The Rainbow Connectivities
of Small Cubic Graphs

Futaba Fujie-Okamoto

Mathematics Department
University of Wisconsin-La Crosse
La Crosse, WI 54601, USA

Garry L. Johns

Department of Mathematical Sciences
Saginaw Valley State University
University Center, MI 48710-0001, USA

Ping Zhang
Department of Mathematics

Western Michigan University
Kalamazoo, MI 49008, USA

ABSTRACT

A path P in an edge-colored graph (not necessarily a proper
edge-coloring) is a rainbow path if no two edges of P are assigned
the same color. For a connected graph G with connectivity (G)
and an integer k with 1 < k < £(G), the rainbow k-connectivity
rck(G) of G is the minimum number of colors needed in an edge-
coloring of G such that every two distinct vertices u and v of
G are connected by at least k internally disjoint u — v rainbow
paths. In this paper, the rainbow 2-connectivity of the Petersen
graph as well as the rainbow connectivities of all cubic graphs
of order 8 or less are determined.
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1 Introduction

Let G be a nontrivial connected graph on which is defined an edge-coloring
c: E(G) — {1,2,...,k}, k € N, where adjacent edges may be colored the
same. A path P in G is a rainbow path (with respect to c) if no two edges of
P are colored the same. The graph G is rainbow-connected (with respect to
c) if every two distinct vertices of G are connected by a rainbow path (see
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[2])- In this case, the coloring c is called a rainbow edge-coloring (or simply
a rainbow coloring) of G. The minimum integer k for which there exists
a k-edge-coloring of G that results in a rainbow-connected graph is called
the rainbow connection number rc(G) of G. In [1] the rainbow connectivity
k+(G) of a graph G with connectivity (G) = ¢ > 1 is defined as the
minimum number of colors needed in an edge-coloring of G such that every
two distinct vertices v and v of G are connected by at least £ internally
disjoint u — v rainbow paths.

Suppose that G is an ¢-connected graph (£ > 1). It then follows from
a well-known theorem of Whitney [7] that for every integer k with 1 <
k < ¢ and every two distinct vertices u and v of G, the graph G contains
k internally disjoint v — v paths. The rainbow k-connectivity rex(G) of
G is the minimum integer j for which there exists a j-edge-coloring of G
such that for every two distinct vertices u and v of G, there exist at least k
internally disjoint u—v rainbow paths. Thus re;(G) = re(G) is the rainbow
connection number of G and if £K(G) = ¢, then rce(G) = £r(G). By coloring
the edges of G with distinct colors, we see that every two vertices of G are
connected by at least £ internally disjoint rainbow paths and so reg(G) is
defined for every integer k with 1 < k < £. Furthermore, rcg, (G) < re, ()]
forl <ky <k <4t

The rainbow connection number and rainbow connectivity of complete
graphs and complete bipartite graphs were studied in [2, 3]. The chromatic
index of a graph G is denoted by x'(G).

Theorem 1 Forn > 2, re(Ky) =1 and k. (Kn) = X'(Ka) =2[n/2] - 1.

It was shown in [3] that rcx(K,) = 2 if k=2and n>4,or k=3and
n > 5, or k =4 and n > 8. More generally, the following was verified in [3].

Theorem 2 For every integer k > 2, there erists an integer f(k) such
that if n > f(k), then rex(Kn) = 2.

For integers s and ¢ with 2 < 5 < ¢, it was shown in (2] that
re(Ks,¢) = min { I—\'/f-l ) 4} . @)

For 2 < k < r, it was shown in [3] that rex(Krr) =3ifk=2andr 23 or
if k = 3. The following more general result was established in 3]

Theorem 3 For every integer k > 2, there exists an integer T such that
reg(Ker) = 3.

For a connected graph G and an integer k with 1 < k < &(G), the k-
diameter diam(G) of G is the maximum of the minimum length of a longest
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path in any set of k internally disjoint u — v paths, where the maximum is
taken over all pairs u, v of distinct vertices of G. Thus diam, (G) = diam(G)
for every connected graph G. The following observation is often useful.

Observation 4 For every connected graph G and every integer k with
1<k <K(G),
reg(G) = diamg(G).

As a consequence of Observation 4, we have the following.
Observation 5 If G is a 2-connected graph with girth g, then
rce(G) 29— 1.

