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Abstract

This paper investigates the number of rooted simple bipartite maps on
the sphere and presents some formulae for such maps with the number of
edges and the valency of the root-face as two parameters.
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1. Introduction

The concept of rooted map was first introduced by Tutte. His series of
census papers [23-26] laid the foundation for the theory. Since then, the
theory has been developed by many scholars such as Arqueés [1], Brown [7,8],
Mullin et al. [21], Tutte [27], Bender et al. [2-6], Liskovets et al. [13,14],
Gao [9,10] and Liu [15-20]. A good survey of results in this area can be
found in [12]. In particular, bipartite maps, both rooted and unrooted,
were enumerated in [14]. The maps investigated there and in most of the
above-cited articles were allowed to have loops and/or multiple edges. In
this article we treat rooted bipartite maps that are simple - that is, they
have neither loops nor multiple edges.

Although much work has been done on enumerating rooted planar maps,
many classes of simple maps are still untreated. In 1983, Liu [18] investi-
gated for the first time the enumeration of general simple planar maps with
the number of edges of the maps as one parameter and an explicit formula
was obtained, and then Liu also discussed the enumeration of rooted gen-
eral simple planar maps with the valency of root-vertex and the number of
edges as parameters [19] and with the partition of face-degrees as parame-
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ters [20]. Some functional equations were provided. In 2002, Ren and Liu
[22(1 investigated the enumeration of simple bipartite maps on the sphere
and the projective plane according to the root-face valencies and the num-
ber of edges of the maps. An explicit formula with the number of edges as
one parameter was given. But it was very complicated and a formula for
the number of simple bipartite maps on the sphere with the root-face va-
lency and the number of edges as parameters could not be obtained at that
time. In addition, the result on rooted planar unicycled simple bipartite
maps is in error.

In this paper, on the basis of what was obtained in [22] we obtain the
parametric expressions of the functional equations as shown by Theorem A
and Corollary 2.2 in [22]. By employing Lagrangian inversion the solutions
are found. Further, formulae for the numbers of rooted simple bipartite
maps on the sphere and rooted planar unicycled simple bipartite maps
with the root-face valency and the number of edges as two parameters are
obtained.

Now, we define some basic concepts and terms. A map is a connected
graph cellularly embedded on a surface. A map is rooted if an edge and a
direction along that edge are distinguished. If the root is the oriented edge
from u to v, then u is the root-vertez while the face on the right side of the
edge as seen by an observer on the edge facing away from u is defined as
the root-face. In this paper, maps are always rooted and planar.

For convenience, we introduce the following generating function for the

set M of maps:
fM(SE, Y, z) = Z xm(M)ys(M)zn(M)’
MeM

where m(M), s(M) and n(M) denote the root-face valency, the number of
edges and the number of inner faces of M, respectively. In addition, we
write that

gM(xs y) = fM(mx Y, 1))
hm(y) = am(1,y) = fm(L,9,1).

For the power series f(z), f(z,y) and f(z,y, 2), we employ the following
notations:

orf(z), O f(z,y) and Oy f(z,9,2)

to represent the coefficients of ™ in f(x(?, z™y® in f(z,y) and z™y%2" in
f(z, v, 2), respectively. Terminologies and notations not explained here can
be found in [15].

2. Functional equations

Let 2 denote the set of rooted simple bipartite maps on the sphere and

fﬂ(x’ Y, z) = Z xm(M)ys(M)zn(M) (1)
MeRr
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be its enumerating function. The enumerating function f = fa(z,y,2)
satisfies the following functional equation as shown by Theorem A in [22]:

2 2
2 c2_ [ Tyz . Téyz . L
z°yf (1~x2+z(f 1)+1)f+(—1_m2+z)f +1-2=0, (2)
where f* = f(1,y, z).

If f(z,y, z) is rewritten as

f(.'l', Y, Z) = Z akzk: (3)

k>0

then ay is the enumerating function of rooted planar simple bipartite maps
with k + 1 faces.

The enumerating function of rooted trees satisfies the following func-
tional equation as shown by Corollary 2.1 in [22]:

zyal — o +1=0. (4)
If the coefficients of z is considered, then the enumerating function

of rooted planar unicycled simple bipartite maps satisfies the following
functional equation as shown by Corollary 2.2 in [22]):

(a0 - o + ZUOILY 220) (0 _1yia1,y) -1y =0, (5

Let z =1 in (2); then we have
Lemma 1. The enumerating function g = gg(z,y) satisfies the following
functional equation:

22(1-2%)yg® - [a%y + (1 - 2?)hlg + (1 —2® + 2?)h =0,  (6)

where h = g(1,y).

