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Abstract. Arising from the VLSI design and network communication,
the cutwidth problem for a graph G is to embed G into a path such that the
maximum number of overlap edges (i.e., the congestion) is minimized. The
characterization of forbidden subgraphs or critical graphs is meaningful in
the study of a graph-theoretic parameter. This paper characterizes the set
of 4-cutwidth critical trees by twelve specified ones.
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1 Introduction

The cutwidth problem for a graph G is to embed G into a path such that
the maximum number of overlap edges (i.c., the congestion) is minimized.
It is known that the problem for general graphs is NP-complete [5] while it
is polynomially solvable for trees [16]. The cutwidth problem has significant
applications in the circuit layout design and the network communication [4].
And its theoretic interest comes up in connection with other graph-theoretic
parameters such as bandwidth, pathwidth and treewidth (see [2, 4, 7]).

Let G = (V, E) be a simple graph with vertex set V, |[V| = n, and edge
sct E. A labeling of G is a bijection f : V — {1,2,...,n}, which can be
regarded as an embedding of G into a path P,. For a given labeling f of
G, the cutwidth of G with respect to f is

oG, f) = lrgnj;gcﬂ {uv e E: f(u) <j< f(v)},

which represents the congestion of the embedding. The cutwidth of G is

E-mail address: zhzhkun-2006@163.com or linyixun@zzu.edu.cn.

ARS COMBINATORIA 105(2012), pp. 149-160



defined by
oG) = mfirw(G, )

where the minimum is taken over all labelings f. A labeling f attaining
the above minimum value is called an optimal labeling.

In the embedding version, we may denote u; = f~1(j) (1 £ j < n).
Then the labeling f can be regarded as an ordering of vertices uy, u2, ..., un
arranged on a line. Let S; = {u;,u2, ..., u;} be the set of the first j vertices.
The cut y(S;) = {uiux € E : i < j < k} is called the cut at 4,7 + 1.
Then the cutwidth ¢(G, f) is the maximum size of all these cuts v(S;),
ji=12,..,n—1,ie,

oG, 1) = max V(S

Concerning the cutwidth for graphs, some exact results on special graphs,
e.g., the complete graphs K, the complete bipartite graphs K, , the n-
cubes Q, the complete k-ary trees, the trees with diameter at most 4, and
the meshes P,, X P, Pm X Cn,Cm X Cny Km X Po, K X Cpy Kin X Ki,
have been obtained in the literature [9, 10, 11, 13]. The relations between
cutwidth and other graph-theoretic parameters were studied in various as-
pects [2, 7). The critical graphs with cutwidth at most 3 have been inves-
tigated in literature [8].

In a theoretical point of view, the cutwidth has the following basic
properties.

Proposition 1.1 [8]. (1) If G’ is a subgraph of G, then ¢(G’) < ¢(G).
(2) If G’ is homeomorphic to G (i.e., they can both be obtained from the

same graph by inserting new vertices of degree two into its edges, called a
subdivision of the graph), then ¢(G’) = ¢(G).

Based on these properties, we may define the cutwidth critical graphs
as follows. A graph G is said to be k-cutwidth critical if

(1) e(G) = k;
(2) for every proper subgraph G’ of G, ¢(G') < k;

(3) G is homeomorphically minimal, that is, G is not a subdivision of
any simple graph.

Lemma 1.2 [8]. The unique 1-cutwidth critical graph is K2. The
only 2-cutwidth critical graphs are K3 and K 3. All 3-cutwidth critical

graphs are Hy, Ho, H3, Hy and Hs, where H, is star K\ s; Hj is a tree with
diameter 4 obtained by identifying a pendant vertex in three copies of star

150



K\ 3; H3 is obtained from H; by replacing a claw K, 3 by a triangle K3;
H, is a ‘crown’ made of a cycle C3 with a pendant edge in each vertex of
it; Hs is a cycle C; with a chord.

In particular, the only 3-cutwidth critical trees are H; and Hy shown
in Figure 1.
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Figure 1. The 3-cutwidth critical trees

The main result of this paper is a characterization of the 4-cutwidth
critical trees which is a further study of literature [8]. All of them are
the 12 trees illustrated in Figure 2 (the numbers in each tree represent an
optimal labeling).
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Figure 2. The 4-cutwidth critical trees
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From this, we obtain the forbidden subtrees characterization of trees
with cutwidth three as follows: A tree T has cutwidth 3 if and only if
it is not homeomorphic to caterpillar (a tree which yields a path when
all its pendent vertices are removed) and it does not contain any subtree
homeomorphic to one of {r; : i = 1,...,12} in Figure 2.