The cubic graphs of minimum order having girth g are commonly re-
ferred to as g-cages. It is well known that the unique 3-cage is the complete
graph Kj, the unique 4-cage is the complete bipartite graph K3 3, and the
unique 5-cage is the famous Petersen graph P. By Theorem 1 and (1),
rcy(K4) = 1 and rey(Ks3) = 2. Furthermore, it was shown in [2] that
rc;(P) = 3. Since the connectivity of every g-cage, g > 3, is 3, the rain-
bow connectivity of every g-cage is the minimum number of colors needed
in an edge-coloring of G such that every two distinct vertices u and v of
G are connected by three internally disjoint u — v rainbow paths. It was
shown in (3] that res(G) = £.(G) = 3 if G € {K4, K33} and in 1] that
rez(P) = k. (P) = 5.

In this paper, we show that the previously missing rainbow 2-connectivity
of the Petersen graph is 5 and determine rci(G) for all connected cubic
graphs G of order 8 or less and for every integer k£ with 1 < k < &(G).
We refer to the book [4, 5] for graph theory notation and terminology not
described in this paper.

2 The Rainbow Connectivities of Cubic
Graphs of Order 8

If G is a connected cubic graph of order n < 8, then n = 4,6,8. If n =4,
then G = K4 and x(K4) = 3. It is known that rc;(K4) = 1, rea(Ky) =
2, and rc3(Ky) = kr(K4) = 3 (see [3]). If n = 6, then G = K33 or
G = K3 x K3 and so #(G) = 3 in each case. Also, it is known that
re;(Kazs) = 2, rep(Ks3) = 3, and rea(K3z3) = k.(Ka3) = 3 (see [3]).
Furthermore, it was shown in [3] that rc, (K3 x K3) = 2, reo(K3 x K3) =3,
and rcz(K3 x K2) = k(K3 x K2) = 6. Thus, we now consider the rainbow
connectivities of the five connected cubic graphs of order 8. Figure 1 shows
these graphs (see [6]).
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Figure 1: Connected cubic graphs of order 8

2.1 The Rainbow Connectivities of Q3

The connectivity of the 3-dimensional cube Q3 is 3 and rci(Qs) exists for
1 < k < 3. Since diam;(Q3) = 3 and there is a 3-edge-coloring of Q3 such
that every two distinct vertices of Q3 are connected by a rainbow path (see
Figure 2), it then follows by Observation 4 that rc;(Q3) = 3. Thus we now
determine rcz(Qs) and rc3(Qs) = £-(Qs), beginning with rcz(Qs).

Figure 2: A rainbow 3-edge-coloring of Q3

Theorem 6 rcp(Qs) = 4.

Proof. Since diamp(Qs) = 3, it follows that rca(@3) > 3. We claim
that rca(Qs) > 4. Assume, to the contrary, that Q3 has a 3-edge-coloring
such that every two distinct vertices of Q3 are connected by two internally
disjoint rainbow paths. Let such a 3-edge-coloring ¢ of Q3 be given. Then
every 4-cycle in Q3 contains at least two edges that are assigned the same
color. We consider two cases.
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Case 1. Two adjacent edges in a 4-cycle of Q3 are assigned the same
color, say uius and uguz in C : uy,ug, u3, uq,u; are colored a. (See Fig-
ure 3(a).) Then one of the two u; — uz rainbow paths has length 4, which
is impossible.

u) a Ug
C

(a)
Figure 3: Steps in the proof of Theorem 6

Case 2. No two adjacent edges in a 4-cycle of Q3 are assigned the same
color. Thus ¢ is a proper edge-coloring. Hence we may assume that ujug
and u3ug4 in C are colored a. Consider u; and u4. Since uy, ug, us, 14 is not
a uj — u4 rainbow path, u;, vy, v4, 24 must be a u; — u4 rainbow path. This
implies that c¢(u v)) = b, e(viv4) = a, and c(ugvy) = d, where a, b, and d
are the three colors used by c. (See Figure 3(b).) Then c(uiu4) € {a,b,d},
which is a contradiction since ¢ is a proper edge-coloring. Thus, as claimed,
rc2(Qs) > 4.

Since the 4-edge-coloring of Q3 given in Figure 4 has the property that
every two distinct vertices of (J3 are connected by two internally disjoint
rainbow paths, it follows that rca(Q3) = 4. u

Figure 4: The rainbow 2-connectivity of Q3
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Theorem 7 rca(@s) = #-(Q3) = 7.

Proof. The 7-edge-coloring of Q3 shown in Figure 5 has the property that
every two distinct vertices of Q3 are connected by three internally disjoint
rainbow paths. Therefore, ,(Q3) < 7.

