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Abstract: For a graph G=(V(G), E(G)), the transformation graphs
G*~* is the graph with vertex set V(G) U E(G) in which the vertices
a and § are joined by an edge if and only if a and B are adjacent
or incident in G while {a,8} ¢ E(G) , or a and 8 are not adja-
cent in G while {a,8} C E(G). In this note, we show that all but
for a few exceptions, G*~* is super connected and super edge-connected.

Key words:  transformation graphs, super connectivity, super edge-
connectivity

1 Introduction

With the rapid development of communication networks, many the-
oretical problems have come into focus, one of which is the reliability of
the network. A network is often modeled as a graph. The classical mea-
sure of the reliability is the connectivity and the edge-connectivity. For

further study, many variations have been introduced, which are known as
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higher connectedness, such as max-A(max-&),super-A (super-«) k-restricted
edge-connectivity, etc. For classical connectivity, it is known that &k(G) <
MG) < 8(G), where k(G), A(G) and §(G) denote the connectivity, edge-
connectivity and minimum degree of G, respectively. A graph G is said
to have maximal connectivity (edge-connectivity) if x(G) = §(G) (MG) =
8(G)). Furthermore, a graph G is said to have super connectivity (edge-
connectivity) if every minimum vertex(edge) cut set is the neighbor ver-

tex(edge) set of a vertex with the minimum degree.

In designing networks with high reiability, some graph operations, such
as total graphs, line graphs and jump graphs, is an effiecient way. Inspired
by the above operations, Wu and Meng defined the following transformation
graphs[1).

Definition 1.1 Let G = (V(G), E(G)) be a graph, and x, y, z be
three variables taking values + or -. The transformation graph G*¥# is the
graph having V(G) U E(G) as the vertex set, and for o, 8 € V(G) U E(G),
« and B are adjacent in G®¥ if and only if one of the following holds:

(1), B € V(G), o and B are adjacent in G if x=+; and are not adjacent
in G if x=-.

(2)a, B € E(G), c and § are adjacent in G if y=+; and are not adjacent
in G if y=-.

(3)a € V(G),B € E(G), a and § are incident in G if z=+; and are

not incident in G if z=-.

Thus, as defined above, there are eight kinds of transformation graphs,
among which G+++ is usually known as the total graph of G. In (1], the
authors have proved that:

theorem 1.2: For a given graph G, G*~ is connected if and only

if G contains no isolated vertices.
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In [6], Zhang and Huang charactered the maximally connected trans-
formation graph G+~ +.

Theorem 1.3: For a given graph G, x(G*~+) = §(G*~1) if and
only if none of the following three conditions apply:

(1)G has at least two components, one of which is K2, and §(G) > 1.

(2)G has at least two components, one of which is K3, and 6(G) > 2.

(3)G = K, . 4

Corollary 1.4: If G 2 2K, then A(Gt~+) = §(G+—+).

In this paper, we study the super connectivity and super edge-connectivity

of G-+,

2 Some Basics

Throughout the paper we only consider finite and simple graphs. Un-
defined symbols and concepts can be found in [5).

Let G=(V(G), E(G)) be a graph. |V(G)| and |E(G)| are called the
order and the size of G, respectively. For a vertex v of G, dg(v) denotes
the degree of v; Ig(v) denotes the set of all edges incident with v. The
neighborhood Ng(v) of v is the set of all vertices of G adjacent to v. The
symbols A(G),8(G), A(G), #(G),w(G), a(G) denote the maximum degree,
the minimum degree, the edge-connectivity, the connectivity, the number
of components, and the independence number of G, respectively. For any
X € V(G), G[X] denotes the subgraph of G induced by X. For any X,Y C
V(G) such that XNY =0, let [X,Y]={e:e=uv € E(G),u€ X,veY}.

As usual, P,, C,, K, are respectively, the path, cycle, and complete
graph of order n. For two positive integers m and n, K, ,, is the complete

bipartite graph with two partite sets containing m and n vertices. In
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particular, K ,, is called a star. The graph K. i* » is obtained by K} ,, adding
one edge. The graph K7, is obtained by adding only one edge between
Ky and K;. We say two graphs G and H are disjoint if they have no
vertex in common, and denote their union by GU H.

