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Abstract

Let G be a graph ou n vertices. § and o be the minimum
degrec and independence number of G, respectively. We prove
that if G is a 2-connected graph and [N (z)UN (y)| > n—6—1 for
cach pair of nonadjacent vertices z.y with 1 < [N(z)NN(y)] <
a — 1, then G is hamiltonian or G € {G,.G2} (see Figure 1.1
and Figure 1.2). As a corollary, if G is a 2-connected graph
and |N{&)UN(y)| > n—d for cach pair of nonadjacent vertices
r,y with 1 < |N(z) N N(y)| € a — 1, then G is hamiltonian.
This result extends former results by Faudree et al ([5]) and

Yin ([7)).
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1 Introduction

We shall follow the notation of Bondy and Murty [1] and consider
simple graphs only. Let G be a graph on n vertices, 6 and a be the
minimum degree and independence number of G, respectively. For
any vertex v of G, d(v) = |N(v)| where N (12 denotes the neigh-
borhood of v in G. If A, B are subgraphs of G, we define N(A) =
Uwev(ay N(v), Ng(A) = N(A) NV (B).

Theorem 1.1 (Dirac, [3]) If d(u) > § for every vertez u in a graph
G, then G is hamiltonian.

Theorem 1.2 (Ore, [6]) If d(u) + d(v) > n for each pair of nonad-
jacent vertices u,v in a graph G, then G is hamiltonian.

Theorem 1.3 (Fan, [{]) If G is a 2-connected graph and maz{d(u),
d(v)} > § for each pair of nonadjacent vertices u,v with d(u,v) =2,
then G is hamiltonian.

Theorem 1.4 (Chen, [2]) If G is a 2-connected graph and maz{d(u),
d(v)} > % for each pair of nonadjacent vertices u,v € V(G) with
1< |N(u)NN()| < a—1, then G is hamiltonian.

Theorem 1.5 (Fuudree et al, [5]) If G is a 2-connected graph and
|N(u) U N(v)| > n—d for each pair of nonadjacent vertices u,v €
V(G), then G is hamiltonian.

Theorem 1.6 (Yin, [7]) If G is a 2-connected graph and |N(u)U
N(v)| = n—§ for each pair of nonadjacent vertices u,v € V(G) with
d(u,v) = 2, then G is hamiltonian.

Among Theorem 1.1 through 1.3, each of them extends the for-
mer theorem. Theorem 1.4 extends 1.3 by changing d(u,v) = 2 to
1 < |N@)NN(v)| € a -1 and Theorem 1.6 extends 1.5 by consid-
ering only those pairs of vertices with distance 2. Naturally, we ask
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if Theorem 1.6 can be further improved by changing d(u,v) = 2 to
1 < |N(u) N N(v)| < a — 1. This is proved true stated as Corollary
1.8. In fact, we prove a stronger result as follows.

Theorem 1.7 If G is a 2-connected graph and |N(z) U N(y)| >
n—0—1 for each pair of nonadjacent vertices z,y with 1 < |N(z) N
N(y)| £ a — 1. then G is hamiltonian or G € {G1,G2} (see Figure
1.1 and Figure 1.2).

Let G be the graph obtained from K33 by replacing each of
the divalent vertex by a complete graph K ,.-2, and denoting the two
3
trivalent vertices by x;. 2. respectively, then joining z;, z; with every
vertex of each K.-2 and possibly joining 2; and z; by an edge. Let
3
Go =G V K¢., where G*_, is a subgraph on "T’l vertices and
3 - -

2

K fﬂ is the complement of a complete graph Knsi.

Z;
Ty
Figure 1.1. G, :n=36 -1 Figure 1.2. G5 : n is odd

Corollary 1.8 IfG is a 2-connected graph and [N (z)UN (y)| > n—é
for each pair of nonadjacent vertices x,y with 1 < |N(z) N N(y)| <
a —1, then G is hamiltonian.