Figure 5: £,(Q3) <7

Consider an edge-coloring ¢ of @3 such that for every two distinct ver-
tices = and y of Qs, there exist three internally disjoint = —y rainbow
paths. If z and y are adjacent, then every set of three internally disjoint
= — y rainbow paths consists of the path z,y and either (i) the two paths
of length 3 or (ii) one path of length 3 and one path of length 5. This im-
plies that every two nonadjacent edges in a 4-cycle in Q3 must be assigned
distinct colors. On the other hand, if z and y are vertices of Q3 such that
d(z,y) = 2, then every set of three internally disjoint  — y rainbow paths
consists of the two paths of length 2 and one path of length 4. Therefore,
the edges of each 4-cycle in Q3 must be assigned distinct colors and so c is
a proper edge-coloring of Qs.

Suppose that ¢ : E(Qs) — {1,2,...,kr(Q3)} is a &y (Q3)-edge-coloring
of Q3 possessing the desired property. Considering u; and us, we see that
at least one of the paths P : uj,v1,v2,v3,u3 and P’ : u1,v1,v4,93,u3 isa
rainbow path, say the former. Hence the four edges uyv1, V1V2, v2v3, and
vaus are assigned distinct colors. Furthermore,

c(ugve) € {c(uiv1), c(v1v2), c(vaus), c(vaua)}.

Therefore, k-(@3) > 5. We now consider two cases, according to whether
three edges of Q3 are colored the same by c or not.

Case 1. At least three edges of Qs are colored the same by c. We may
assume, without loss of generality, that c(uiuz) = c(ugvz) = c(v1v4) = 1.
Also, by the argument given above, we may further assume that c(u1v1) =
2, e(v1vz) = 3, c(vavs) = 4, and c(uzve) =5 (see Figure 6). On the other

134



hand, consider the pair us and v; and observe that the path ugz,ug, u;, v,
must be a rainbow path. Thus, c(ugus) # 2. If £.(Q3) = 5, then c(uguz) =
3. However then, there is no us — v4 rainbow path of length 4, a contradic-
tion. Therefore, «,(Q3) > 6 and c(uaus) # 3.

0O
Uq u3

Figure 6: A step in the proof of Theorem 7

Suppose, in fact, that «.(Q3) = 6. Then c(uguz) = 6. Observe that
each of the paths

. TN .
P :uj,ug,v2,v3,v4, P’ :uy,v1,v4,v3, and P":uz,u3,v3,v4

must be a rainbow path and so c(vzvs) € {1,2,...,6}. Thus c(vsvg) > 7,
contradicting the assumption that x,.(Q3) = 6. Therefore, if three edges of
Q3 are colored the same by ¢, then £.(Q3) = 7.

Case 2. No three edges of Q3 are colored the same by c. Hence no
color is used more than twice, which implies that x,.(Q3) = 6. Suppose
that x.(Q3) = 6. Then each color is assigned to exactly two edges of
Q3. Assume, without loss of generality, that c(uv;) = 1, ¢(viva) = 2,
c(vaus) = 3, c(vsusg) = 4, and c(ugv2) = 5 (see Figure 7). We consider the
edge u4v4. Since c(uqvq) € {2, 3,6}, there are two subcases.

Subease 2.1. ¢(uqvq) = 6. Then either c(ujuz) = 6 or c(uzuz) = 6, say
the former. Also, c(vsvy) = {1,5}. The path ug,vs,vs,vs is a rainbow
path, implying that ¢{vsvy) # 5. However then, c(vsvg) = 1 and there is
no up — vz rainbow path of length 4, which is a contradiction.

Subcase 2.2. c(ugqvq) € {2,3}. By symmetry, we may assume that
c(uqvy) = 2. Observe that the path us,vs,v3,vq,u4 is a rainbow path,
implying that c(vsvs) € {1,6}. Also, u4,us,us,vs is a rainbow path and
so c(uzug) # 5. Furthermore, c(usus) € {1,6}. If c(uguz) = 1, then
¢(vzvg) = 6, which in turn implies that c(ujus) = 6. Therefore, c(vivs) = 5.
However then, there is no uz — v4 rainbow path of length 4, which is im-
possible. Thus, c{uguz) = 6. Then observe that c(vsvs) = 6, c(usuq) =1,
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Uq us

Figure 7: A step in the proof of Theorem 7

and c(ujuz) = 3. However, this implies that there is no u; — v4 rainbow
path of length 4.

Therefore, we conclude that «.(Q3) # 6 and 50 £+(Q3) = 7. [

2.2 The Rainbow Connectivities of Mg

For each integer n > 3, the graph M,, is called the Mébius ladder of order
n. For n = 8, the graph Ms is a cubic graph of order 8, diameter 2, and
connectivity 3. In this section we determine the rainbow connectivities of
Ms.

Theorem 8 rc;(Ms) = 2, rea(Ms) =4, and rc3(Ms) = kr(Msg) = 5.