A similar work has been done for the treewidth and pathwidth. A graph
G is said to be k-treewidth (pathwidth) critical if G has treewidth (path-
width) & and there is no proper minor G’ of G having treewidth (pathwidth)
k. The set of critical graphs with treewidth 3 consists of 4 elements [1, 14],
and the critical graph set for pathwidth 3 is comprised of 110 graphs in-
cluding 10 trees [6, 15]. The critical graphs for other parameters are worthy
of further study; And these critical graphs are bound to be obtained, since
they are finite [12].

The rest of this paper is organized as follows. Section 2 presents some
preliminary results. Section 3 is devoted to the proof of the main results.
Section 4 gives a summary.

2 Preliminaries

The following is an obvious lower bound.

Lemma 2.1. Let A(G) denote the maximum degree of G. Then
(G) 2 [A(G)/2].

The bound is attainable by a star K, whose cutwidth is ¢(K In) =
[7/2], or a caterpillar T, a tree which yields a path (the spine) when all
its pendant vertices are removed, whose cutwidth is ¢(T) = [A(T')/2] [8).

Let T = (V, E) be a tree and {v; vy, v2,...,v;} C V. Define T(v;v;, v2, ..., vy.)
as the largest subtree of T that contains v but does not contain any of
V1y U2,y o0y Up.

Lemma 2.2 [3]. Let T be a tree. Then ¢(T') < k if and only if every
vertex v of degree at least 2 has neighbors v;,v2 such that ¢(T(v;v1,12)) <
k-1.

This Lemma has an equivalent version as follows.

Corollary 2.3. Let T be a tree. Then ¢(T)>k if and only if there
exists a nonpendant vertex v such that ¢(T'(v; v1,v2)) > k—1 holds for any
two neighbors vy, vs of v. m]

Theorem 2.4. Let T1,7> and T3 be (k — 1)-cutwidth trees. If tree
T is formed by identifying a pendant vertex in Ty, 7T, and T3, then T is a
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k-cutwidth tree.

Proof Let v be the identified vertex and pendant vertices z,y, 2 its
neighbors in Ty, T, T3 respectively. We first show that ¢(T') < k. In fact,
we can embed T — {voz,vpz} in the order

V(Tl - ‘Uo), V(T2): V(T3 - "-’0)

and using the (k — 1)—cutwidth embedding in each part. And then put the
edges voz and vpz back to the embedding. This increases the congestion
at most one. Thus we get an embedding with cutwidth at most k. So
¢(T) € k. On the other hand, ¢(T) > k is obvious by Corollary 2.3, since
the vertex vp satisfies ¢(T'(vp; v1,v2)) = k — 1 for any two neighbors of ,y
or z. This completes the proof. O

A tree T is of diameter 4 if it yields a star when all its pendant ver-
tices are removed. Denote by vy the unique center of T', and vy, v2,...,Vm
the neighbors of vg. For 1 < i < m, let vi1,vig, .., Vin;—1 be the pen-
dant vertices adjacent to v; (where n; > 2), then the star induced by
V0, Vi) Vi1, Vi2, o, Vin,—1 is denoted by Ti. It is obvious that V() =
m

ni+1(1 <i<m)and |V(T) = 3 n; +1 = n. We denote this tree
i=1

by T(m;n1,n2, ..., m).

Lemma 2.5 [10]. Let T=T(m;n;,n2,...,nm) be a tree of diameter
at most 4, where n; > na > ... > ny = 2. Then

oT) = max (1551 + D)

1<i<m

3 4-Cutwidth Critical Trees

We consider the trees 7, — 712 in turn. They can be classified into four
groups. The first group consists of 71 and 72, where 7, is a star K7 and
T» is obtained by identifying a pendant vertex of 5 copies of K3 3.

Lemma 3.1. Trees 7, and 75 are 4-cutwidth critical.

Proof. Note that 7 is a star with A(7;) = 7. By lemma 2.1, we have
¢(m) = 4. In addition, since the maximal proper subtree is star K16 whose
cutwidth ¢(K g) = 3, the cutwidth of any proper subtree is at most 3. So,
71 is 4-cutwidth critical.

Noting that 72 is of diameter 4, we can easily obtain that ¢(r2) = 4 by
the formula in Lemma 2.5. On the other hand, since any maximal proper

154



subtree of 7, can be obtained by deleting a pendant vertex v;; of v; (see
the definition of tree of diameter 4), which is homeomorphic to the proper
subtree 73 in Figure 3 (a). The labeling of 75 shows that ¢(74) < 3. So we
can assert that the cutwidth of any proper subtree of 73 is at most three.
Therefore, tree 7, is also 4-cutwidth critical. Thus the proof is completed.
.a
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Figure 3. Proper subtrees of 72,73, 77 and 7y

The second group consists of 73, 74, 75 and 76 which arc obtained by
identifying a pendant vertex of threc copies of H; or Hs.
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Lemma 3.2. Trees 73, 74, 75 and 7 are 4-cutwidth critical.

