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Abstract

A graph G is k-tolal domination edge criticel, abbreviated to k-
critical if confusion is unlikely. if the total domination number v.(G)
satislies 1(G) = & and 2(G + €) < 7¢(G) for any edge e € E(G).
Graphs that are 4-critical have diameter either 2, 3 or 4. In previous
papers we characterized structurally the 4-critical graphs with diam-
eter four. and found bounds on the order of 4-critical graphs with
diameter two. In this paper we study a family H of 4-critical graphs
with diameter three. in which every vertex is a diametrical vertex,
and every diametrical pair dominates the graph. We also generalize
the self-complementary graphs, and show that these graphs provide
a special case of the family 2.
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1 Introduction

The purpose of this paper is to explore the properties of a certain family
of graphs with diameter three. We show that every graph H in this family
contains two copies of soe graph G, with a particular edge set between the
two copies. We then define a property that we call sub-self-complementary,
an extension of the property self-complementary, and show that hoth G
and the complement of G give the same graph H if and only if G is sub-
self-complementary.

ARS COMBINATORIA 105(2012), pp. 83-93



We begin with some background definitions and information. A set S C
V{(G) of a graph G is a dominating set if every vertex not in S is adjacent to
a vertex in S. The domination number ¥(G) is the minimum cardinality of
a domination set. A total dominating set in a graph G is a subset S of V(G)
such that every vertex in V(G) is adjacent to a vertex of S. Every graph
G without isolated vertices has a total dominating set, since S = V(G) is
such a set. The total dominating number v, (G) is the minimum cardinality
of a total dominating set. A total dominating set of G of cardinality v;(G)
is called a v, (G)-set. For sets S, X C V, if S dominates X, then we write
S > X. while if S totally dominates X, we write written S >, X. If
S = {s} or X = {z}, we also write s > X, § > z, etc. Domination-related
concepts not defined here can be found in [2].

Let G = (V.E) be a graph with order |V| = n. For y,v € V, if u is
adjacent to v, we write u L v. The open neighborhood of a vertex v is the
set of vertices adjacent to v, that is, N(v) = {w | vw € E(G)}, and the
closed neighborhood of v is N[v] = N(v) U {v}.

Denote the distance from x to y as d(z,y). If there is no path from
2 to y then d(z,y) = oc (and diam(G) = oo). If G is a graph with
diam(G) = k < oo and d(u,v) = k, then we say that u is a diametrical
verter, and {u,v} is a diametrical pair. A shortest u-v path in G is a
diametrical path, and {v : d(u, v) = k} is the diametrical set for u.

A graph G is total domination edge critical. or just -y;-critical, if v, (G +
e) < 1(G) for any edge ¢ € E(G). If G is total domination edge critical
and 7 (G) = k, then we say G is k-totel domination edge critical. (The
phrase “k-total domination edge critical” is abbreviated to “k-critical” if
confusion is unlikely.) Van der Merwe, Mynhardt, and Haynes (3] studied 3-
critical graphs. that is, 3-total domination edge critical graphs. In [5], Van
der Merwe and Loizeaux studied 4-critical graphs with diameter four, and
showed that connected 4-critical graphs have diameter 2, 3, or 4. Figure 1
gives examples of such graphs. We also showed that disconnected 4-critical
graphs have exactly two complete components, both with order at least
two. In [6] we studied 4-critical graphs with diameter two.

Figure 1: 4-critical graphs with diameters 2. 3, and 4 respectively.



It is shown in [3], and we restate it here for emphasis, that the addition
of an edge to a graph can change the total domination number by at most
two.

Proposition 1 (3] For any edye e € E(G),
7(G) =2 < %(G + €) < n(G).

Graphs G with the property v.(G + €) = % (G) — 2 for any e € E(G) are
called supercritical and are characterised in [4].

"The following proposition, from [5], characterizes any pair of non-adjacent
vertices in 4-critical graphs.