Proof. We first show that rc;(Ms) = 2. Since diam;(Ms) = 2, it follows
that rc;(Ms) > 2. On the other hand, there exists a rainbow 2-coloring of
Ms (see Figure 8(a)) and so rc; (Ms) < 2. Hence rcy(Ms) = 2.

Next, we show that rcy(Ms) = 4. Since there exists a 4-edge-coloring
of Mg which has the property that every two distinct vertices of Mpg are
connected by two internally disjoint rainbow paths (see Figure 8(b)), we
have rco(Ms) < 4.

For the vertices v; and vz, every set of two internally disjoint v; — v2
paths contains a path of length at least 3, implying that rep(M3z) > 3 (=
diama(Ms)). We now show that rc; (M) > 3. Assume, to the contrary, that
there exists a 3-edge-coloring ¢ : E(Ms) — {1,2,3} of Mg with the desired
property. Consider the vertices v; and vs. Then the path v, vs, ve, v2 must
be a rainbow path. Without loss of generality, suppose that c(v1vs) = 1,
c(vsvg) = 2, and c(vave) = 3. Similarly, for the vertices vs and ve, the path
s, V1, V2, Vg Must be a rainbow path, implying that c(v1v2) = 2 = ¢(vsve).
Applying the same argument, we obtain c(v1vg) = c(vqvs). Now consider
v; and vs. Since neither vy, v2,vs, s NOI v1,Vs, V4, Vs 18 rainbow path, it
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Figure 8: Rainbow colorings of M3

follows that each set of two internally disjoint v; —vs rainbow paths contains
a path of length at least 4, which is impossible. Therefore, rco(Ms) = 4.

Finally, we show that x.(Mg) = 5. Observe that there exists a 5-
edge-coloring of Mg such that every two distinct vertices are connected
by three internally disjoint rainbow paths (see Figure 8(c)). Therefore,
4 < K,-(Ms) < 5.

We show that k,.(Mg) > 5. Assume, to the contrary, that there exists a
4-edge-coloring ¢ : E(Mg) — {1,2,3,4} of Mg having the desired property.
Let C : v,v2,...,v8,v; be a Hamiltonian cycle in Mg and consider a pair
of vertices = and y such that d¢(z,y) = 3, say v; and v4. Then every set
of three internally disjoint v; — v4 paths must contain the paths v;,vs, vy
and v), vg,v4. So the third path must be either

. ! .
P.'Ul,1)2,1.13,’04 or P : U1, V2, Vg, V7, V3, V4.

Since P’ has length 5, it cannot be a rainbow path. Therefore, the path P
must be a rainbow path. By symmetry, this implies that for every pair of
vertices ¢ and y with de(z,y) = 3, the 2 — y path of length 3 consisting
of three consecutive edges in C' must be a rainbow path. Also, this implies
that ¢ is a proper coloring.

Since C contains 8 edges and every three consecutive edges in C' must
be colored differently, it follows that exactly two edges in C' are colored the
same. Without loss of generality, suppose that c(vjviy) = i for i = 1,2, 3.
Then ¢(vqvs) € {1,4}. We now consider these two cases.
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Case 1. c(vqvs) = 1. Then c(vsvg) = c(v1vs) = 4 and {c(vsv7), c(v7vs)} =
{2,3}. Since c is a proper coloring, c(vavs) = 3 and so c(vgv7) = 2 and
c(vrvg) = 3. This implies that c(vqvg) = 2 and so c(v1v5) = 3 = c(vavs) or
c(v1vs) = 2 = c(vqug). If c(v1v5) = c(vovg), then there is no set of three
internally disjoint v; — vo rainbow paths; while if ¢(vivs) = c(v4vs), then
there is no set of three internally disjoint vy — vs rainbow paths. Therefore,
this case cannot occur.

Case 2. c(vqus) = 4. Then exactly one of the edges vsve and vguy is
colored 1. If ¢(vvr) = 1, then it follows that c(vsvs) = 2 and c(vivs) = 3,
implying that c(vivg) = 4, c(vrvs) = 3, and c(vsv7) = 4. Performing
the permutation (1432) on the colors, we obtain the coloring described in
Case 1. Therefore, c(vsv7) # 1 and so c(vsvg) = 1. Hence exactly one
of the edges vgv7 and vyus is colored 2. If c(v7vg) = 2, then c(vevr) = 3
and c¢(cyvg) = 4. Performing the permutation (13)(24) on the colors, we
obtain the coloring described in Case 1. Hence suppose that c(vevr) = 2.
If c(v7vs) = 4 and c(v1vs) = 3, then by applying the permutation (123) on
the colors, we obtain the coloring described in Case 1. Therefore, we may
assume that c(vrvg) = 3 and c(v1vs) = 4.