Proof. Since 73, T4, 75 and T are obtained by identifying a pendant
vertex of three copies of H; or Hy respectively, we have ¢(r;) = 4 for
i=3,4,5,6 by Theorem 2.4.

Any maximal proper subtree of 73 is obtained by deleting a pendant
vertex So that it is homeomorphic to 74 in Figure 3(b). Since the labeling
of 74 in Figure 3(b) shows that the cutwidth c(74) is at most three, we assert
that the cutwidth of any proper subtree of 73 is at most 3. Therefore, tree
74 is 4-cutwidth critical tree. Similarly , we can also show that 74, 75, 76 are
all 4-cutwidth critical. This completes the proof. 0

The third group consists of 77, 73, 7o in which four branches are leading
from a vertex as follows: one branch is a K 3; at least one other branch
and this Ky 3 from a subtree homeomorphic to Ha (with a subdivision on
a nonpendant edge); the remaining branches (at most two) are Hj.

Lemma 3.3. Trees 77, 73 and 79 are 4-cutwidth critical.

Proof. The labeling f of 77 in Figure 2 asserts that cutwidth ¢(77) < 4.
We now prove that ¢(77) > 4. Denote the vertex of degree 4 in 77 by vo
and its neighbors by v;,ve,vs,v4. Since for any v; and v; (1<i<j<y),
the tree 77(vo;vi,v;) contains an Hp, it follows that c(77(vo; vi, v5)) = 3.
Thus, by Corollary 2.3, we have ¢(77) > 4. Consequently, c(77) = 4.

On the other hand, 77 has two classes of maximal proper subtrees, one
of which is obtained by deleting a pendant vertex with distance 2 from vo,
another by deleting a pendant vertex with distant 3. Since each maximal
proper subtree has a vertex of 2 degree, the first class is homeomorphic to
74 in Figure 3(c), and the second class homeomorphic to 77 in Figure 3(d).
The labbelings of 75 and 7 in Figure 3(c) and (d) show that ¢(r7) < 3 and
() < 3. By Proposition 1.1, the cutwidth of any subtree of 77 is at most
three. Therefore, tree 77 is 4-cutwidth critical.

In the same way, we can show that 73 and 79 are also 4-cutwidth critical
tree. The lemma follows. a

The fourth group consists of 710,711,712 Which are obtained from the
previous group by contracting an edge.

Lemma 3.4. Trees 19, 711 and 7y are 4-cutwidth critical.

Proof. The labeling f of 710 in Figure 2 implies that cutwidth ¢(10) <
4. We now prove that c¢(ri0) = 4. Denote the vertex of degree 5 in
710 by vo and its neighbors by v;,v2,v3,v4,v5. Since for any v; and v;
(1 £i < j <5), it is apparent that the tree T10(v0; vi, v;) contains an
Ha, ¢(m10(vo; viyvj)) = 3. Consequently, we have c¢(710) = 4 according to
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Corollary 2.3. Thus, ¢(719) = 4.

Like 77, 710 has also two classes maximal subtrees, each of which is
obtained by dcleting a pendant vertex with distance 1 or 3 from wvg and
which are homeomorphic to 7{y in Figure 3(e) or 7{ in Figure 3(f). The
labbelings of 7], and 7{; in Figure 3(e) and (f) show that ¢(7},) < 3 and
¢(71) < 3. So, the cutwidth of any proper subtree of 79 is at most three,
that is to say, 719 is 4-cutwidth critical.

The 4-cutwidth that 71; and 712 are 4-cutwidth critical can be proved
by the same method. The proof is complete. a

Theorem 3.5. All 4-cutwidth critical trees are 1y, 73,...,712.

Proof. We have shown that 7; (i = 1,2, ...,12) are 4-cutwidth critical
by Lemma 3.1-3.4. Let T be a 4-cutwidth critical tree and dp(:) denote
the degree of vertex. By definition, dr(v) > 3 except pendant vertices. So
A(T) 28. If A(T) > 7, then 1y C T and thus T = 7; by the minimality
of T. In addition, we know that T is not homeomorphic a caterpillar with
A(T) < 6 by Lemnma 2.1.

We now consider the case of A(T) < 6. Due to Corollary 2.3, let vy be
the nonpendant vertex such that for any two neighbors v;, vj, ¢(T(vo; v, v;)) >
3, and let T; be the largest subtree of T containing vy and its neighbor v;
but not containing any other neighbors v; (j # i). Since T is 4-cutwidth
critical, ¢(T(vo: v;,v;)) # 4 (otherwise yielding a contradiction to the min-
imality).