A jump graph J(G) is a graph whose vertices are the edges of G, and
two vertices of J(G) are adjacent if and only if the corresponding edges of G
are independent. Clearly, G*~* contains J(G) as a subgraph. Concerning
the connectivity of J(G), in [2], Wu and Meng proved the following two
theorems:

Theorem 2.1: Let G be any graph, J(G) is connected if and only if
G contains no edges that is adjacent to every other edge of G and G % Cy
or K4.

Theorem 2.2: Let G be a graph having a connected jump graph,
then x(J(G)) = g — A(e) = 6(J(G)) — 1.

Let p and g denote the order and size of G, respectively. For any
v € V(G), dg+-+(v) = 2dg(v), and for any e = zy € E(G), dg+-+(e) =
g+3—(da(z) +de(y)). Thus, §(G+~+) = min{26(G), ¢+ 3 — A(e)}, where
A(e) = max{dg(z) + da(y) : e = zy € E(G)}.

3 Super Connectivity of G*~+

In this section, we study the super connectivity of Gt=+, We will
prove that:

Theorem 3.1: For a given graph G which contains no isolated ver-
tices, G*—* is super connected if and only if none of the following conditions
holds:

(1)6(G) = 1, G has at least tow components and one of which is Kj or
K.

s
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(2)6(G) = 2, G has at least tow components and one of which is Cy or K.
(3)6(G) = 2, G has a component Gy which has cut vertex v such that one
component of Gg — v is K.

(4)6(G) = 3, G has at least tow components and one of which is K.

(B)G = Ky p-1(p 2 3), Ki':p—l(p 24), Ki,_1(p=>4).

Proof: Since G+~ has the graph G as a subgraph, it is easy to see
that if conditions (1),(2) or (4) apply, there exists a minimum vertex cut
T such that one component of G+~+\T is Ky, K 2,Cy, K3 or K4 which is
also a component of graph G, respectively. Clearly, k(G*~t) < §(G*+~)
and Gt~ is not super connected. If condition (3) applies, there exists a
minimum vertex cut T such that one component of G*~*\T is K, which is
also a component of G \ {v} and x(G+~*) = §(G*+~+), Gt~ is not super
connected. If condition (5) applies, £(G*~*) < §(G*+~+), G+~ is not su-

per connected. Thus, the necessity is proved. Now we prove the sufficiency.

Suppose that T is a minimum vertex cut of G*=%, then G*=*\ T is
not connected. If one component of G*¥~* \ T has only one vertex, then
the result holds. Hence, in the following, we assume that each component

has at least two vertices. Clearly, It suffices to show that [T] > §(G+—).

Case 1: There exists a component Gp in G*~+\T', such that V(Gyp) C
V(G).

Subcase 1.1: «(Gyp) > 3.

Suppose z,y and z are any three independent vertices in Gy, then
Ng+-+(z) N E(G), Ng+-+(y) N E(G) and Ng+-+(2) N E(G) are pair-wise
disjoint. Thus

IT| 2 |Ng+-+(2) N B(G)] + |Ng+-+(y) N E(G)| + [Ngs-+(2) N E(G)|

=dg(z) + dg(y) + de(2) > 36(G) > §(G*+—7).

107



Subcase 1.2: «(Gop) = 2.

Suppose z and y are any two independent vertices in Go. If there
exists a vertex z, such that z € (Ng+-+(z) NV(G)) U (Ng+-+(y) N V(G))
and z € V(Go), then

IT| 2 |Ng+-+(2) N E(G)| + [Ng+-+(y) N E(G)| +1

= de(z) + de(y) +1 > 26(G) +1> §(G*~).

Otherwise, we have V(Go) = {z, y}U(Ng+-+(z)NV(G))U(Ng+-+(y)N

V(G)).