Neither G} nor G satisfies [N (z) U N(y)| > n — 6, so Corollary
1.8 follows directly from Theorem 1.7.
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2 Longest Cycles

Let C be a cycle of a graph G oriented clockwise with m vertices, de-
noted C,, = z1T2 - - - TpyTy. We let Ngm (u) = {ziy1 : =i € Ng,, (w)},
NEm(U) = {l’i_l 1T € Ncm(u)} and [xiaxj] = {zi)x‘i-l-l)""xj}:
where the subscripts are taken modulo m. Given two vertices a,b of
C, we let [a,b] and [a,b]™ respectively denote the path of C from a
to b clockwise and counterclockwise respectively. A cycle C is called
a longest cycle if there does not exist a longer cycle C* such that
[V(C)| < [V(C*)|. In the following two lemmas, we always assume
that G is a 2-connected graph on n vertices, Cpp, = Z1Z2 - T;mT) 18
a longest cycle of G, H is a component of G — C, and z;,z; are
distinct vertices in N¢,, (H).

Lemma 2.1 Each of the following holds.

(1) {zi-1, Tir1. 2j-1, %541} N Ne,, (H) = 0.

(2} ZTi+1T5+1 ¢ E(G) and Ti1Tj5-1 ¢ E(G)

(3) If 212541 € E(G) for some vertez x; € [zj+2, zi], then ze1Tiy1 &
E(G); if z1zj+1 € E(G) for some vertex z; € [Tit1,Tj], then Tey1Ziya
¢ E(G).

(4) If z1zj41 € E(G), -1 € Ne,,, (H).

(5) No vertez of G — (V(Cn,) U V(H)) is adjacent to both ;1 and
zj41; if T € V(H), then no vertex of G—(V(Crm) UV (H)) is adjacent
to both x;y; and x.

(6) If z € V(H), then {z} UNZ (H) must be an independent set.

Proof. (1), (2) and (5) follow immediately from the assumption
that C,, is a longest cycle of G. Since z;,z; € Nc,,(H), there exist
xj, = € V(H) such that z;z7, z;z; € E(G).

(3) Suppose that there exists a vertex x; € [Tj42, ;] satisfying
z:zi4+1 € E(G). Let P’ denote an (z;,z;)-path in H. If ;_1Zi41 €
E(G), then z;P'zj[zj_1,%ix1) " [2t-1,%j41]) " [e, 2] is a longer cycle
than C,,, contrary to the assumption that C, is longest. Hence
Zy-1Ziy1 € E(G). The proof for the second part is similar, and so it
is omitted.

By (2), (4) holds.
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(6) By Lenuna 2.1(1) and (2), {z} U Ng'.m (H) is an independent
set. []

Lemma 2.2 For x € V(H) and x; € N¢, (z), 1 < |[N(ziy1) N
N(z)| < a -1 and |[N(2i41) "N N(zj41)| < a - 1.

Ne,(z), 1 = [{ay}| < [N(xir1) N N(z)]. By Lemma 2.1(1) and
(5), N(zip1) O N(x) € V(C,,). Thus by Lemma 2.1(6), |N(zi+1) N
N(z)| = [N¢,, (xi41) N Ne,,, (2)] < |Ne,, (2)] = NG, (z)| < NG, (H)|
<a-1 Hence 1 < |N(zi41)NN(2)| <a-—1.

Proof. We first prove 1 < |[N(241)NN(z)] <a-1. Asz; €

To prove that |N(xj+) N N(2j41)] £ a — 1, we assume by way
of contradiction that |N(xi;) N N(zj41)| > a. By Lemma 2.1(1)
and (5), N(zi41)NN(2j41) € V(Cin). Let Ny = N(zi41) N N(zj41).
Then N, C V(C,,) and |N}| > a.
Claim 1: N U {u} is an independent set of G for any u € V(H).

Proof of Claim 1. Firstly, by Lemma 2.1(2), z;41,zj41 € N1. And
by Lemma 2.1(4), z;,—ju € E(G) for any vertex z, € Niz; 2,2 (Tj+1)U
Niz,yn.2;)(@iv1). Soz_u & E(G) for any z,_; € N and u € V(H).

Secoudly, if there are two vertices xy_;, 2,1 € Ny such that
Zg-12p-1 € E(G). we will get contradictions in either of the following
two cases. Let P(H) be an (2, 2;)-path in H.

Case 1. xp_; € [zi41,j-1] and )y € [z;41,7i—1), then the cycle
C: P(H)[zj—1,x] [xjs1, zht]lzh=1, Tiv1]) " [zh, Ti]

is a longer cycle than C,,,. a contradiction.

