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Abstract

A family of connected graphs G is said to be a family with
constant metric dimension if its metric dimension is finite and does
not depend upon the choice of G in G. In this paper, we study the
metric dimension of the generalized Petersen graphs P(n,m) for n =
2m + 1 and m > 1 and give partial answer of the question raised in
[9): IsP(n,m)forn >T7and3<m < ["T"j, a family of graphs with
constant metric dimension? We prove that the generalized Petersen
graphs P(n,m) with n = 2m + 1 have metric dimension 3 for every
m2> 2.

Keywords: resolving set, metric dimension, generalized Petersen graphs.

1 Introduction

Let G be a connected graph and distance between two distinct vertices
v and w in G, denoted by d(v, w), is the length of a shortest path between
them. For an ordered subset W = {w;, w2, ..., wx} of vertices and a vertex
v in G, the code of v with respect to W is the ordered k-tuple cw(v) =
(d(v, w1),d(v, w2),...,d(v,wi)). Theset W is a resolving set[7] (or locating
set[13]) for G if every two vertices of G have distinct codes. The metric
dimension of G is the minimum cardinality of a resolving set for G, denoted
by B(G). A resolving set containing a minimum number of vertices is called
a basis for G [1].
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The concepts of resolving set and metric dimension have previously
appeared in the literature (see [1],(3],(4],(7],[10],(12],[14]). Slater referred
to the metric dimension of a graph as its location number and initiated
the study of this invariant by its application to the placement of minimum
number of Sonar/Loran detecting devices in a network so that the position
of every vertex in the network can be uniquely described in terms of its
distances to the devices in the set [14]. These concepts also have some
applications in chemistry for representing chemical compounds ([3],[10])
and to the problems of pattern recognition and image processing, some of
which involve the use of hierarchical data structures [12]. It was noted in
(6] that the problem of finding the metric dimension is NP-hard. Khuller et
al. [11) gave a construction showing that the metric dimension of a graph is
NP-hard. Their interest in this invariant was motivated by the navigation
of robots in a graph space.

From the definition, it can be observed that the property of a given
set W of vertices of a graph G to be a resolving set of G can be verified
by investigating the vertices of V(G) \ W since every vertex w € W is the
only vertex of G whose distance from w is 0. If d(z,t) # d(y,t), we shall
say that vertex ¢ distinguishes vertices x and y.

For each odd integer n = 2m + 1 > 3, the generalized Petersen graph
P(n,m) is a graph with vertex set OUZ where O = {O; |0 < i < n-1} and
I= {I, I 0<i<n-— 1}, and edge set E; U Es U E3, where Ey = {0505.4.1 l
0<i<n-—1}, B = {Liliym |0<i<n-1}and B3 = {O;]; | 0 <
i £ n—1}. Here and throughout the paper, the subscripts are to be taken
as integers modulo n. Description of the graph P(2m + 1,m) and some of
its properties may be found in [15], where it was introduced for the first
time. An idea of the structure of these graphs may be obtained from the
diagram for P(5,2) given in Figure 1. These graphs are quite symmetrical,

Figure 1: The Petersen graph P(5,2)
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admitting the automorphism O; — Oiy1, i - I;,,(0<i<n— 1) which
generates a subgroup of automorphisms with vertex orbits ©,Z and edge
orbits Ey, Ey, E3. Moreover, it follows from a result of Frucht et al. [5) that
P(n,m) is vertex-transitive only in the case n = 3 (the 3-sided prism) and
n =5 (the Petersen graph) shown in Figure 1. Generalized Petersen graphs
P(n,m) form an important class of 3-regular graphs with 2n vertices and
3n edges. For our purpose, we call the vertices 00,0,...,0,,_,, outer
vertices and the vertices Ig, I1,...,I._1, inner vertices.

2 Main Results

Let F=(Gn)n>1 be a family of graph G, of order w(n) for which
lim, 00 p(n) = co. If there exist a constant M > 0 such that BGr) S M
for every n > 1 then we shall say that F has bounded metric dimension
otherwise  has unbounded metric dimension. If all graphs in F have same
metric dimension (which does not depend on n) then F is called a family
with constant metric dimension [9].

Since in applications, elements of resolving sets are referred to as cen-
sors or detecting devices, so it is natural to look for graphs with constant
metric dimension or graphs whose metric dimension does not increase with
increase in the number of vertices of the graphs. With this motivation,
Javaid et al. [9] considered the generalized Petersen graphs P(n, 2) and
proved that it is a family of graphs with constant metric dimension by
showing that B(P(n,2)) = 3 for every n > 5, and asked the following ques-
tion:

Question:[9] Is P(n,m) forn >7and 3<m < [252], a family of graphs
with constant metric dimension?