Claim 1.2.1: For any u,v € V(Go)\{z,¥}, v and v are not adjacent
in G.

Ife =uv € E(G), then e € T and e ¢ (Ng+-+(z) N E(G)) U
(Ng+-+(y) N E(G)), thus
IT| > |Ng+-+(z) N E(G)| + |Ng+-+ (@) N E(G)| + 1> §(G*~7).

Claim 1.2.2: |V(Go) \ {z,y}| =1 or 2.

Since Gy is connected, |V(Go) \ {z,¥}| = 1. If [V(Go) \ {z,y}| = 3,

then there are at least three independent vertices in Gp, a contradiction.

By the above two claims, we see that Go is isomorphic to one of
{C4, P3, K, 2}. It is easy to see that: If Go = C4 and 4(G) = 2, then
IT| = 4 = §(G*~—), thus conditions (2) applies, a contradiction. If Go = Ps
and 6(G) = 1, then |T| = 3 > 26(G). If Go = K12 and §(G) = 1, then
|T| = 2 = §(G+~—*), thus conditions (1) applies, a contradiction.

Subcase 1.3: «(Go) =1.

That is, Gp is a complete subgraph. Let |V(Go)| = m, then
IT| > M(ﬂ;-l) > (5(0)-;1)6(0)'

Since gs_(g%mgl - 26(G) = ﬂgﬁ%ﬁﬁl, we have |T| > 26(G) 2
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0(G*~*) when 6(G) > 4(m > 5). It is suffices to consider the cases in
which m=2,3, or 4. Let N(Go) = {u: e = uwv € E(G),v € V(Gp),u €
V(G)\ V(Go)}.

Subcase 1.3.1: m=2.

Then Gp = Ky, and |T| = de(x) + de(y) — 1 + |[N(Go)|-

If IN(Go)| > 2, then |T| > 25(G) + 1 > §(G+—).

If IN(Go)| = 6(G) =1, then |T| 2 3 > 24(G) = 2.

If IN(Go)| = 1 and §(G) = 2, then |T| = 4 = §(G*~*) only if condi-
tions (3) applies, a contradiction.

If|N(Go)| = 0, then |T'| = 1 < 25(G) = 2 only if conditions (3) applies,
a contradiction.

Subcase 1.3.2: m=3.

That is, Go = K3. Let V(Go) = {z,y, z}, then

[T} = de(z) + da(y) + de(z) — 3 + |N(Go)).

If [N(Go)| 2 2, then |T| > 28(G) + 1 > §(G*+—+).

If IN(Go)| = 1, then 6(G) < 3. It is easy to verify that |T| > 6(G*—+).

If IN(Go)| =0, then |T'| = 3 < 26(G) = 4 only if conditions (2) applies,
a contradiction.

Subcase 1.3.3: m=4.

Then Gp = Ky, and |T| = Y dg(v) — 6+ |[N(Go)| = 26(G) + |N(Go)|-

If IN(Go)| = 1, then |T| > 25(G) + 1 > §(G*+—¥).

If [N(Go)| = 0, then |T| = 6 and §(G) < 3. If §(G) < 2, then
|T| > 6(G*—+). If §(G) = 3, |T| = 6 = 6(G*~*) only if conditions (4)

applies, a contradiction.

Case 2: Each component of G*~% \ T has at least one vertex of
E(G) and J(G) is connected.

In this case, there exists a set Tg C V(J(G))NT, such that J(G)\ Te
is disconnected. By Theorem 2.2, |[Tg| > ¢ — A(e). Let e, f be any two
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vertices, with the restriction that they lie in different components of G+r—t+\
T, since e and f are not adjacent in G+, they must have a common end
vertex, say u, in G. Clearly, u € T, and TNV(G) # 0. Let Ty = TNnV(G).
Without loss generality, suppose e = uv € V(G1), f =uw € V(G2) where
G, and G2 are two different components of G*—+\T. If |T| < 6(G*~7),
we have the following claims.

Claim 2.1: 1< |Ty|<3.