Case 2. Either .y, ), € [;L','.H . :l’j..ll Or rp_1,Th-1 € [xj+1,:1ti_1].

Without loss of generality we assune that xy._y,zp_, € [j41,Zi1]
and r € [Tj41,21-1]. Then the cycle

C1 = P(H)[zj, ziy1]” [z, Thoa)[Tr-1, Tj+1) " [T, zi]

is longer than the longest cycle C,,, a contradiction.
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Hence Claim 1 holds. So Ny U {u} is an independent set of G,

and [Ny U{u}| > a+1, contrary to the fact that « is the independent
number of G. []

3 Preliminary Lemmas

Note that Lemmas 2.1 and 2.2 in Section 2 do not need the condition
in Theorem 1.7 that |[N(z) UN (yj)\L > n— 6 — 1 for each pair of
nonadjacent vertices z,y with 1 < [N(z)NN(y)| < a—1. In Lemmas
3.1 and 3.2, we always assume that G is a 2-connected graph on n
vertices and |[N(z) U N(y)| = n — 6 — 1 for each pair of nonadjacent
vertices z,y with 1 < |[N(z)NN(y)] < a—1. Also, let Cp, be a longest
cycle in G, H be a component of G — Cp,, and Zi11,Tj+1 € Né’m (H)
with [:c,~+1, wj—l] n Ncm(H) = 0.

Lemma 3.1 1 < IN(:L‘H.I) nN(,-+1)| <a-1.

Proof By Lemma 2.2 that |[N(zi+1) N N(j31)| < a — 1, it suffices
to show that 1 < [N(zi41) N N(j+1)l, or d(Zi41,Zj41) = 2. Suppose
that d(zi41,2;41) # 2. Choose = € V(H) such that zz; € E(G).

Claim 2: There exists a vertex u € Nj_,, ¢,](%j+1) such that u ¢
Ng,,s2(@i+1) and v ¢ N(zi1) U N(2).

Proof of Claim 2.  Since d(zit1,%j+1) # 2, zizjq1 € E(G).
And as 7497541 € E(G), let x5, € N[$j+2,1'i-1](xj+1) such that
N[z;.+1,xa](xj+l) = w As d($i+1,$j+1) 7’= 2 and ThTj4+1 € E(G),
zhziy1 € E(G). If zz), ¢ E(G), then u = x), satisfies Claim 2; if
zzy € E(G), then z, # ri—y and xxhy ¢ E(G) by Lemma 2.1(1),
and zp417i41 € E(G) by Lemma 2.1(2), and so u = zp4 satisfies
Claim 2. ]

Claim 3: If Nj,, , »;_,)(%j+1) # @, then there exists v € Nizi1,252]
(zj4+1) such that v ¢ N[:i+1:~'17j—2] (zj+1) and v ¢ N(zi41) U N(z).

Proof of Claim 3. As z;427+1 ¢ E(G) by d(zi+1,Zj+1) # 2 and
N[$e+l,$j-2]($:i+l) #0,letx € Nizi11,2-2) (zj+1) with N[Ii+1,$l—1](xj+1)
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= 0 Then Ti+1Z} ¢ E(G) by d(x”l,;rj“) 76 2. Since [:Ei+1,2:j._1] N
Ne,,(H) =0, 22, ¢ E(G). So v = 2y satisfies Claim 3. []

By Lemma 2.1(3), N . (2j41) N (N(ziy1) U N(z)) = 0; by
Lemma 2.1(4) and [z;41,2;-1] N N, (H) = 0, N, [z’“x 2](:1:J+1) N
(N(ziy1) UN(2)) = 0; by Lemma 2.1(5), Ng_c,,—v(m)(Zjs1) N
(N(ziz1)UN(z)) = 0: by Claims 2 and 3, {u,v}N(N(z;41)UN(z)) =
Dand w¢ N . (2j51).v ¢ NII‘+l'xJ_2]($j+l); by Lemma 2.1(1),
Nu(zj41) = 0 and so Ng_c,, —v(n)(2j+1) = Ng-c,.(zj+1). Hence

IN(zir1) UN (@) < VG = ING, g (@) U NG o a(@500)U
NG—C,,,—V(H)(Ij-i-l)I—I{ici+l,$,U1'L’H = IV(G)I_(IN[ttj+2y='3i|(xj+1)'+
IN, 1,250 (@i D)= INa—c, —vin @i )| = {Zie1, 2, u, v} = [V(G)]
—|Ne, (xj+1) = {2j. 2j21} = [Ne-c., (2541)] = {Zig1, 2, 6,0} = n—
d(zj41) - 2.