Proposition 2 For any 4-critical graph G and non-adjacent vertices u and
v, ecither

1. {u,v} =G, or

2. for either u or v. without loss of generality, say u, {w,u,v} » G, for
some w € N(u) and w ¢ N(v), in which case we write [uw,v] > G,
or

3. Jor either w or v, without loss of yenerality, say u, {z,y,u} > G —v,
and x. y and u are connected. In this case we write xyu — v.

In this paper we study 4-critical graphs with diamter three. The paper is
organized as follows: In Section 2 we define a family H of 4-critical graphs
with diameter three, and show that a graph in this family is an extension
of the composition of two identical graphs. In Section 3 we define the
concept of sub-self-complenmentary, and then give a necessary and sufficient
condition for a graph H to be sub-self-complementary.

2 A Family of 4-Critical Graphs

Let H be the family of 1-critical graphs H with the properties that every
x € V(H) is a diametrical vertex, and if y is a diametrical vertex for z,
then the set {x.y} dominates H. (We include here the possibility that the
diameter of H is infinite.) It is clear that H has no cutvertex, and therefore
no endvertex. As an example of a graph in H. consider the cycle Cs.

Lemma 3 If H € H, then diam(H) = 3 or H is composed of exactly two
complete components, each with order at leust two.

85



Proof: Clearly, if diam(H) = oo, then since H is 4-critical, H is composed
of exactly two complete components, each with order at least two. Now
suppose diam(H) < oc. Let u € V(H), and let v be a diametrical vertex
for u. If diam(H) = 2, then u and v have a common neighbor, say z,
and then {u,z.v} >, H, contradicting the fact that H is 4-critical. Now
suppose that diam(H) = 4, again with u and v a diametrical pair. If uryzv
is a shortest u — v path, then y is not dominated by u or v, contradicting
the fact that {u, v} dominates H. Hence diam(H) = 3. O

Given a graph G € H, we can construct another graph in H in the
following manner: for a given * € V(G), construct H by appending a
vertex w to x, and adding edges between w and all the neighbors of z. H
is closed under this construction, as shown in the following lemma.

Lemma 4 Let G € H. Let H be such that V(H) = V(G) U {w}, and
E(H) = E(G)U{wy: y € N[a], for some = € V(G)}. Then H € H.

Proof: By construction, N[w] = N|[x|, so for any u, v € V(G), dg(u,v) =
dy(u,v), where dg(u,v) is the distance from u to v in G. Also, for any
u € V(G), with u # x. dg(w,u) = dy(2x,u). Thus it follows that every
vertex in H is a diametrical vertex, every diametrical pair in H dominates
H.and v (H) = 7(G) = 4.

Now let u and v be non-adjacent vertices in H. If dy(u,v) = oo, then
de(u. v) = oc. Since G is 4-critical, G is composed of two complete compo-
nents, each of order at least two. Then by construction. H is also composed
of two complete components, each of order at least two, and thus H is 4-
critical. By Lemma 3, if G is connected, then dg(u,v) = dg(u,v) € 3. Now
if dgy(u.v) = 3, then (u,v) is a diametrical pair, and thus {u,v} > H+uv.
If dy(u, v) = 2, then, if v’ is a diametrical vertex to v, we must have v’ L u
and so {v'.w.v} > H + uv. Thus H is 4-critical. O

Let Y C V(G). where G € H. If Y is a diametrical set for x, then for
yi and y; in Y, both {y;,z} > G and {y;,z} > G, hence Niyi] = Nly;)
(and in fact (Y) is complete). This implies that for every v € V(G),
d(v.y:) = d(v, y;). giving us the following lemma, stated without proof.

Lemma 5 Let G € H. withY C V(G) and X C V(G). ThenY is the
diametrical set for every x € X if and only if X is the diametrical set for

every y €Y,

Lemma 5 allows the partitioning of the vertices of G into pairs of dia-
metrical sets (X*.Y*), k=1,...,r.
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In [5] we show that 4-critical graphs have no forbidden subgraph char-
acterization, i.e. any graph G can he used to construct a 4-critical graph
G®. Let F be the family of graphs constructed as follows. Take two
copies of G # K|, label them G; and G,, with corresponding vertices
up. g, ... 1, € Gyand v),vq,...,0, € Gy. Fori # j, add edge u;v; if and
only if uju; ¢ E(G}). Call the resulting graph G®. See Figure 2.

