2) in the row corresponding to uy is 0.

Now, suppose u; = 0, for every j where i; € I\ Ax. Consider the set Y of
vectors, y € Fy, such that the entry in the intersection of the row corresponding
to uy and the column Cy is 1. Foreveryy € Y, a = |Ax NI of its entries have a
value equal to the corresponding entry in u;. Therefore, there are Ly — a entries
in y that can take either a value of 0, or the value of the corresponding entry in x.
We call these Lx — a entries the free entries of y. Consider the setof ally € Y
that have j non-zero free entries (i.e., are equal to the corresponding value in x).
The number of such y’s is (""j"") and foreachsuchy, Ly = j + a — ¢, where {
is the number of zeros in the intersection of J and A,. Therefore, the entry in the
row corresponding to u; in the left-hand side of Equation (2) is equal to

Leze . Ly -« faze (Ly —
> (B %) = e Sy (B <o
=0 J =0 J
Thus, all entries of the vector in the left-hand side of Equation (2) are 0. [ |

Lemma5 rank(M(t-(v,k))) < 3t (5)(v ~ 1)1,

Proof. By applying Lemma 4, repeatedly, to any column Cx with Ly > ¢, we can
write Cx in terms of columns Cy with Ly < t. Thus the latter columns form a
spanning set for the column space of M(¢-(v, k)). We noted earlier that there are
exactly 3or_o (%) (v — 1)* of such columns. ]

Theorem 1 follows from Lemma 5 and Lemma 3.

3 Latin squares and Latin trades

As we noted earlier, a Latin square of order v may be viewed as an OA;(v, 3,1).
So the matrix M(2-(v, 3)) is of special interest. In this section we find a basis for
M(2-(v, 3)) which consists of the so-called intercalates.

We start with a few definitions. A partial Latin square P of order v is a v xv array
in which some of the entries are filled with elements fromaset V = {0,1,...,v—
1} in such a way that each element of V occurs at most once in each row and at
most once in each column of the array. In other words, there are cells in the



array that may be empty, but the positions that are filled conform with the Latin
property of array. Once again a partial Latin square may be represented as a
set of ordered triples. However in this case we will include triples of the form
(4, 4;0) and read this to mean that cell (3, j) of the partial Latin square is empty.
The set of cells Sp = {(3,7) | (i,4;P;;) € P, forsome P;; € V} is said to
determine the shape of P and |Sp| is said to be the volume of the partial Latin
square. That is, the volume is the number of nonempty cells. For each row r,
0 < r < v—1, we let R} denote the set of entries occurring in row r of P,
Formally, R} = {P,j | Prj € V A(r,j; Prj) € P}. Similarly, for each column
6,0<c<v—1,wedefineC = {Pic | Pic € V A(i,c; Pic) € P}.

A Latin trade, T = (P, Q), of volume s is an ordered set of two partial Latin
squares, of order v, such that

1. Sp = Sq,
2. for each (i, j) € Sp, Pij # Qij,
3. foreachr,0 <r <v-1,Rp =Rp,and

4. foreachc,0<c<v—1,Cp =Ch.

Thus a Latin trade is a pair of disjoint partial Latin squares of the same shape and
order, which are row-wise and column-wise mutually balanced. We refer to the
shape of a Latin trade T as the shape of the individual components P and Q.

Example 2 Below is an example of two partial Latin squares which together form
a Latin trade of order 5 and of volume 19. To conserve space we will display a
Latin trade by superimposing one partial Latin square on top of the other, and
using subscripts to differentiate the entries of the second from those of the first, as
shown below.

-12]3f1 <1123 - 121[32113
2] -[1]4 1] -4]2 T21] - [Tafd2
1]-{0]4[3] [4]-]3]1]0 14] - [03141]30
0]4]1 21 |1]2]0}-]4 01[42|10f - [24
411]3[2]0] j0]4]2]{3]] 40(14]32]23/01

Figure 2: A Latin trade

The concept of a Latin trade in a Latin square is similar to the concept of a mu-
tually balanced set or a trade in a block design, see [9]. The same as trades in
design theory, the discussion of Latin trades is related to intersection problems.



For example, they are relevant to the problem of finding the possible number of
intersections for Latin squares (see [7], [6], [2], and [1]). Also Latin trades arise
naturally in the discussion of critical sets in Latin squares (see for example [10]
and [11]).