Observe that c(v;vs) € {2,3} and without loss of generality, we may
assume that c(vivs) = 3. In order to guarantee the existence of three
internally disjoint v; — v2 rainbow paths, the path vy, vs, Vg, v2 must be a
rainbow path, implying that c(vave) = 4. Similarly, considering vz and va,
it follows that c(vavy) = 1. However then, there is no set of three internally
disjoint v; — v3 rainbow paths, which is a contradiction. Hence, this case
cannot occur either.

Therefore, k-(Mg) > 4, implying that x.(Ms) = 5. ]

2.3 The Rainbow Connectivities of F; (1 <¢< 3)

We now determine the rainbow connectivities of the graphs F; (1 <i < 3)
shown in Figure 1, beginning with F}, as shown in Figure 9. Observe that
k(F1) =3.

Theorem 9 rc;(F) = 3, reo(F1) = 4, and rea(F1) = & (F1) = 7.

Proof. We first show that rcy(Fy) = 3. Since diam;(Ff) = 3, it follows
that re;(Fy) > 3. On the other hand, there exists a rainbow 3-coloring of
F, (see Figure 9(a)) and so rc;(F1) < 3, that is, rc; (F1) =3.

Next, we show that rca(Fy) = 4. Since there exists a 4-edge-coloring
of F, which has the property that every two distinct vertices of Fy are
connected by two internally disjoint rainbow paths (see Figure 9(b)), we
have rcz(F1) < 4. On the other hand, for the vertices w; and ws, every set
of two internally disjoint w; — we paths contains a path of length at least
4, implying that rco(F1) > 4 (= diama(F1)). Therefore, req(Fy) = 4.
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Figure 9: Rainbow colorings of F}

Finally, we show that x,(F}) = 7. Observe that there exists a 7-edge-
coloring of Fy which has the property that every two distinct vertices of Fy
are connected by three mternally disjoint rainbow paths (see Figure 9(c)).
Therefore, £,.(Fy) < 7.

Now we show that x,(F)) > 7. Let there be given a k-edge-coloring
c: E(F1) — {1,2,...,k} of Fy with the desired property. Observe the
following:

(a) Each of the three edges u;»; (1 < i < 3) must be colored differently.
(Consider the pair u; and ug of vertices, for example.)
(b) c(uruz), c(ug,u3) & {c(uiv:i):1<i< 3}

(c) The four edges belonging to each of the two w; —ws paths of length 4
must be colored differently. (Consider the pair w) and ws of vertices,
for example.)

(d) None of the four edges wju;, wivi, wous, and wovs shares a color
with the edges u;v; (1 < ¢ < 3). (Consider the pair w; and ug of
vertices, for example.)

By (a) and (b), suppose, without loss of generality, that c(u;v;) =4 (1 < i <
3), c(uyug) = 4 and c(uzu3z) = 5. By (c) and (d) then, c(wyuy) # c(waus)
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and c(wyuy), c(waus) ¢ {1,2,...,5}. This implies that a new color must
be available for each of the edges wyu; and waus in order to guarantee
the existence of three internally disjoint  — y rainbow paths for every two
distinct vertices z and y of Fy. Therefore, rcg(F1) > 7 and so reg(F1)=7.m

Next, we determine the rainbow connectivities of the graph F3 in Fig-
ure 10. Since k(F3) = 2, only rc; (F2) and rca(F2) exist.
Theorem 10 rc;(F3) = 3 and rca(F2) = k+(F2) = 5.

Proof. We first show that rcy(F2) = 3. Since diam,;(F2) = 3, it follows
that rc;(F2) > 3. On the other hand, there exists a rainbow 3-coloring of
F; (see Figure 10(a)) and so rcy(F2) < 3, that is, rcy (F?) =3.

Ui n

Figure 10: Rainbow colorings of F2

Next, we show that «.(F2) = 5. Since there exists a 5-edge-coloring of
F, which has the property that every two distinct vertices are connected by
two internally disjoint rainbow paths (see Figure 10(b)), kr(F2) £5. On
the other hand, every set of two internally disjoint u; —v1 paths consists of
a path of length 1 and a path of length at least 5, implying that x,.(F2) >
5 (= diamy(F3)). Therefore, we conclude that &.(F2) = 5. "

We now determine the rainbow connectivities of F3 as shown in Fig-
ure 11. Observe that x(F3) = 3.

Theorem 11 rc;(F3) = 3, re2(F3) = 4, and re3(F3) = kr(F3) = 6.