Imran et al. [8] gave partial answer of this question by considering the
generalized Petersen graphs P(n,3) and proved the following theorem:

Theorem 1 (8] For a generalized Petersen graph P(n,3),
(a) B(P(n,3)) =4 for n = 0(mod 6) and n > 24,

(b) B(P(n,3)) =3 for n = 1(mod 6) and n > 25,

(c) B(P(n,3)) <5 forn =2(mod 6) and n > 8,

(d) B(P(n,3)) < 4 for n = 3,4,5(mod 6) and n > 17.

In this paper, we consider a more general family of generalized Petersen

graphs P(n,m) with n = 2m + 1 and m > 1, and partially answer the
question mentioned above by proving the following result:
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Theorem 2 Let P(n,m) be generalized Petersen graphs withn =2m+1

and m > 1. Then B(P(n,m)) = { g gz : i,

We prove this theorem by proving following five lemmas. Throughout
the proofs of lemma 1-4 each integer entry in codes tables is the distance
between the vertices of column 1, column 5 (if exist) and the vertices in
row 1. Each row represents the code of a vertex lying in column 1 and
column 5 (if exist) of that row.

Lemma 1 Let P(n,m) be generalized Petersen graphs with n = 2m +1
and m = 0(mod 4), then B(P(n,m)) < 3.

Proof. For m = 4, it is easy to see that W = {Ip, I4, 05} is a minimal
resolving set for P(9,4). For m > 8 and m = 0 (mod 4), and for the chosen
index i such that 0 < i < n—1, we shall show that W = {I, Iiy2k+2, Oi4m}
where k = 2 is a resolving set for P(n,m). For m = 8, the codes of the
vertices in V(P(17,8)) \ W with respect to W = {lo, I, O} are in Tables
1 and 2.

Table 1: Codes of the outer vertices of P(17,8)

d(.,.) [ fo | i Os [ d(.,.) | I 1 Og
Uo 3 1 p g
02 IS¢ 0 J 03 4 J
U4 2 J OUs D 2 3
Og 2 O7 J 2 1
g 2 4 10 J | 2
Ol 5 012 5
O3 O K o Oh14 4 p. 5
Ols. J 2 4 016 2 3

d(.,J) 1 Jo | Je | Os | d(.,.) | 1 Js | Os
11 2 J 12 4
I3 0 0 < 14 [§ 3!
Iy 2 4 17 3 2 2
8 ) 1 2
1o [ 111 D [

112 0 0 113 5] 3 O
114 3] 115 4 1 3
i16 J Z

It can be seen that all the vertices in V(P(17,8)) \ W have distinct codes
with respect to W. Now for m > 8 the codes of the vertices of V(P(n,m))\ W
are: ew(lit1) = (2,2k +2,3), ew (liy2m) = (2,2k,2), and in Tables 3 and 4.
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Table 3: Codes of the outer vertices of P(n,m)

a(.,.) 1A fitorgo Oitm
Oiy; :0<7<T J+1 2K+ 7 J+3
Oiti42: 057k -4 7+3 2k—g7+1 J+95
Oigok+j—1: 07 <1 2k +7 4-—7 k-7 +1
Oigart i1 ;0K j 21 2k —3+1 2-7 2k — g~
igm—j-1: 07 <2k =14 743 2k —j5 =2 J+ 1
Citmiiz1 02721 T¥3 TEF 7 71
Oitmzits 03 <O =3 7+ 4 ok~ 1 T+3
Oigmyjionsr t0SJ<T [ 2k—5F1 3—37 2k +1
Oit2om—; :0<7<28-3 2+ 2 2k—7-=T 7+3

Table 4: Codes of the inner vertices of P(n, m)

al.,.) 4] Tigorta Oitri

Lit;40: 07 <2k =3 7+4 k-7 +72 I+
fiyart;: 07T Zk +2 4-2; 2k -7+
Litok4i13: 07T 2k —3 25 +2 2k —j—
Liyokyips:0S7<2k=7 [ 2k=7—2 J+5 2k -3 =41
ligm—j :0Z7<1 27+ 1 2K —J J+1
litmtij41:0<J <1 27+ 1 28+7+4+1 7]+ 2
Tivm+i+3 0L j X2k —3 J+5 2k—3+2 J+4
Titma2ktip) (0 721 2k—3+2 3 — 27 2k -7+
Litmioktj43:0< 7 <1 2k —73 27 +1 2k—j—
ligogm—j-1:0<7J<2k—6 7+4 2k—7—1 7+3

From these tables, one can see that all the vertices of P(n,m) lying in
column 1 of Table 3 and Table 4 have distinct codes with respect to W. Thus
W is resolving set for P(n,m). Hence B(P(n,m)) < 3forallm>8and m=0
{mod 4).

