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Abstract

In this paper, we give matrix representations of the k-generalized order-
k Perrin Numbers and we obtain relationships between these sequences and
matrix. In addition, we calculate the determinant of this matrix.
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1. Introduction

1.1. Perrin Numbers

Perrin sequences were analyzed by Edouard LUCAS in 1978 (American
Journal of Mathematics, vol.1, page 230ff). In 1899, the same sequence
was mentioned by R. Perrin (L’Intermediaire Des Mathematicians), whose
name was given to the sequence[5].

Studies on this sequence have been done in two main fields. The first
one is the conjecture of Lucas. If R, is the n*® Perrin number then
"n | R(n) < n prime”, e.g. R(19)=209 and 19|209. Lucas conjectured that
this is true for all values so that the Perrin sequence can be used as a test for
non-primality; any number n that doesn’t divide R(n) is composite. But
later it was found that there are composite integers n that divide R(n).
Such composite numbers are called Perrin pseudoprimes, the lowest being
n=5212=271441.
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The second is on Binet-like formula. The Perrin numbers can be written
in terms of powers of the roots of the equation

2 —z-1=0.
This equation has 3 roots; one real root p (known as the plastic number)
and two complex conjugate roots g and r. Given these three roots, the
Perrin sequence analogue of the Fibonacci sequence Binet formula is

R(n)=p"+¢" +r".

Since the magnitudes of the complex roots g and r are both less than 1,
the powers of these roots approach 0 for large n. For large n, the formula
reduces to

R(n) ~p".

This formula can be used to quickly calculate values of the Perrin se-
quence for large n.

The ratio of successive terms in the Perrin sequence approaches p, which
has a value of approximately 1.324718. This constant bears the same re-
lationship to the Perrin sequence and the Padovan sequence as the golden
ratio does to the Fibonacci sequence. [6].

1.2. Fibonacci Numbers
For n > 2, Fibonacci sequence is defined by

Fn = F, ..1+Fn—-2

with initial conditions Fy = 0, F; = 1. Some terms of Fibonacci sequence

are
0,1,1,2,3,5,8,13,21,34,....

01
ForA—-[1 1

] , one can obtain Fibonacci sequence by using equality

20 _ 1 Fa
[ =[]
Kalman[2] generalized the Fibonacci sequence as

Foyr=coFn+caiFnp+--- + ck—1Fntk-1

where ¢; (i =0, 1, ..., (k — 1)) are constants. For k=2 and ¢cp =¢; =1, the
generalized sequence reduces to the ordinary Fibonacci sequence.

In addition, Kalman{2] obtained a closed form formula for the general-
ized sequence by matrix method.
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Er{1] defined k sequences of the generalized order-k Fibonacci numbers
as
k

gfl=chg,‘,_j forn>0and1<i<k
Jj=1
with boundary conditions

;i _f1, i=1-n _
g"_{O, otherwise for1-k<n<o0

where ¢;, 1< j < k are constant coefficients and g}, is the n** term of the ith

sequence. When k = 2, the generalized order-k Fibonacci sequence reduces
to the conventional Fibonacci sequence.

Furthermore, Er[1] defined companion matrix A like Kalman:

¢ ¢ c3 Ck—1 Ck
1 0 0 0 0
01 0 0 0
A=10 0 1 0 o0
0 0 0 1 U
and got the equality
Qriz-j-l 9:;
In In-1
g:l—l =A g:l—2
9:;—k+2 gf.-k+1
Then, the author defined the matrix
g5 g?. gli
G = 93.'_1 gnm1 v Gne
grl;—k-}-l 93—k+1 T gf.-k+1
and showed
Gns1 = AG,,.

Also, Karaduman(3] demonstrated that G; = 4 and G, = A™. Thus,

he proved that
_J (-1)", keven
det Gr, = { 1, kodd °



2. Main Results

Similar to the definitions of Er[1] and Kih¢ and Tasci[4], we also can
define k-sequences of the generalized order-k Perrin numbers.

Definition 2.1. k-sequences of the generalized order-k Perrin numbers for
n>0and 1<i<kare

k-1 k
Ri=S"R. , ,=Ri o +Ri s+ +Ri =) Ri;-Ri.