Case 1: T includes at least 3 subtrees T; whose cutwidth is ¢(T}) = 3.
Then 3-cutwidth critical trees H, or Ha (see Figure 1) must be included in
each T;. Hence T must be one of {73, 74, 75, T¢} by minimality. In particular,
this case must appear when dp(vp) = 3.

Case 2: dr(vg) = 4. Note that ¢(T(vo;vi,v;)) = 3 for any two
neighbors v;, v; of vy (1 £ 7 < 5 < 4), and the degree of vy is two in subtree
T'(vo; vi,v;). If one neighbor of vg, say v, is a pendant vertex of 7', then
the other subtrees T, T3,74; must have cutwidth 3, thus the subtree T}
(namely the edge vov,) can be deleted, contradicting that T is critical. So,
we may assume that all neighbors vy, v2, v, v4 of vp are not pendant. Due
to that T is critical, among all subtrees T'(vo; v;,v;) (1 € i < j < 4), there
must be one being minimal (if the degree two vertex wp is ignored, then it
is critical). Therefore, at least one subtree T(vp; v;,v;) is an Hy with vg as
a subdivision vertex; and the subtree T; and T in the remaining part may
contain an H,. By the minimality, T is one of {77, 73, 79}.

Case 3: dy(vp) = 5. If all neighbors v; of vp have dr(v;) > 3 (i =
1,2,3,4,5), then 73 is included in T and thus T = 7, by the minimality. If
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only one neighbor of vg, say v1, is pendant, then by c(Ty UT: UT;) =3 (2 <
i < j < 5), the edge vov; can be deleted without effect on ¢(T') = 4, but
contradicting that T is critical. By (T (vo; v, v;)) = 3, it is impossible that
vp has three or more pendant neighbors. So, we may assume that there are
two neighbors of v being pendant. By the fact that ¢(T'(vo; vi,v;)) = 3 for
any two neighbors v;,v; of vp (1 < ¢ < j < 5) and that T'is critical, it can be
seen that there must be a subtree T'(vo; v, v;) being an Ha containing those
two pendant neighbors of vg. And the subtree T; or T; in the remaining
parts may contain an H;. Therefore, T is one of {10,711, 712} by the
minimality.

Case 4: dr(vo) = 6. By using the fact that ¢(T'(vo; vi,v;)) = 3 for any
iand j (1 £i< j <6), it can be deduced that T’ must contain a subtree
in Case 2 or Case 3, which contradicts that T is critical. This establishes
the proof. o

Corollary 3.6. A tree T has cutwidth at most 3 if and only if it does
not contain any subtree homeomorphic to one of {n,72,..., 712} (]

4 Concluding Remarks

The foregoing discussion characterizes the set of 4-cutwidth critical trees.
As to the critical trees with cutwidth k (k > 5), we have obtained some
results. For example, star K 2x—1 is a critical tree with cutwidth k.

Figure 4. Definition of T}

If tree T is obtained from star K 2x—3 by replacing every edge uv of it
with tree shown in Figure 4, where dg, 2k-3(u) = 2k — 3, dg, 2r-3(v) = 1,
z and y are new vertices and y is a new pendant vertex and tree T3 is
formed by identifying a pendant vertex in three copies of the star K 23,
i.e., T3 has a vertex vo of degree 3, three vertices vy, v2 and vz of degree
(2k — 3) which are adjacent to vp, (6k — 12) pendant vertices. Then trees
T{ and T} are all k-cutwidth critical.
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Let T3(k) denote the critical tree with dr(v) = 3 except the pendant
vertices and with cutwidth k. For instance, T3(1) = K, T3(2) = K 1,3
T3(3) = H> and T3(4) = 74. For k > 1, the k-cutwidth critical tree T(k)
can be formed by identifying a pendant vertex in three copies of (k — 1)-
cutwidth critical tree T3(k — 1).

From the theorem 2.4, we find a method of constructing a class k-
cutwidth critical tree from (k — 1)-cutwidth critical trees as follows: For
k>0,let T\, T; and T3 be arbitrary three (k — 1)-cutwidth critical trees
(not necessarily distinct). If tree T is formed by identifying a pendant
vertex in T1, T> and T3, then tree T is a k-cutwidth critical tree. However,
this method can not construct all k-cutwidth critical trees.

A further task is to characterize the set of 4-cutwidth nontree critical
graphs which includes K4 and all 5-critical graphs. More general properties
of critical trees are expected.
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