3. Enumeration

In this section we will find the explicit formulae for enumerating func-
tions g#(z,y), ha(y) and a)(z,y) by using Lagrangian inversion.
The discriminant of equation (6) is
§(z,y) = [z?y + (1 — 2?)h)? — dzy(1 - 2®)(1 — 2% + 2y)h.  (7)

Now, if we rewrite the discriminant in the form

5(z,y) = (h — az®)%(1 - 2b2?), (8)
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then by (7) and (8), we have

a+bh=y+h,

a® + 4abh = (y + h)% + 4y(1 — y)h,

a?b = 2y(1 — y)h. 9)
Let

1-X-2)2 2)

PEENa-a T aE ao
By (9) and (10), one may find that

A=A -N?) 1-A-)

Y=TinIa—n’ T Ao (11)

Further, let A = ﬁ";’- By (11) we have the parametric expression of the
function h = hg(y) as follows:
_n(l+n-1°)
(1+2n)%

Theorem 1. The enumerating function h = hg(y) has the following
explicit expression:

h=1+n-7° (12)

s=11254=1)

2% +5j — 25 +4 (2
ha()=1+>_> > z—s(;Té)—_'(is)

s>1i=0 j=0

s+j5-1 s—i—j s
(TS -

Proof. Applying Lagrangian inversion with one parameter (28] to (12), we
obtain

_ y* &1 (1+2n)*(1 —2n)
ha(y) =1+3 Sl dp—1  (1+19— )

s>1 =0
gy ¥t e gy )
| 3= 8
& sl dn 1- iﬂﬁ =0

g8 5 00

s>1i=0 j=0

s—i—] _ s—t—J o
x [(s—i—2j—1) 2(3—i—2j—2)]y
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s-ll%—lj . .
_ 2i+55-2s44 (2s
sy 3 PR (T)

s>1i=0 j=0

s+j-1 s—i—3 s
x( j )(s—i—zj—l)y'

This completes the proof of Theorem 1. ]
By Eq. (6) we have

:r: y+ (1 —-22)h - /i(z, y (14)

2x2(1 — z%)y

Now, let

2 =01 — N1+ ))2 (15)

By (7-11), (14) and (15), one may find that
242
(1-2)g=1- L oA (16)

1-X Q=N -0n

By the first part of (11), (15) and (16), we have the following parametric
expression of g = ge(z,y):

Al = A= 22
a:z =0(1 - 0/\)(1 + /\)2, = (—l-(Wl_g),
6 622
— 2 — —
===l =5+ Tona - (17)
and from which we get
AR * _ (1-200(1-3)) a8)
CNTL0 onsen| . A=A - ) A - A=A

Theorem 2. The enumerating function g = gg(z,y) has the following
explicit expression:

gﬂ(x: y) =1+ x2y + Z gm,nzzmysa (19)
m,s>2
where
_}gs ”[m+2g—s( 2 )(i+j+1)
== s—2i—3 3
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m-—1
(2m — 2k — 2)}(25 — 2m + 2k — 1)!
+ kzﬂ m—k=1)l(m—F+ 1) + 1)

Ry irj+2\]| (s+i
x(2s—2m—l+2k)!( j )]( i ) (20)
in which

R; ; =3(2s — 2m — 4l + 2k)(m — k- 1)(I + 1)
—(2s—2m—4l+2k—4)(m—k+1)(2s—2m—l+2k),
l=s -2 —j—m+k. (21)

Proof. By employing Lagrangian inversion with two parameters [11], from
(17) and (18) one may find that

g L+ A)2e-2m=1(1 — A)s=1(1 — 20))(1 — 3))

92(z,¥)= D 9ga L .
m,s20 @ (1 — OA)m+1(1 — X — A2)s+!

(/] 02)\2 $2my‘°

" [l_ =" (1—)\)(1—-0)\)] 1-122

(m—k,s) (1 + A)23—2m+2k—1(1 _ )\)s-l

= Z Z B(s,3) (1 — okt

m,s>0 k=0
(1—200)(1-3N[ 0 622 s
X A=A - ATy T2 Ta-na-em” Y

m 25—-2m+2k—1
— 2 (m—k,s) _(1+2)
=1+z2y+ Z Z 96,2 (1 — OAy—k+1(1 — ))2

m,s>2k=0
1-200)(1-3N[, 6 622 s
rpmecn e b S VROV i y

L3) - -
m L3 (m—k,s—2) (1+A)2" 2m+2k—1

4
=l4+2%y+ > DD (si z)a(,m T oy

m,s>2 k=0 =0
02)2
z2m ]

(1—200)(1 — 3
TERNEL [‘ ytaona-en)© Y

e

1—

+1
i

—_

m L3

=1+z%y+ Z 2 (s

m,s>2 k=0 i=0
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8 [a(m_k,a_zi) (14 A)2s=2m+2k=1(1 _ 29))(1 — 3))
(1)) (1 — GA)m—Fk+1(1 — ))i+2
_ glm=k=1,s=20) (1 + A)2s=2m+2k-1(1 — 20X)(1 — 3))
(6,) (1 — OX)ym=F+1(1 — \)i+3

+ pm—k—2,3-2i-2) (14 A)2-2m+2k-1(1 _ 26))(1 — 3)) L2y
(.0 (1 — OA)™—k+2(1 — 1)i+3 y

13) 2s—1
+1 o (1+ A 1-3\
=l+zfy+ D (sz )[a -2 (1)_,\)(“2 )

m,s>2 i=0

gf (@m =2k =2 _po-zi-mprss (L N22ME11 - 3
—k—1)(m—k)I > (1-X)+3

s 3(2m — 2k — 2)!
g(m k=2 (m—k+1)!