&) G,

Figure 2: A 4-critical graph G® ¢ F.

Theorem 6 (Van der Merwe and Loizeaux [5]) G® is d-critical. In
addition, if G® is connected, then diam(G®) = 3.

G¥ is disconnected if and only if G is complete, or G is the union of two
complete graphs. If G = K, then G® is K,,,, minus a perfect matching.
In particular, if G = K4, then G® is Cy. In addition, it is easy to see
that (G)® is isomorphic to (G®)-p.m., the graph (G?®) minus a perfect
matching, i.e. with edges hetween corresponding vertices (u;, v;) removed.

Theorem 7 If H e F. then H € H.

Proof: By Theorem G, H is 4-critical. If H is connected, then again by
Theorem 6, diam(H) = 3. In the construction of H, if =’ is the copy of
x, then d(x,2’') = 3, so every vertex is a diametrical vertex. Now let z
and y be a diametrical pair, and suppose {x,y} ¥ v, for some v € H.
Then without loss of generality. ¢ is adjacent to v and y is adjacent to
or coincident with /. and thus d(x.y) < 2, a contradiction. Thus every
diauetrical pair dominates H.

If H is not connected. then since H is 4-critical. H is composed of two
complete components, each of order at least two. So diam(H) = oo, every
vertex is a diametrical vertex, and every diametrical pair dominates H.

Thus H € H. (]

Now cousider a graph H € H. If H is connected, then for z,y € V(H)
such that N{x] = Ny], and a # y, the graph formed by removing y and
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all edges incident with y is also in H. Then for each diametrical set ¥ =
{y1.v2,-...yx} C V(H), remove the vertices y;, ¢ = 2,3,...,k, and all
incident edges to form the graph H, € H. Since each diametrical set in H,
is a singleton, Lemma 5 implies that the order of H, is even.

If H € H is not connected, then the two complete components of H are
two diametrical sets. In this case form the graph H, € H by removing all
but two vertices, along with their incident edges, from each component.

In each case ahove, we call H, the reduction of H in H.
Theorem 8 H € H if and only if H, € F.

Proof: If H, € F, Theorem 7 and Lemma 4 together imply that H € H.

Now suppose H € H, and form the graph H,. If H is not connected,
then H, is the disjoint union of two K>'s, and thus H, € F. Now suppose
H is comnected, and let |V (H,)| = 2n. (Note that H connected implies
that n > 3.) Without loss of generality. partition V/(H,) into the sets X =
{zi.20.... 2} and Y = {y1. 92, .. .Yn }, such that z;,y; form a diametrical
pair.

Now z; L a; implies a; L yj, else d(z;j,y;) = 2, a contradiction. This
in turn implies y; L y;, since {zi,y:} > Hy. Furthermore, z; L x; implies
x; L y; since {z;,y;} > H,, and thus y; L yj, else d(xi,y:) = 2, again a
contradiction.

Thus (X) is a copy of (Y). and for i # j, x;y; € H if and only if
xixj ¢ E((X)). But this is precisely the construction of a graph in F, that
is, H, = {X)®, and so we have H, € F. 0

If we let H, = {H, : H € H}, then H, C F C H. Note that H; is
a proper subset of F, since P‘,e @ H,. Also, by Lemma 4, F is a proper
subset of H.

3 Sub-self-complementary graphs

If the graphs G and H are isomorphic. we write G ~ H. The graph G
is self-complementary if G ~ G. In this section we introduce the concept
of sub-self-complementary graphs, and show that there exists a sub-self-
complementary graph of order n for every positive integer n # 3(mod 4).
We then give necessary and sufficient conditions for a graph G to be sub-
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self-complementary, showing that the sub-self-complementary graphs define
a proper subset of the family F.

We state the following lemma without proof.
Lemma 9 If G is self-complementary then G® ~ (G)®.

Let H and K he graphs, and let HgK be the graph formed by taking
the disjoint union of H and K, and adding edges determined by the set
E, where E is a subset of the set of edges {uv|u € V(H),v € V(K)}. For
G¥ € F, let E be the set of edges hetween the two copies of G. Then

7% = GgG.