Proof. We first show that rc;(F3) = 3. Since there exists a rainbow
3-coloring of F3 (see Figure 11(a)), it follows that rc;(F3) < 3. On the
other hand, since diam;(F3) = 2, it follows that rc;(F3) > 2. We show
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that rc;(F3) # 2. Assume, to the contrary, that there exists a rainbow
2-coloring ¢ : E(F3) — {1,2} of F5. Without loss of generality, suppose
that c(uqva) = 1. Since u;, ug, v2 is a rainbow path for i = 1,3, it follows
that c(ujuz) = e(ugua) = 2. Since ug,u;,v; is a rainbow path for i = 1,3,
it follows that c(u;v1) = ¢(ugvs) = 1. On the other hand, since Ui, Vg, Wy
is a rainbow path for i € {1,3} and j € {1,2}, it follows that c(viw;) =
c(viwz) = c(vswy) = c(vswz) = 2. However then, there is no v; — vs
rainbow path, a contradiction. Therefore, rc,(F3) > 3 and so rc;(F3) = 3.

U2
wi w2
F3 : n v3
U ug

(b)

Figure 11: Rainbow colorings of F3

Next, we show that rco(F3) = 4. Since there exists a 4-edge-coloring
of F3 which has the property that every two distinct vertices of F3 are
connected by two internally disjoint rainbow paths (see Figure 11(b)), we
have rca(F3) < 4. Furthermore, for the vertices u; and vy, every set of two
internally disjoint u; — v; paths contains a path of length at least 4 and so
rca(F3) > 4 (= diamg(F3)). Therefore, rea(F3) = 4.

Finally, we show that x,(F3) = 6. There exists a 6-edge-coloring of F3
such that every two distinct vertices of F3 are connected by three internally
disjoint rainbow paths (see Figure 11(c)), so k,(F3) < 6. On the other hand,
observe that «.(F3) > rcg(F3) > 4.

We first show that x.(F3) > 5. Let ¢ : E(F3) — {1,2,...,k} be a k-
edge-coloring of F3 such that every two distinct vertices of F3 are connected
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by three internally disjoint rainbow paths and consider the five edges uius,
UgU3, UgVs, Uaw), and vowg. Observe first that ¢ must be a proper coloring.
Therefore, c(ujuz) # c(ugus). Without loss of generality, assume that
c(uyuz) = 1 and c(uguz) = 2. Now consider the pairs {u;,w;}, where i €
{1,3} and j € {1,2}. Observe that the path u;, u2, v, w; must be a rainbow
path, implying that (i) c(uzvz), c(vow;) € {1,2} and (ii) c(uzvz) # c(vaw;)
for j = 1,2. Therefore, we may assume, without loss of generality, that
c(ugve) = 3 and c(vow;) = 4. Since w), vz, w2 must be a rainbow path,
it then follows that c(vowz) ¢ {1,2,3,4}, implying that we need another
color for the edge vows. Therefore, k.(F3) > 5 and so k.(F3) € {5, 6}.

Next we show that x.(F3) > 5. Assume, to the contrary, that there
exists a 5-edge-coloring c of F3 having the desired property. Since one path
in every set of three internally disjoint u; — u; rainbow paths (1 < i <
j < 3) must contain the path containing the edges u;v; and u;v;, it follows
that the three edges u1v;, ugv2, and uzvs must be colored differently. We
have seen that the five edges ujug, ugus, ugva, vaw), and vowp must be
colored differently and without loss of generality, suppose that c(ujug) =1,
c(ugus) = 2, c(ugvz) = 3, c(vaw;) = 4, and c(vawz) = 5. By symmetry,
there are two other sets of five edges, namely {uju2, u1u3, u1v1, V11, 1wz}
and {ujus, ugus, uvs, vswi, vaws}, for which we need to use five different
colors. This implies that the colors 1, 2, and c(u;u2) cannot be used more
than twice. (Note that c(ujug) # 1 and c(ujuz) # 2.) Consequently, two
colors are used three times each and three colors (the colors used for the
three edges u;u; (1 < i < j < 3)) are used twice each. Then at least one of
the colors 4 and 5 must be used three times, say the color 4 is used three
times. Then c(ujuz) € {3,5}. Furthermore, since ¢ is a proper coloring,
the other two edges colored 4 are either (i) vyws and uavs or (ii) vswz and
uyv;. However, by symmetry, these colorings are essentially the same and
so we only consider the coloring described in (i).

Case 1. c(ujuz) = 3. Then the color 5 must be used three times and so
c(uyv) = c(vaw;) = 5. However, there is no set of three internally disjoint
u; — ua rainbow paths, which is a contradiction.

Case 2. c(uyuz) = 5. Then c(viwy) = c(vswz) = 3, implying that
c(uyv1) = 2 and c(vsw;) = 1. However, there is no set of three internally
disjoint u; — v3 rainbow paths, another contradiction.