For example, for k = 5 we have,

4
R, = z Ri_; y=Ri ,+R, 3+R, 4+ R, _s.

j=1
Initial conditions of these sequences for n < 0 are

1, k4+n+i=2
(-1), k+n+i=3

R = 3, n+i=1
2, n+i=3
0, otherwise

where R is the n** term of the i*" sequence. For i =1 and k = 3 the
generalized sequence reduces to the ordinary Perrin sequence.
Let us obtain terms of sequence by matrix multiplications. Define k& x k

square matrix A such that

01 11
10 00
A=10 1 0 of, (1)
00 10
So, we have
. 0 1 11 .
}53‘1 10 - 00 R’fﬂ
n -f/o1 .- 00 't"l (2
Rii2]l o 0 ... 1 of LBakn
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It is possible to find any term of the sequence, if any successive k terms

are given.
To deal with the k—sequences of the generalized order-k Perrin se-

quences simultaneously, we define k¥ X k square matrix R,, as

R} R2 RE
P e ®)
erx—k+1 R121—k+l Rﬁ—kﬂ
Generalizing equation (2) we get the following theorem:
Theorem 1. Let R, be the matrix of the form (3). Then, we have
Rny1 = ARy, (4)
Proof.
01 .- 11[ R: RZ ... R}
P R e T

Ry +-- 1+ Rl iy RAii+ “]éz"' Ry en

n n

R

1
Rn—k+2 n—-k+2
k k
Rn—-l +-- ':‘ Rn—k+l
Ry
k
Rn—k+2
1 2 k
Rn-ll»l Rn~21-1 to Rn’tl
Rn Rn e Rn
= : : .. : = Rns1.
1 ) 2 k ’
Rn—k+2 Rn—k+2 e Rn-k+2
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Lemma 2. Let K be a k x k square matrix as

[z 0 y 0 0]
0 =z 0 00
k= + i )
o 00 .- 0y
1 00 z 0
| 1 -1 0 0z

Then,
y*=2 4+ ¥ 4 (-1)P22PyP~!, k, even

y*=2 4 z* 4 (-1)P2Py?,  k, odd
where p = |£] (|a) the largest integer not larger than a).

| |
Proof. Let us expand the determinant with respect to the first column,

det K = 2.(=1)% |B|+ (=1).(=1).|C| + L(=1)**|D|
= z.|B|+(-)*C| + (-1)*|D].

Then, by writing determinants of (k — 1) x (k — 1) matrices B,C and D for
even and odd integers, we obtain,

detK = {

z 0y --- 00
0z 0 .- 00
Bl=| i b ST CrETT k even
"l o0 o0 0 y| zk-1, k, odd
0 00 z 0
-1 0 0 0 =
0 vy 00
z 0 --- 00
IC| = e, A —yk—2+(—1)”’lx”y”"1, k, even
B 6 6 o 1 y*2, k, odd
Y
-1 0 0 =z
0y - 00
z 0 --- 00
j={: : - R 0, k, even
_(:) O K 0 T (~1)PzPyP, K, odd
en e y
00 --- z 0

and by substituting |B|, |C| and |D| we get the result. i
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Theorem 3. For p = | %],

3 (_l)n [2k—2 + 3k + (_1)1’6”] , k, even
det R, = { [2k-2 +3k 4+ (_1)p6p] k, odd

Proof. First, we calculate the determinant of the matrix A (1), by expand-
ing the determinant with respect to the last column,

100 .-- 0
010 --- 0

det A — (_1)k+l 001 .- 0 = (_1)k+1.
000 .-+ 1

(k=1)x (k—1)
Now,
detR, = det(A"Rp)
det(A™) det(Ro)
(det A)™ det(Ry)
((—1)**1)" det(Rq).
To calculate Ry, substitute z = 3 and y = 2 in (5) and get the result

Il

detR, = (1) [y*~2 + 2% + (~1)P22PyP7 ], k, even
()% [y*=2 + 2% + (—1)PzPy?], &k, odd
_ (-n* [2"‘2 +3k 4 (—1)”6”] , k, even
- [2-2 + 3% + (—1)76P] k, odd
|
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