Lemma 2 Let P(n,m) be generalized Petersen graphs with n = 2m + 1 and
m = 1(mod 4), then B(P(3,1)) = 2 and B(P(n,m)) < 3 form > 5.

Proof. Form =1, B(P(3,1)) = 2since P(3,1) & K,0Cs and it was shown that
B(K20C3)=2 [2]. For m = 5, it is easy to see that W = {12,14,05} is 2 minimal
resolving set for P(11,5). Form > 5 and m = 1 (mod 4), and for the chosen
index i such that 0 < i < n — 1, we shall show that W = {Liv2, Liv2k42, Oigm}
where k = 221 ig a resolving set for P(n,m).

The codes of the vertices in V (P(n, m))\W with respect to W are: ew (I;43) =
(2,2k+1,5), ew (Lisx2k41) = (2k+1,2,2k+ 1), ew (liv2k4a) = (2k+3,2,2k — 1)
and in Tables 5 and 6. It can be noted that all the vertices of P(n,m) lying in
column 1 of Table 5 and Table 6 have distinct codes with respect to W. Thus W
is resolving set for P(n,m).
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Proof.

Table 5: Coding of the outer vertices of P(n,m)

da(.,.) lit2 Tiyopy0 Oitm
Oiyj:0<9=<1 3-7 2k+7+1 J+
Oiyjt2:0S53<S2k=3 J+1 2k—7+1 J+5
Oitoryj:0<3<2 2k F5=1 3-3 2k-7F1

Oitm—i—1:0% ] 2 2k—3 TF+5 Tk =7 — 1 T+ 1
Oitm4i41:057<1 3=3 2k+3+1 J+1
Oipm4j43 072k —1 2+2 2k—7+1 J+3
[ Oijom—j:0<57<2k—2 FEX! % — 7 j+3

Table 6: Codes of the inner vertices of P(n,m)

a(., .} Tiyo Jiyok42 Oitm

T 0S5 P LT S N E
Titi4a:0S7<2k—4 7+4 2k = j+6
Titm-j: 057 2k-3 7+ 2k—7+1 741
figmejb1:0S7S1 3-2 2k+3+2 J+2
Titmaits 027 <1 PIES ! %= +2 7+4
Titm4i45:0<J<2K-3 J+5 2k -3 jto

i+m+2k+i+1: 057 <1 [ 2k+5+1 3—2 2k—3+2
Titmi2k+i43 0SS 1 | 2k—3+0 27+1 2k =7
Tijom—; 0< 2 9k—14 745 ok —7+1 EY]

Hence B(P(n,m)) < 3.

m—=2
4

Lemma 3 Let P(n,m) be generalized Petersen graphs with n = 2m + 1 and
m = 2(mod 4), then B(P(n,m)) < 3 for any m > 2.

In [9], it was shown that B(P(5,2)) = 3. For m = 6, the codes of the
vertices in V(P(13,6)) \ W with respect to W = {I, 14,07} are in Tables 7 and
8. These tables show that all the vertices in V(P(13,6)) \ W have distinct codes
with respect to W. For m > 10 and m = 2 (mod 4), and for the chosen index ¢
such that 0 < i < n — 1, we shall show that W = {Ii;a, Jit2k42, Oi4m+1} Where
is a resolving set for P(n,m).

Table 7: Codes of the outer vertices of P(13,6)

d(.,.) | [ . 1O 1dl.,) | i3 | Ia | O7
Qo 4 K O J 3
U2 p. 3 4 Oz 2

4 . 1 3 Us J 2 2
or J Og J
Og J 2 U0 2 p. J
011 3 2 4 12 K
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Table 8: Codes of the inner vertices of P(13, 6)

d., ) | B T L Oz ]dl,) ] L[| OF
0 5 | 2 ] 4 s 2
I P 2 4 3 5 4 2 3
1g o 4 p. 17 9 0
Ig 3 9 p. 19 3 3
110 I 17y J 1
1o |3 K] J

When m = 10, then W = {3, 16,011} resolves all vertices in P(21,10) as the
codes of the vertices are in Tables 9 and 10.