Therefore, there is no 5-edge-coloring of F3 satisfying the requirement,
implying that x.(F3) > 6 and so &,(F3) = 6. »
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3 The Rainbow 2-Connectivity of the Petersen
Graph

The connectivity of the Petersen graph is 3. It was shown in [2] that
rci(P) = 3 and in [3] that rc3(P) = k.(P) = 5. In this section, we show
that the previously missing rainbow 2-connectivity of the Petersen graph is
5.

Theorem 12 rcp(P) =5.

Proof. Figure 12 shows a 5-edge-coloring of P such that every two distinct
vertices of P are connected by two internally disjoint rainbow paths. Thus
rcz(P) < 5. On the other hand, by Observation 5, rca(P) > 4. Therefore,
rca(P) € {4,5}. We show that rco(P) # 4. Suppose that the vertices of P
are labeled as shown in Figure 12.

Figure 12: A rainbow 5-edge-coloring of the Petersen graph

Assume, to the contrary, that there exists a 4-edge-coloring ¢ : E(P) —
{1,2,3,4} having the desired property. First note that since there are
fifteen edges, at least one of the four colors is used for at most three edges.
Without loss of generality, suppose that the color 4 is used at most three
times. We first make some observations.

A. If z and y are adjacent vertices, then there are exactly four z — y
paths of length 4. Therefore, at least one of these four paths must be
a rainbow path and so must contain one edge colored 4.

B. If z and y are nonadjacent vertices, then there are exactly five z — y
paths of length at most 4. More specifically, there is one path of
length 2 (the = — y geodesic), two paths of length 3, and two paths
of length 4. If the £ — y geodesic is not a rainbow path, then because
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no z — y path of length 3 and = — y path of length 4 are internally
disjoint, there must be two = — y rainbow paths of length 3 or two of
length 4. Furthermore, in the latter case, each path must contain one
edge colored 4.

C. There must be at least two edges colored 4, for if the edge ujus, say,
is the only edge colored 4, then there is no u4 — v4 rainbow path of
length 4.

Hence there are either exactly two or exactly three edges of P colored 4.
We claim that P does not contain two adjacent edges colored 4. Suppose
that there are two adjacent edges colored 4, say, without loss of generality,
c(uyuz) = c(uius) = 4. We may further assume that ug,uz,us,uq,us is
a u; — ug rainbow path of length 4 with c(uiuiy1) =i —1 for i = 2,3,4.
Observe that

(a) c(u1v1) # 4, for otherwise there is no us — u4 rainbow path of length
4.

(b) c(vavs) # 4, for otherwise there is no vz — vs rainbow path of length
4.

(¢) c(v1vs) # 4, for otherwise there is no ug — vs rainbow path of length
4. By symmetry, c(viv4) # 4.

Suppose that c(ugvs) = 4. Considering vz and vy, it follows that
c(uqvq) = 3. Then there is no v; — v4 rainbow path of length 4, so

c(ugvz) # 4. By symmetry, c(usvs) # 4.
Suppose that c(usvs) = 4. For us and u3, we have

{c(uauz), c(vavs), e(vavs)} = {1,2,3}.
On the other hand, for us and us,
{c(uzv2), c(usvs), c(vavs)} = {1,2,3}.

Then c(usvs) = c(vavs). However then, the uz — us geodesic is the only
uz—1ug rainbow path, a contradiction. Hence c(u3v3) # 4 and by symmetry,
c(uqvy) # 4.

Suppose that c(vavs) = 4. Considering uz and vz, it follows that
c(uqvs) = 3. However, this means that the us — vz geodesic is the only path
that is possibly a ug — vz rainbow path, a contradiction. Hence c(vav4) # 4
and by symmetry, c(vsvs) # 4.

Therefore, the two edges ujus and ujus are the only edges colored 4.
However, this implies that there is no uz — u4 rainbow path of length 4.
Hence, the claim is verified and consequently, no two edges of P colored 4
are adjacent.
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Since for every edge xy colored 4, there is an z — y path of length 4
containing an edge colored 4, we may assume that c(ugus) = c(uqus) = 4
and ug, u1, us, U4, ug is a uz — ug rainbow path of length 4. We may further
assume that c(uju2) = 1, c(uzuq) = 2, and c(ujus) = 3.

We claim that there are three edges colored 4, for suppose that usug
and uqus are the only edges colored 4. Considering u; and uz, we see
that {c(u1v1), c(ugvs), c(vivs)} = {1,2,3}. Similarly, considering u; and
us, we have {c(uyv1), c(uqvs), c(v1v4)} = {1,2,3}. Considering v; and vs,
we see that {c(u1v1), c(usvs)} = {2,3} and so c(viv3) = 1. Similarly with
v) and v4, we have c(vyvq) = 3. However, this is impossible since there
is no u; — v; rainbow path of length 4. Therefore, as claimed, there is a
third edge colored 4. We now show that there are certain edges that are
not colored 4.