Together with 1 < |N(xi4) ﬁN(1)| < a -1 by Lemma 2.2, it
is contrary to the condition that [N(z) UN(y)| > n—46 — 1. O

Lemma 3.2 Let h = |V(H)|. k = |N¢,,(H)|. Each of the following
holds.

(1) h+k =6(G) + 1.
(2) For every v € V(H). N(v) =(V(H) \ {v})UNg,, (H).

(3) H is a complete subgraph.

Proof For every vertex v in H, N(v) C (V(H)\ {v}) U Ng¢,.(H),

so h(h—1+k) > Z d(v) > hé(G), which implies that h + k >
veV (1)

J(G) + 1. Let Lig).rjy) € .}Vg-m(H) with [;zri+1,xj_1]ﬂ NCm (H) = {.

By Lemma 3.1, 1 < |N(#i41) N N(xj41)] € o — 1. Then

n=0(G)=1 < |N(zit1)UN(z;11)] £ [V(G)[-[NE, (H)|-|V(H)| < n—

(h + k) <n-0(G) - 1. Thus h + k = §(G) + 1, H is complete and
N(v) = (V(H)\ {v}) UNe,(H). [
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Lemma 3.3 G — C,, has only one component.

Proof Suppose that G — Cp, has components Hy, He. Let h; =
\V(H;)|, ki = |Nc,. (H:)|(i = 1,2). Then we claim that k; = k2. Sup-
pose that k; > ke > 2. Let z;, x;,z, € Ng,,(H1) with [Zit1,zj-1] N
Ng,, (H) = 0. Then by Lemma 2.1(5) |{Zi+1, Zj+1, Ze+1 }NNe,, (H2)| <
1. Assume that Tip], Tj+1 ¢ Ncm(Hg). Then |N(a:,-+1)UN(xj+1)| <
V(@) -V (Hy)| - IN&, (H)| -V (H)| S n—hy—k1 ~1 =n—6-2
by Lemma 3.2(1), together with Lemma 3.1, we get a contradiction.

By Lemma 2.1(5), we may assume that N(z;y1) N V(Hz) = 0.
Let £ € V(H,) with zz; € E(G). Then by Lemma 3.2(1) |[N(zi+1)U

N(z)| < |V(G)| - NG, (H)| = [V(Ho)| -z} Smn—k1 —hp — 1=
n—ky—hy—1=mn—46—2, a contradiction. []

By Lemma 3.3, we may assume that G—Cr, = H in the following
lemma and section.

Lemma 3.4 Let V; = [zit1,2j-1] with V; N Ng, (H) = 0. Then
|Vi| = h where |V(H)| = h.

Proof Clearly, |V;| > h. Suppose that |V;| > h + 1. We claim that
N(zi_1)N{Zit1, Tita, - -2 Tivn} # 0. Otherwise, take z € V(H) with
zz; € K(G). Then by Lemma 3.2(1) |N(z) U N(zi-1)| < [V(G)| -
INg (H)| = {2, Zir1,Tis2s 2 Tivn} Sn—k—h—-1=n-§-2
where k = |Ng _(H)|, a contradiction.

Let z;_1Zits € E(G) for some s € {1,2,---,h}. As Cp is a
longest cycle of G, we have |[@its+1.2j-1]| = h and by a similar
proof as above, N (2j4+1) N [Zits+1, Tj-1] # §. Then let z; be the first
vertex in [Tiys+1,Zj—1] with zj412; € E(G) and 2’ € V(H) with
zjz’ € E(G). Then |[Tits+1,Te-1]| 2 b, and |[N(z') U N(zj4)| £
V(@) -ING, (H)|=[zits+1, o]l -{&'} S n—k—h-1=n—-0-2,
a contradiction. []

4 The Proof of Theorem 1.7

By way of contradiction we assume that G is not hamiltonian. Then
let Cy, : z1Z2- - - Z,nx1 be a longest cycle in G and H = G — Cp, by
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Lemma 3.3. We consider the following cases.
Case 1. |Ng, (H)| > 3.
Claim 4: (1) |V(H)| = 1.