Latin trades have been studied by many authors. Fu and Fu (6] used the term
“disjoint and mutually balanced” (DMB) partial Latin squares, Keedwell [10] used
“critical partial Latin square” (CPLS), while Donovan et al. [4] used the term
“Latin interchange”. Adams et al. [1] suggest the terminology ‘2-way Latin trade”
for consistency with similar concepts in other combinatorial structures such as
block designs, graph colouring, cycle systems, etc. See for instance [9], [15], [8],
and [3] for further use of trades.

A Latin trade of volume 4 which is unique (up to isomorphism), is called an
intercalate (see Figure 3).

.12.21.

Figure 3: An intercalate

Similar to orthogonal arrays which correspond to solutions of the Equation (1), it
is clear that any Latin trade may also be treated as a solution T, to the equation:

MT =0, 3)
where M = M(2-(v,3)) and T is a (signed) frequency vector derived from the
trade T = (P, Q), i.e.,

1 if(i,j;k)eP
Tijk = -1 if(4,5;k) €Q
0  otherwise.
Therefore Latin trades are in the null space of M(2-(v, 3)).

Theorem 2 There exists a basis for the null space of the matrix M(2-(v, 3)) con-
sisting only of intercalates.

Proof. Latin trades are in the null space of M(2-(v, 3)). By Theorem 1 we know

that
null(M(2-(v,3))) = (v - 1)3.



For each i,j,k; 1 < 4,5,k < v — 1, consider the ijk’th intercalate defined in
Figure 4.

Figure 4: Basis intercalates

There are (v — 1)® of them. The vectors corresponding to these intercalates are
independent, as for example, the frequency vector of the ijk’th intercalate has
an entry —1 in the (3, j, k) coordinate while all others have 0 in that coordinate.
Therefore, they form a basis for the null space of M(2-(v, 3)). [ ]

The above theorem shows, existentially, that every Latin trade can be written as the
sum of intercalates. In [5], Donovan and Mahmoodian introduced a simple com-
binatorial algorithm which enables one to compute such a decomposition. But by
linear algebraic approach and knowing a basis which consists only of intercalates,
makes it straightforward to do this task. We give an example of this method:

01{12[2330 01{1g] - | - 02{29] -
of2¢[-{-] _ [Lof91] |- 2p[02] -
23-132-1 = [ [ [ R B B
3o[-[- 03
2.20. 03.30. 03. .30
N 2 T Y T
-1 11 30 103

Figure 5: An example of the algorithm

4 A basis for the null space of M(t-(v,t + 1))

In this section we generalize the notion of Latin trades and find a basis for the null
space of M(t-(v,t + 1)). First we note that each Latin trade T = (P, Q) may
be represented by a homogeneous polynomial of order 3 as follows. The polyno-
mial is over a non-commutative ring, hence the terms are ordered multiplicatively

10



(meaning that x;, z;,;, is different from, say z;,z;, z;;):

P(xg,z1,...,2y—1) = Z T, Tiy Tiy — Z Zjy TjpTjg-
(i1 iaiiz)EP (J1.d2:43)€Q
Note that the positive terms correspond to the elements of P while the negative
terms correspond to the elements of . For example the intercalates which form
a basis for the null space of M(2-(v, 3)) in Theorem 2 are:

P(zg,x,,... yTy—1) = ToZoZo + ToZ;jTk + TiToZy + TiT;To
— ToToTk — ToT;To — TiToTo — TiT;Ty
= (w0 —zi)(z0o — zj)(zo —zx), 1<4,5,k<v-1

Similarly, each homogeneous polynomial P(xo, z,,...,Z,—1) of order k, whose
terms are ordered multiplicatively, corresponds to a frequency vector T. If T
satisfies

MT =0, 4)
where M = M(t-(v, k)), we call it a ¢t-(v, k) Latin trade. So, a Latin trade de-
fined in Section 3 is also 2-(v, 3) Latin trade. Any ¢-(v,t + 1) Latin trade of the
following form will be called a t-(v, t + 1) intercalate:

P(:L’o,l‘] Yoo imv—l) = (xil - xj:)(ziz - sz) et (zit-{-l i ),

where i,;, and j, € {0,...,v — 1}, and for each [, 4, is distinct from j;. A
2-(v, 3) intercalate is simply an intercalate in a Latin square, defined in the previ-
ous section.

Theorem 3 There exists a basis for the null space of the matrix M(t-(v,t + 1))
consisting only of t-(v,t + 1) intercalates.