We say P’ is a weak partition of S if P’ = P or P’ = P U {§}, where
P is a partition of S. For any graph G, let {S,T} he a weak partition of
the vertices of G, and let Es7 = {uvju € S,v € T,uv € E(G)}. Then
G = (8) g (T). We say that a graph G is sub-self-complementary if there
is a weak partition {S.T'} of the vertices of G, such that (S)g,.(T) ~
(?)-EST—(_TS. Note that if G is self-complementary, then G is sub-self-
complementary: take the weak partition {V(G), 0}.

As an example of a sub-self-complementary graph which is not self-
complementary, consider Figure 3. Here we see G = (Py)g(I1) ~ (Py)o(K7),
a graph on five vertices. As shown, we can also write G = (K UK ) g(Ps) ~
(KT UK))e(Ps). where E cousists of a single edge uv such that u €
V(K UK,), and v € V(Ps) is an end vertex. Note that the isomor-
phisius on the left can he generalized as G = HyK, where both H and K
are self-complementary (but G may or may not be so).

Now consider a graph G which is sub-self-complementary, say G =
HeR ~ HeK. It h = V(H)| and k = |V(K)|, then

h(h — 1)
9

\E(H)| + |E(E)| = He-1)

. and |E(K)| + |E(K)| = 3

Now HeK = HgK implies that
|E(H)| + | E(N)| = |E(H)| + |E(EK)|,
and combining these two equations, we find that we must have

hMh-1)+k(k—1)
1 .

|E(H)] + |E(K)| =

The equation above constrains the possibilities for the number of vertices
in H and K: we must have both /. and k equivalent to 0 or 1{(mod 4), or
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2

(Pa)o (K1) (K1 UK))e(Ps)

(Pr)e(IK1)

!
)
—
C
=
-
A
]
PN
o
A

Figure 3: Four isomorphisms of a sub-self-complementary graph.

both h and k equivalent to 2 or 3(mod 4). This implies that |[V(HgK)| =
h + k # 3(mod 4). On the left in Figure 3 we have h = 4, k = 1, and
|E(H)| + |E(K)| = 3. On the right in Figure 3 we have h = 2, k = 3, and
|E(H)| + |E(K)| = 2.

It is well known that there exist self-complementary (thus sub-self-comple-
mentary) graphs of order n for n = 0(mod 4) and n = 1(mod 4). (For a
construction see Chartrand and Zhang [1].) For any even n, say n = 2m,
(Gn)o(Gr) is a sub-self-complementary graph, where G,,, is a graph on m
vertices. Thus we state the following lemma:

Lemma 10 There ezists a graph of order n which is sub-self-complementary
for every positive integer n # 3(mod 4).

Let H and K be graphs, and let E he a set of edges between H and K.
We take E to be the set of edges {uv:u € V(H),ve V(K),uv g E}.

Theorem 11 If G is sub-self-complementary, then G® ~ (G)&.

Proof: Suppose G is sub-self-complementary, say G = (M;)p(N;) ~
(M)p(N1). Then G = (My)p(N1) = (M1)p(N1). If a copy of G is
G' = (M2)o(N2). with My, N3, and Q copies of M;. Ny and P respec-



~ tively. then
C® = GG’ = ((M)p(V) ((Ma)o(Va)),

and

@° =Cel = ((M)p(M)_ ((Ma)g(N2)),
where E' is a copy of E — p.m. Let ¢ : G® — (G)® be a mapping such that
o My — My,
¢: Ny — N,
& My — M,

and
©: Ny — V)

are isomorphisms. (See Figure 4.) Now let u and v he vertices in G®,
If w and v are in M; and N; respectively, then uwv € P if and only if
o(u)o(v) € E’. The case is similar for v and v in M> and Nj respectively.
If u and v are in Afy and Afy respectively, then uv € E if and only if
o(u)o(v) € E’. Again, the case is similar for « and v in N; and N,
respectively. Finally, if « € M, and v € N,, then wv € E if and only if
o(u)o(v) € P, and if © € Ny and v € M,, then ue € E if and only if
o(u)¢(v) € Q. Thus é: G? — (G)? is an isomorphism. O

Ge @

Figure 4: An isomorphism o from G? to (G)®, illustrating Theorem 11.