Table 9: Codes of the outer vertices of P(21,10)

di, ) [ LTl [On [dl, )T LTI On
g [ 3 o) K] 3
[0} 2 o Oy 1 2
04 2 3 Os 3 2 [
Ug |3 O7 1 2 q
Osg [¢ 3 J Co [ 2
10 9 )2 3
013 2 2 14 2 J
15 3 3 O16 2 5
U117 9 P, 18 3 [
O1g [¢ 5 O20 5 D 4

Table 10: Codes of the inner vertices of (21, 10)

a(, ) | s [TIe Oy [dl,) [ Is [ 1s [ On
0 3] i 2 FeN 4 iy 2
1y p [} 3 14 2 4 o
s [ 2 [} 1y [ 2 |53
15 4 19 i 5] 3
4o 2 1y 0 7
1o 3 2 {13 [ J
14 1 S 5 J 3 O
116 5] [¢ 17 1
118 4 J o K |+

[ 29 [ © 3

From these tables, it is evident that all the vertices of V(P(21,10))\ W have
distinct codes with respect to W. Now codes of the vertices of V(P(n,m))\ W
with m > 10 and m = 2(mod 4) are: cw(0;) = (4,2k + 2,3), ew (L) = (5,2k +
3,2), ew (liva) = (2,2k,8),ew (fis2e41) = (2k,2,2k + 2), cw (Lisarsa) = (2k +
2,2,2k+ 1), and in Tables 11 and 12. Note that all the vertices of P(n,m) lying
in column 1 of Table 11 and Table 12 have distinct codes with respect to W.
Thus W is a resolving set for P(n,m).
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Table 11: Codes of the outer vertices of P(n,m)

a(,.) 1i}3 Litok Oigmtl
Oiti+1:057<1 -y 2k—J + .’I‘i‘a
Oi4j43: 07 <2k =3 J+1 2k —3 J+5

[T HEYES! 2k+3—1 2—7 2k—-j+2
Oiyoretijp3 0SS 1 2k+7+1 J+2 2k -3
Oitm—j 0ZX 7<%k —3 7+5 ok — 7 F 1 F+1
Oitm+i+2:0S7S 1 3—3 2k—7+2 J+1
Oitmtita:0SFS2k—2 Jt+2 2k — j J+3
Oigmyj42k43: 0571 2k+7+1 J+2 2k+2
Oijom—; 0 j<2k—3 J+o 2k—7+1 J+4

Table 12: Codes of the inner vertices of P(n,m)

a(.,.) Tita Lipok42 Oitmyi
Tigj41:0S57<s1 4-2 2k —7+ J+'3
Tit;45: 07 <2k—0 1+4 2k—3—1 J+06
Titoryj4a:0<7S1 2k+3 j+4 2k -3
itm—j4+1 0SS IS k=9 J+9 2k—7+3 J+1
Litmij42:0<37<1 3—-23 2k—7+4+3 742
Titmyj4a:0<3<1 23+1 2k—-3+1 J+4
Tiemi6 027 <2k —6 3¥5 Tk —7 — 1 7+86

Tizmiokyi1:0S7S 1 2K+ 7 3-23 2k+7+1

Titm42k4i43:0SJS 1 2k+3+2 27+1 2k—-3+42
,~+22:5:05_752k—3 7+6 2k—3+2 7+3

Hence B(P(n,m)) < 3 for all m > 6 and m = 2(mod 4).

Lemma 4 Let P(n,m) be generalized Petersen graphs with n = 2m +1 and
m = 3(mod 4), then B(P(n,m)) < 3.

Proof. For m = 3, it is easy to see that W = {Is, 2,02} is a minimal resolving
set for P(7,3). For m > 7 and m = 3 (mod 4), and for chosen index ¢ such that
0<is<n-1,

Table 13: Codes of the outer vertices of P(15,7)

d,) |1 Ta ] 1a | O [ d(C, ) [ ha|la ]| Qs
on p 1 4 O 3 |59
02 4 K 4 Oz ] 2 3
(4 4 p Us J 2 1
Uz p 4 Os J D P

9 4 ! 010 5 3 4
11 4 2 |5 U192 3 2 4
13 2 3 14 1 3
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Table 14: Codes of the inner vertices of P(15,7)

A, ) [ ha [ Ta [ Os | d(.,) Tha [ I1 T Os
1] Z K] 1) 4 J <
Iy 51 I3 G p. 4
i85 oJ & y- 6
iz 0 p. ig J 3
Ig 5§ 3 4 10 3 5
111 9 4 1o 3
113 2 3 P

we shall show that W = {I;y2m, Litax+2, Oim-1} Where k = 53 is a resolving
set for P(n,m). For m = 7, codes of the vertices in V(P(15,7)) \ W with respect
to W = {l14,14,06} are in Tables 13 and 14, showing that all the vertices in
V(P(15,7)) \ W have distinct codes with respect to W.