If |Tyv| > 4, then |T| = |Tg| + [Tv| = ¢ — A(e) +4 > dg+-+(e) 2
8(G+—*), a contradiction.

Claim 2.2: [Ty|=1.

If |Tv| = 2,3, then |T| = |Te| + |Tv| 2 3. |T| < §(G*=*) only if
0(G) =2 2.

If v,w ¢ Ty, then Ny)(e) C T. Otherwise, suppose g € Nj)le)
and g € T, then g € V(G1), u is also the common end vertex of gand f in
G. Thus g € Ny()(e), a contradiction.

Since dg(v) > 2, there exists one edge h such that h ¢ Njc)(e) and
h €T, then |T| = |[Nyg)(e)l +|Tv| +1 = 8(J(G)) +3 > §(G*T ).

IfveTy,w¢gTy orwe Ty,v ¢ Ty, without loss of generality, we
only consider v € Ty, w & Tv. Since G; is connected, there exists one
edge h in Gy such that h and e are adjacent in Gt+~*, so u is not incident
with k. On the other hand, k and f are not adjacent in G*~%, they have
common end vertex u, a contradiction.

If v,w € Ty, then Ty = {u,v,w}. Since Gy is connected, there exist
one edge g in G such that g and e are adjacent in G*t—*,s0 uand v are not
incident with g. As g and f are not adjacent in G*~*, they have common
end vertex which must be w. On the other hand, since G2 is connected,
there exist one edge h in G2 such that k and f are adjacent in Gttt ,sou
and w are not end vertex of edge h. Because h and e are not adjacent in

G*+-+*, they have common end vertex which must be v. But g and h are
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not adjacent in G*~*, they have common end vertex which must be in T,
a contradiction.

Claim 2.3: Nyg)(e) CT.

If g € Njycyle) and g ¢ T, then g € V(G;). On the other hand, u
is also the common end vertex of g and f in G. We have g ¢ N, Jc)(e), a
contradiction.

Claim 2.4: dg(v) < 2.

If dg(v) > 3, there exists g = vz,h = vy such that {g,h} € T and
{9:h} & Nic)(e). Thus |T| > [Nygyle)l + [{u,9,h}| > dge-+(e) >
8(G*—), a contradiction.

By Claim 2.4, we have that §(G) < 2.

Subcase 2.1: §(G) =1.

Then, §(G*~*) = 2. Since J(G) is connected, |Tg| > 1. If |Tg| > 2,
then |T'| > 3 > §(G*~+), a contradiction. If |Tg| = 1, then |T| = 2 =
0(G*~) only if condition (6) applies, a contradiction.

Subcase 2.2: §(G) =2.

Let V; = V(G;) N V(G), i=1,2. By Claim 2.4, dg(v) = 2. Thus, there
exists a vertex r; in V(G1) such that v and z, are incident with an edge,
say g1, in T. Thus, E(G[V;]) € T for i=1,2 and |T'| < §(G*~+) only if
IE(G[VA])| + |E(G[V2])] < 3, so G[V4] or G[V2] is K3, condition (3) applies,

a contradiction.

Case 3: J(G) is disconnected.
By Theorem 1.1, G 2 Cy or Ky, or there exists an edge adjacent to
every other edges in G. It is easy to verify that among these graphs, G+—+

is not super edge-connected only if condition (5) applies.
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4 Super Edge-connectivity of G+

In this section, we study the super edge-connectivity of G*~*. Our
main result of this section is the following:

Theorem 4.1: Let G be a graph not containing no isolated vertices.
Then G+~ is super edge-connected if and only if G has no isolated edges
and G Z K n.

Proof: The necessity is self-evident, we now prove the sufficiency.

Case 1: J(G) is disconnected.

By Theorem 1.1, G = Cy4 or Ky, or there exists an edge adjacent to
every other edges in G. It is easy to verify that among these graphs, Gt—+

is not super edge-connected only if G is Kj p-1.

Case 2: J(G) is connected.