(2) 6(G) > 3.

Proof of Claim 4. (1) By way of contradiction we assume that
|V(H)| > 2. Siuce |Ng,, (H)| > 3, there are vertices ;,zj,z €
Ne, (H) (i < j < h) such that ([xi41,2-1]U[zj41, za—1])NNe,, (H) =
®. By Lemma 3.1, 1 < [N(zi41) " N(zj41)| <a - 1.

By Lemma 3.2(3), G[H] is complete. Let z},, 75, 2; € V(H) such
that @)z}, 2} 2525 € E(G). So there exist an (z},z})-path and
(z},, 25)-path in V(H) cach of which passes through all vertices of
V(H), denoted by P(H) and P'(H) respectively. Then zj o741 ¢
E(G), zhiozjr ¢ E(G) otherwise ), P(H)(z;i, Tj10) " [Tit1,Th] oF
xpP'(H)[zj, 2p42) " [ejs1, @] is a longer cycle than Cy, (only zj,; is
missing, but |V(P(H))| = |V(P'(H))| = |V(H)| > 2), a contradic-
tion. Let u € V(H). then [N (i41)UN(2j41)] < |V(G)|—|NE_(u)|—
JII‘VH(u)U{u}I— Hni2}l € n—30—2. a contradiction. So |V(H)| = 1.

herefore Claim 4(1) is established.

(2) I£6(G) < 2, then [N (zi1)UN (2j41)] < |V(G)|= NG, (H)|-
[V(H)| £n—-3-1<n-46-2, a contradiction ]

By Claim 4(1), we may assume that V(G — C,,) = {u}. By
Lemma 3.4, every vertex in {ay. @3, - .@o_1} or {To,Tq, -, Top =
Ty } is adjacent to u. Without loss of generality, assume {z;,z3, - -,
Tor-1} = N(u). We choose another longest cycle C) : 2 u[z3, Ty )z;.
Then G — C) = ry. By Claim 4(2) that §(G) > 3, we have that
|Ne, (z2)] > 3. Using a similar argument, we get {z;, 3, -+, Top-1} =
N(x2). Similarly, {z;.xy, -+, 2061} = N(z4) = -+« = N(zop).
Together with Claim 4(1) and Lemma 2.1(2), the graph is G =
Gy VKES,, and n = 2k + 1 (see Figure 1.2) where G_n_;l is a sub-

2 2

graph on ";1 vertices and K'C., is the complement of a complete
2

graph K ntl.
Case 2. |Ng,, (H)| = 2. Assume that N¢.,, (H) = {z;,z;}(i < j).

Claim 5: Let V| = [2;4).¢j-1], V2 = [#;41,%i~1]. Then for every
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vertex v € V4 U Va, vz; € E(G) and vz; € E(G).

Proof of Claim 5. Let j.z} € V(H), z;z}, iz € E(G) and
P(H) be an (z;, z})-path passing through all vertices in H by Lemma
3.2(3).

Let C!, = [z, z;]P(H)z; be a cycle of G. By Lemma 3.4, |V1| =
[Va| = |V (H)| = h. So |Cpy| = [Vi|+2+|V(H)| = |Va|+2+|V (H)| =
[Va| + 2 + [Vi| = |Cml, Cl, is a longest cycle of G and by Lemma
3.3, G —C!, = Va. If |Ngy (Va)| > 3, then by Claim 4(1), [Vo| =1
andso1l>6—1, ord <2, contrary to Claim 4(2). So we assume
that [Ner (V2)] = 2. By Lemma 3.2(2) and (3), every vertex v € Vs,
vz;,vz; € E(G). and G[Va] is complete. Similarly G[V1] is complete.

By Lemma 3.2(3), G[Vi](i = 1,2) and H are complete subgraphs.
By Claim 5, we obtain the graph G (see Figure 1.1) and note that
there may be an edge joining z; and z;. []
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