Proof. It can easily be checked that ¢-(v, t +1) intercalates are included in the null
space of M(¢-(v, ¢t + 1)). By Theorem 1 we know that null(M(¢-(v,t + 1))) =
(v — 1)t+1,

Consider the following set of (v — 1)**! intercalates:

P(anxla---vzv—l) = (zo _zil)(xo —xi2)°-'(:ﬂo _zit+l)7
1<4),i,..., i <v—-1.

The intercalates in this set are independent. For example, the frequency vector
of the 14z - - - 4,41 "th intercalate has a non-zero entry, namely (—1)¢t!, in the
(i1,1%2, .. .,%4+1)th coordinate, while all others have 0 in that coordinate. There-
fore, they form a basis for the null space of M(t-(v, ¢ + 1)). [ ]

Finally, we note that given the above generalization of the concept of Latin trades,
many questions similar to the ones in the theory of ¢-trades in block designs, may

11



be raised. For example, it would be interesting to characterize the possible support
sizes of t-(v, k) Latin trades.

Acknowledgement

The authors appreciate comments of John van Rees, specially for the last lines
of the proof of Lemma 4. This work was partly done while the third author was
spending his sabbatical leave in the Microsoft and also in the Institute for Ad-
vanced Studies in Basic Sciences (IASBS), Zanjan and finally in the Institute for
Studies in Theoretical Physics and Mathematics (IPM). . He would like to thank
all these institutions for their warm and generous hospitality and support.

References

[1] Peter Adams, Elizabeth J. Billington, Darryn E. Bryant, and E. S. Mahmood-
ian. The three-way intersection problem for Latin squares. Discrete Math.,
243(1-3):1-19, 2002.

[2] Elizabeth J. Billington. The intersection problem for combinatorial designs.
Congr. Numer., 92:33-54, 1993. Twenty-second Manitoba Conference on
Numerical Mathematics and Computing (Winnipeg, MB, 1992).

(3] Elizabeth J. Billington and D. G. Hoffman. Trades and graphs. Graphs
Combin., 17(1):39-54,2001.

[4] Diane Donovan, Adelle Howse, and Peter Adams. A discussion of Latin
interchanges. J. Combin. Math. Combin. Comput., 23:161-182, 1997.

(5] Diane Donovan and E. S. Mahmoodian. An algorithm for writing any Latin
interchange as a sum of intercalates. Bull. Inst. Combin. Appl., 34:90-98,
2002. Corrigendum: Bull. Inst. Combin. Appl. 37:44, 2003.

[6] Chin Mei Fu and Hung-Lin Fu. The intersection problem of Latin squares.
J. Combin. Inform. System Sci., 15(1-4):89-95, 1990. Graphs, designs and
combinatorial geometries (Catania, 1989).

(71 H-L. Fu. On the construction of certain type of latin squares with prescribed
intersections. PhD thesis, Auburn University, 1980.

[8) M. T. Hajiaghaee, E. S. Mahmoodian, V. S. Mirrokni, A. Saberi, and
R. Tusserkani. On the simultaneous edge-coloring conjecture. Discrete
Math., 216(1-3):267-272,2000.

12



[9] A.S. Hedayat. The theory of trade-off for t-designs. In Coding theory and
design theory, Part II, volume 21 of IMA Vol. Math. Appl., pages 101-126.
Springer, New York, 1990.

[10] A. D. Keedwell. Critical sets for Latin squares, graphs and block designs:
a survey. Congr. Numer., 113:231-245, 1996. Festschrift for C. St. J. A.
Nash-Williams.

[11] A.D. Keedwell. Critical sets in latin squares and related matters: an update.
Util. Math., 65:97-131, 2004.

[12] C. Radhakrishna Rao. Factorial experiments derivable from combinatorial
arrangements of arrays. Suppl. J. Roy. Statist. Soc., 9:128-139, 1947.

[13] D. K. Ray-Chaudhuri and N. M. Singhi. On existence and number of orthog-
onal arrays. J. Combin. Theory Ser. A, 47(1):28-36, 1988.

[14] D. K. Ray-Chaudhuri and N. M. Singhi. Corrigendum: “On existence and
number of orthogonal arrays” [J. Combin. Theory Ser. A 47 (1988), no. 1,
28-36; MR0924450 (89a:05039)]. J. Combin. Theory Ser. A, 66(2):327-328,
1994.

[15] Anne Penfold Street. Defining sets for block designs: an update. In Combi-
natorics advances (Tehran, 1994), volume 329 of Math. Appl., pages 307~
320. Kluwer Acad. Publ., Dordrecht, 1995.

13