Let S be a minimum edge cut set of G*~+. Then G*~*— S has exactly
two components, say G1 and Ga. If one component has one vertex, then
the result holds. In the following, we show that if each component has at
least two vertices, then that |S| > §(G*~ 7).

Subcase 2.1: One component contains E(G).

Without loss of generality, we assume that E(G) C V(G1). Let
|V(G2)| = pe. Since for any v € V(Gz), v is incident with dg(v) edges
inG. Wehave || > Y. de(v)2p2-0(G).

veV(Gz)

If po > 3, |S| > 26(G) = 6(G+—).

For pp = 2, if p = 2, then G = Kb, Gt~+ = Kj is super edge-
connected. If p > 3, then |S| = 25(G) only if G = K> U H where graph H
contains no isolated vertices.

Subcase 2.2: One component contains V(G).

Without loss of generality, we assume that V(G) C V(G,). Since G2
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is connected and |V (Gz)| 2> 2, there exists e; = u;v; € V(Gy), i=1,2, such
that e; and ey are adjacent in G*—+. If V(G) = V(G,), then |S| > 2¢ =

Y dg(v) 2 46(G) > 6(G**) . So we have E; = V(Gy) N E(G) # 0.
ii‘t,(liz(vi) N E; =m;, i=1,2. Then dg(v;) — 1 > m; > 0 and e; is adjacent
with |E}| — m; vertices of E} in Gt~ for 1 <4 > 2. Thus

S| 2 2IV(G2)| + (IE1| = ) + (1B | — m2) = 2¢ — (m1 + me)

2 ), de(v) = ((de(v1) — 1) + (de(v2) — 1))
veV(Q)
>6G)+2> 686G ).

Subcase 2.3: V;=V(G)NV(G;)# 0 and E; = E(G)NV(G;) # 0,
i=1,2.

Since J(G) is connected, there exists a subset S; C E(J(G))N S, such
that J(G) — Sy is disconnected. By Theorem 3.2, |S,;| > ¢ — A(e).

Subcase 2.3.1: |[V}, V]| > 2.

That is, there are at least two edges between V; and V5 in Gt~ F,
which contribute at least four edges to S. Thus

|S| 2 |S5] +4 > dg+-+(e) 2 8(GH—T).

Subcase 2.3.2: |[W}, ;]| =0.

That is, E; C G[Vi], i=1,2, and for any e € E,, f € E, e and f is adjacent
in G*—*, Thus

|S] = |Ex| - |E2] = |Er|- (g = |Ex]) 2 = 1= g+ 3 - A(e) + (A(e) — 4).

If A(e) > 5, then |S| > 6(G+—*).

If 2 < A(e) < 4 then §(G) =1 or 2. For §(G) =1, §(G*t~*) =2, and
|S| = 6(G*~*) = 2 only if G = K, U H where H has no isolated vertices.
For §(G) = 2, we have A(e) = 4. Thus G is the union of cycles and g > 6,
and §(G*t~*) = min{4,q — 1} = 4. Hence |S| > 5 > §(G*+~ ).

Subcase 2.3.3: |[V},V2]| =1.

Let e = uv be the unique one edge between V; and V;, and without

loss generality, we assume e € F;. If |Ey] = 1, then |S| > §(J(G)) + 2 =
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g+ 3 - A(e) > §(GY*) and the equality holds only if G is the star,
contradicting the assumption that J(G) is connected. So we have |E;| > 2,
and for any g € E; \ {e}, f € B2, g and f are adjacent in G*~F. Thus

IS| 2 (1Bx| = 1) - |B2| + 2= (|Eh| - 1) - (¢~ |Ea[} + 2

>(g—-2)+2=g+3—A(e)+ (A(e) = 3).

If Ae) > 4, |S| > 6(G*™).

If 2 < A(e) < 3, then §(G) = 1, §(G*~*) =2, and |S| > §(G*~*) for
g > 3. It is easy to see that for ¢ < 2, G*~* is not super edge-connected
only if G is 2K>, K 2.

Thus, we complete the proof of the Theorem 4.1. Clearly, we can con-

tain the Corollary 1.4.
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