Now for m > 7 the codes of the vertices of V(P(n,m))\W are: cw (Oi4m42x+2) =
(2k+4-2, 2,2k+3), ew (Oiyam) = (1,2k+2,3), ew (1) = (2, 2k+4, 3), cw (Lig2k+1) =
2k + 4,2,2k + 2), ew(liy2r+3) = (2k + 2,2,2k), ew (Lizam-1) = (2,2k + 2,2),
and in Tables 15 and 16.

Table 15: Codes of the outer vertices of P(n,m)

d(...) Titam Ligors2 Oitm—1
Oi4;:0<j<2k=1 J+2 ‘275‘1—'7-;-3 7+4

[ AT HLEYES! 2k+7+2 3~7 Zk—7+2
Oiporti42:0573<S2k—-1 | 20 —95+2 7+1 2k —J
itma; 023 <1 7 +2 2E+ 7+ 2 T+1
Oirmtjt2 V272 k=1 j+4 k=g F 2 TF3
Oitom-j—1: 057 <261 J+2 2k—j+1 J+3

Table 16: Codes of the inner vertices of P(n,m)

d(.,. ligom Tigon Oitm-1
Tizitis 0% J)S 7% =1 BRI
Tiiokajia (07 20k =4 | Bk=J7F1 7+4 k=7 =1
'Ji+m—j—l:0$.7$1 2+ 1 2k—j+2 J+1
Titms; 023721 35 +1 [ 2k 4743 T¥2
figinyjp2:0S 7S 2k -2 J+9 2k~—7+9 j+4
figmyontij41: 0SS 1 2k—g+14 S -2 2k—3+43
Livm 2% _,'_}.310S]S1 2—7+2 2_’)+1 2k—]+1
Tiiom—j-2:0j<2k—4 J+4 2k—7+1 j+3

Note that all the vertices of P(n, m) lying in column 1 of Table 15 and Table
16 have distinct codes with respect to W. Thus W is resolving set for P(n, m).
Hence S(P(n,m)) < 3 for all m > 7 and m = 3(mod 4).
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In Lemma 1-4, we have seen that S(P(n,m)) < 3forn =2m+1and m > 1.
Proof of Theorem 2 will be complete if we show that 8(P(n,m)) > 3. We prove
this in the following lemma:

Lemma 5 Let P(n,m) be generalized Petersen graphs with n = 2m + 1 , then
B(P(n,m)) = 3.

Proof. We suppose contrarily that 8(P(r,m)) = 2, and only two vertices form
a metric basis W for P(n,m). Then we have the following three cases:

Case 1: For fixed %, let W = {O;,0;4;}, we have

ew(livj+1) = ew(ligmej+1), when 1 £ j < m — 15 ew (Lirm+1) = ew (lizzm),
when j = m; ew(li+1) = ew (li+m), when j = m+1; ew (Lirj—1) = ew (li4j—m-1),
when m 4 2 < j < 2m, a contradiction.

Case 2: For fixed 4, let W = {I;, I;y.;}, we have

ew(Oitjs1) = ew(Oism+j+1), when 1 < j < m —1; ew(Oiym) = ew(lizam),
when j = m; ew(Oi4m+1) = ew (Li41), when j = m+1; ew (Oitj—1) = ew (Oitj—m-1),
when m + 2 < j < 2m, a contradiction.

Case 3. When one vertex is in the outer cycle and the other is in the inner
cycle, then we have two subcases.

Subcase 1: For fixed i, let W = {O;, Ii+;}.

(a).

(i). When m = 0(mod 4), and for k = 1, we have cw (Oi+s5) = cw(Oi+s), when
j = 1,3,8; cw(0i+4) = cw(0i+5), whenj = 0, 2, 7; cw(O,'.,.z) = cw(O,-.,.-,), when
j=4,5,6.