(d) c(vivs) # 4 and c(vive) # 4. If ¢(v1v3) = 4, then there is no u; — uy
rainbow path of length 4, producing a contradiction. By symmetry,

c(vivq) # 4.

(e) c(uiv1) # 4. Suppose that c(ujv;) = 4. For us and uy, either
ug, ug, V2, V4, U4 OT U3, U3, Us, Us, U4 INust be a rainbow path of length
4, say the former. Hence {c(u2v2), c(uqvs), c(vavs)} = {1,2,3}. On
the other hand, considering u; and ua, {c(ugv2),c(viva), c(vavs)} =
{1,2,3}, implying that c(uqv4) = ¢(v1v4). However then, P does not
contain two internally disjoint u4 —v; rainbow paths, a contradiction.

(f) c(vavs) # 4 and c(vsvs) # 4. Suppose that c(vavy) = 4. For uz and
ug, it follows that {c(ugvs), c(usvs), c(vavs)} = {1,2, 3}, while for us
and vs, {c(uavs), c(vavs)} = {1,3}. Therefore, c(usvs) = 2. On the
other hand, for u4 and v4, {c(u1v1),c(viv4)} = {1,2}. Then for u,
and va, {c(uavs),c(vavs),c(vsvs)} = {1,2,3}. Therefore, c(vovs) =
2 = c(usvs), implying that there do not exist two internally disjoint
us — vg rainbow paths, producing a contradiction. By symmetry,
c(vaus) # 4.

Since no two adjacent edges of P are colored 4, it follows that c(vavs) =
4. Considering u; and v;, we see that either {c(uavs),c(viva)} = {2,3}
or {c(uqvs),c(v1v4)} = {1,2}. Without loss of generality, suppose that
{c(uzvs), c(vivs)} = {2,3}. We consider two cases.

Case 1. c(ugvs) = 2 and c(vyvs) = 3. Then considering us and vs, we
see that c(upvz) = 2. Also, considering the two pairs {vs,vs} and {vs,v4},
we have

{e(viva), c(vava)} = {e(viva), c(vsvs)} = {1,2},
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implying that c(vavs) = c(vsvs). Then for vy and vs, it follows that
c{uyv1) = 3. However, this implies that there is no u4 — v4 rainbow path of
length 4, a contradiction.

Case 2. c(uzvs) = 3 and c(vv3) = 2. We consider three subcases,
according to the color assigned to the edge ujv;.

Subcase 2.1. c(uyv1) = 1. Considering u3 and vs, we have
{c(usvs), c(vsvs)} = {1,3}.
Since c(usvs) # 2, it follows by considering the pair uz,v2 that

{c(uava), c(vavs)} = {1,3}.

Then with u3 and ug, it follows that ¢(uzve) = 2, which in turn implies that
c(vivs) = 2 by considering uq and vs. Then there is no va — v4 rainbow
path of length 4, a contradiction.

Subcase 2.2. c(uyvy) = 2. Considering the two pairs {u,uz} and
{u1,v3}, we see that

{c(uava), c(usvs)} = {c(usvs), c(vavs)} = {1, 2}

and so c(ugvy) = c(vavs). Then the up —v3 geodesic is the only uz — v3
rainbow path, a contradiction.

Subcase 2.3. c(uyvy) = 3. Considering the two pairs {ua, v4} and {vy,v4},
we have

{c(ugva), c(vava)} = {c(vava), e(vsvs)} = {1,3}

and so c(ugvz) = c(vavs) € {1,3}. Then by looking at us and vs, we
see that c(vavs) = 1. Therefore, c(ugve) = c(vavs) = 1 and c(vovg) = 3.
However then, there do not exist two internally disjoint u; — vz rainbow
paths, a contradiction again.

Therefore, this case cannot occur either and so rco(P) > 4. Hence,
rcg(P) = 5 as desired. .
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The following table summarizes the rainbow connectivities of the cubic
graphs obtained in this paper, where d; = diam;(G) for 1 <i < 3.

n [ K(G) | di do d3z|rci(G) rca(G) re3(G)
4 K, 3 1 2 2 1 2 3
6 | Kix Ky 3 2 3 3 2 3 6
Ki 3 3 2 3 3 2 3 3
8 Qs 3 3 3 4 3 4 7
Ms 3 2 3 4 2 4 5
31 3 3 4 4 3 4 7
I3 2 3 5 - 3 5 -
F3 3 2 4 4 3 4 6
10 P 3 2 4 4 3 5 5
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