2i—m+k (1 + /\)23—2m+2k ! 1 _ 3’\) 2m s
(1 — )\)z+3

x 85~

=l+a2%y+ Y iif: (S-H){(i+;+1)6§'2i"j(1+)\)2s‘1(1—3/\)

m,s22 i=0 §=0

m—1 2m — 2k — 2)! i i+2 . S
_,;(m(—r;:—l)!(mlk)!( :77 )3l+ (14 A)2e-2m+2k-1(] _ 3))

+"§ 3(2m — 2k — 2)! i+)+2
(m—k—2)(m—k+1)! J

X A(l + /\)23—2m+2k-l(1 _ 3/\)}x2mys’

wherel=5-2i—j5—m+k. So

I.JS-2I . .
4i+2j—s 2s i+7+1
@yHm+ZZZ[ srdioe( B Y(i+I+1)

m,s22 i=0 j=0

N ’:‘:“ (2m — 2k — 2)}(2s — 2m + 2k — 1)IR;
(m—k—1)i(m—k+ )i+ 1)!(25 — 2m — | + 2k)!

y (z +5+ 2)] (s-?—z)xz,nys,
7 1
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in which
Ri; =3(2s —2m — 4l + 2k)(m — k- 1)(1 +1)
—(2s—-2m—4l+2k—4)(m—-k+1)(2s—2m—1+2k). (22)

This completes the proof of Theorem 2. u]

By (4) we have the parametric expression of the function og = ao(z,y)
as follows:

2y =n(-m), aolzy)= 7= (23)

By using Lagrangian inversion with one variable [28], from (23) one may
find that the enumerating function g = ao(x,y) has the following explicit
expression:

_ (2s)! 25 s
O’o(xay) = ; S!(S T 1)'!1‘2 Yy, (24)

which is just as same as that in [27).
By (5) we have

2 —
1 =7 21;23,% [x weolli) = 00) _ (g - 1)(ao(1,v) - 1)]. (25)
Let
1
P(z,y) '—'1—_—2-;%,
2 —
Qz.y) == y(aci(l_, ZZ o) _ (a0 — 1)(eo(1,y) — 1). (26)

By (23) and the first part of (26), we have the following parametric
expression of P = P(z,y):

1

ly=n(l-9), P=

Applying Lagrangian inversion with one parameter [28] to (27), we ob-
tain

- 2Py A7 g iy )2
P(:z:,y)—1+m§ZI il gt (=T = 2m) ]n=0
m—1 541/ i
=1+3 > z (Tjn!u)?;?‘_ 13)! 2! pamym, (28)
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Now, combining (24) with the second part of (26), one may find that

2 o s
Qz,y) = Zzsl((sj.)l)l z?yet!

§22 k=2

(2k)!(2s — 2k)! -
ZZ KWk + 1)I(s — k)I(s — k + 1)! z2kys, (29)

$23 k=2

Theorem 3. The enumerating function a; = a;(z,y) has the following
explicit expression:

(2s)! 22k s+l
cn(:c y) ;,czzsl S+1)'

m-1 s ; . .
27%1(j + 1)(2m — j — 2)!(2s)! 2(m+k), m+s+1
+ Z Z Z ml(m — j — 1)Isl(s + 1)! ’ Y

m>1 §=0 k=
;2_2 3=0 k=2

= (2k)!(2s — 2k)! .
- ;,kzz Rk +1)i(s — k)i(s — k+ 1)1 =y

SR 2 (4 1)(2m — j - 2)!
-2 22 mi(m — j — 1)IK!(k + 1)!

n>l =0 k=2

2k)1(2s — 2k)! m s
(5(_"3))!(:—-184- 1)!2:2( +’°)y +s (30)

Proof. By (25), (26), (28) and (29), we have

215+ 1)(2 -2
o (z,y) [1+ZZ U+ 1)(2m - - 2) 2mym]

m31 j=0 mi(m — j - 1)!
[;gs'((fil gk ot
"2 Lzz e B
;kzz p (s2j-)'1)| ztyt!

m-—1 s j+l . 1 2 a4 ' 1
+ Z Z Z 2+ G+1)(@2m—j 2)'(25)'I2(m+k)ym+s+l

(m—g —1)ls! 1
= mi(m —j — 1)ls!(s +1)!
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s—-1
(2k)!(2s — 2k)! ,
-2 Kk +1)I(s — k)!(s — k + 1)!”%3’

8>3 k=2

el 9it(5 4 1)(2m — § — 2)1(2k))(2s — 2k)! k)
=2 2 ) i DR+ e~ Bls R+ DI Y

21 9=l =
':‘é.a] 0 k=2

This completes the proof of Theorem 3. ]
Remark. This result corrects Corollary 4.2 in [22].
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