Theorem 11 shows that G® ~ (G)® is a necessary condition for G to
be sub-self-complementary. Theoremn 13 below shows that this condition
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is also sufficient. Prior to this theorem, we show (Lemma 12) that an
isomorphism from G® to (G)® can be assumed to map copies of vertices
in G€ to copies of vertices in (G)€.

Lemma 12 If G® ~ (C)® , then there is an isomorphism o : G — (G)®
such that for each i, o(v;) is the copy of o(u;) in (G)®, where v; is the copy
of u; in G©.

Proof: Let ¢ : G® — (G)® be an isomorphism. Let (X*,Y*), for k =
1,...,r be the pairs of diametrical sets in G®. Since N[y;] = Nly;] for all
vi,yj € Y*, it follows that N[p(v:)] = N(é(y;)] for all ¢(v:), d(y;) € d(Y'*).
Thus ¢(G®) is isomorphic to m o ¢(G®), where 7 allows a permutation of
the vertices in ¢(Y*), for each k.

For each k, and for each 7; € X*, let y; € Y* be the copy of z;. For
o(2;) € (G)®, let m(d(2i)) = (). If ¢(x;) is the copy of @(y;), let
m(6(y:)) = O(y:). If b(z:) is the copy of é(y;), let T(d(x:)) = (y;). Then
7 is a permutation of the vertices in (b(Y'“), foreach k, andsooc =mwog is
an isomorphism from G® to (G)®. and o(v;) is the copy of o(u;) in (G)®,
where v; is the copy of «; in G9. (]

Theorem 13 If G® ~ (G)? , then G is sub-self-complementary.

Proof: Let ¢ : G& — (C)® be an isomorphism. Let G and G be the two
copies of G in G®. and let G, and Ga he the two copies of G in _(G)@. By

Lemma 12, we can assume that o(x;) is the copy of ¢(v;) in (G)® if and
only if u; is the copy of v; in G®.

If o(Gy) = G, then G is self-complementary, and we are done. So let
&(G1) = (M1)q(N2), where M) is an induced subgraph of G; and N is an
induced subgraph of Ga.

Note that no vertex in N, is a copy of a vertex in M. It follows then
that, with Ny = G =M. N ~ No. Lety' € G be the copy of y € G}, and
let P={ry:2 € My, ye Ni.xy € Q}. Then (M) p(Ny) ~ (M) (Na).
Now M; = AT and N, = N for some induced subgraphs M and N of Gy,
with G = MpN for some edge set R. Also, ay € P if and only if 2y’ € Q
if and only if 2y € Gy, which is the case if and only if xy € G). Therefore
P is an exact copy of R, and

MgN = G = Gy ~ (M1)p(Ny) ~ MpN.

Thus G is sub-self-complementary. 0



We have defined a sub-self-complementary graph G as a graph whose
vertices can be partitioned into two sets, such that the graph G can be
formed either from the graphs induced by these two vertex sets, or the
complements of these induced graphs, together with a common edge set.
We finish this paper with a generalization of this idea, which we hope will
lead to additional research.

Let P = {P,. P,,..., P} be a set of graphs. For 1 i< j<m,let
Eij be a subset of the set of edges {uv : u € V(P,),v € V(P;)}, and let
E =U, ;Ei;. Let (P, E) be the graph formed by taking the disjoint union
of the graphs in P, and adding edges determined by the edge set E.

We say that a graph G is self-complementary of order m, or se(m),
if m is the smallest integer such that G = (P,E) ~ (P, E), for some
set of graphs P = {Py. Py,.... P,} and corresponding edge set E, where
P = {P.P.....P,}. Graphs which are self-complementary are se(1),
and graphs which are sub-self-complementary, but not self-complementary,
are s¢(2). Note that if G is sc(m), then m < [V(G)|. For any integer r,
the graphs of order + can be partitioned according to the value of their
self-complementary order.
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