(ii). When m = 1(mod 4), and for k& = 1, we have cw(Oi+3) = cw(li+9), when
j = 073: 51 8; CW(O'I'+3) = CW(OH.s), when ." = 114»7; CW(O.’+3) = CW(O;'+8),
when j = 2,9,10; ew (Oi+3) = cw (lit4), when j = 6.

(iii). When m = 2(mod 4), and for k = 1, we have ew (Oi+j+3) = ew (litj+2),
3=0,1,2,3; ew(Oi4j-3) = ew(li+j=2), § = 10,11,12; cw(Oi43) = ew(Ois10),
when j =4,5,6,7,8,9.

(iv). When m = 3(mod 4), and for k = 1, we have ew (Oi+j+3) = ew (fi+j+2),
when j =0,1,2,3,4; cw(Oitj+s) = ew(li+j45), when j =5,6,7; ew (Oiyj-a) =
ew(Litj—s), when j = 8,9,10; cw (Oi4j-3) = cw (fi4j—2), when j =11,12,13,14.
(b). When k > 2, we have ew (li+j+2) = ew(Oitjt3), when 0 < j < m - 3;
cw(litj—ms2) = ew(Oigj_m+3)), When m — 2 < j < m + 3; ew(liyj—2) =
cw(Oitj—-3), when m + 4 < j < 2m, a contradiction.

Subcase 2: For fixed i, let W = {I;, Oi4;}.

(a).

(i). When m = 0(mod 4), and for k = 1, we have ew(Oi+1) = cw(Oi+s), when
j =0,4,5; cw(Oite) = cw(Oiz7), when j = 1,2,3; ew(Oi+2) = cw(Oiza), when
j=86,7,8.

(i). When m = 1(mod 4) and for £ = 1, we have cw(li+s) = cw(lits),
when j = 0; cw(Oi4s) = cw(lizo), when j = 5; ew(Oi+3) = cw(li+2), when
i = 6; ew(Oite) = cw(li410), when j = 1,2,3,4; ewOirs) = cw(li1), when
j=1,8,9,10.

(iii). When m = 2(mod 4), and for k = 1, we have ew (Oi+3) =cw (li+2), when
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j = 0,1,2,11,12; cw(0.~+m) = CW(I.'+2), when ] = 4,5,6,7,8; Cw(og'.p.s) =
ew(Ii+1), when j = 3,9, 10.

(iv). When m = 3(mod 4), and for k = 1, then we have ew (Oira)=cw (fita),
when j = 0,1,2,11,12,13, 14; cw(0Oit+s) = cw(lize), when j = 3,8; ew (Oiya)
= ew(Oiss), when j = 4; cw(Oiy2) = cw(Oit13), when j = 5, 10; cw (Oire)
= cw(0Oi+13), when j = 6; cw(Oix10) = ew(li+13), when j = T7; ew(Oiyr) =
ew({it1), when j =9,

(b). When k > 2 and m = 0,2(mod 4), then we have ew (Oiv2r) = ew(livar-1),
when0 < j < 2k—1; ew (Liv2k41) = cw (Lirmaars1), when j = 2k; ew (Iizagkt1))
= cw(ligmi2k+1)), When j = 2k + 1; ew(Oipop41) = ew (Liya(k+1)), when
2k+2< j < m; ew (Oigmaar) = ew(litmar—1), when m+1 S F<m+2k-1;
ew(Liv2k-1) = ew(Jigms2k—1), when j = m + 2k; ew (liv2k) = ew(Tizmax),
when j =m 4 2k + 1; cw(O,-.,.,,..,.zk“) = CW(Ii+m+2(k+l)), when m + 2k + 2 <
J £ 2m, a contradiction.

(c). Whenk>2and m= 1,3(mod 4), then we have cw (Oitar+1) = cew (liyox),
when 0 < 5 < 2k; ew (Oig2x) = cw(o,-.,.z(k.,.])), when j = 2k + 1; cw (Oisar+t1)
= cw (Liy2(k+1)), when 2k +2 < j < m; cw (Oryma2k+1) = ew (lisms2x), when
m+1< j<m+2k; ew (Oigpmaak) = CW(Oi+m+2(k+1)), when j = m 4 2k + 1;
w(Oigmizkt1) = ew (Livm+2(k+1)), when m+2k+1 < j < 2m, a contradiction.
Thus, we conclude that to work with a resolving set consisting of two vertices of
P(n,m) is not possible. Hence, B(P(2m + 1,m)) > 3.
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