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Abstract

In this paper, we investigate the transitive Cayley graphs of strong
semilattices of rectangular groups, and of normal bands, respectively. We
show under which conditions they enjoy the property of automorphism
vertex transitivity in analogy to Cayley graphs of groups.
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1 Introduction and Preliminaries

The definition of a Cayley graph was introduced by Arthur Cayley in 1878 to
explain the concept of abstract groups which are described by a set of generators.
Cayley graphs of groups have received serious attention, and many algebraic
and combinatorial properties have been actively investigated (see, in particular,
[4,16]). Let S be a semigroup, and C a subset of S. The Cayley graph Cay(S,C)
of S with respect to C is defined as the graph with vertex set S and edge
set E(Cay(S,C)) consisting of those ordered pairs (z,y), where zs = y for
some s € C. The set C is called the connecting set of Cay(S,C). Cayley
graphs of semigorups are closely related to finite state automata and have many
valuable applications, see the survey [14] and the monograph [10]. They are
generalizations of Cayley graphs of groups. One of the earliest references on this
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subject is [1]; see also [20] for another example of early work. The whole Section
2.4 of the book [10] is devoted to the Cayley graphs of semigroups. All vertex-
transitive Cayley graphs produced by periodic semigroups are characterized
in [12]. A combinatorial property of infinite semigroups defined in terms of
Cayley graphs has been investigated (see [5, 13, 19]). In particular, the Cayley
graphs of certain classes of semigroups have been studied, and combinatorial
properties of these Cayley graphs have been described. In [11), Kelarev studied
the Cayley graphs of inverse semigroups. In (2], a complete description of all
vertex transitive Cayley graphs of bands was obtained. The undirected Cayley
graphs of right groups are investigated in [6]. The basic structures of Cayley
graphs of normal bands are investigated in [3]. The authors also investigated
the Cayley graphs of symmetric inverse semigroups, Brandt semigroups and
completely semigroups in (7], [8] and [17], respectively.

In this paper, the word “graph” means a finite directed graph without mul-
tiple edges, but possibly with loops. A semigroup S is said to be a right (left)
zero semigroup if zy =y (zry =) for all z, y € S. Let G be a group, I a left
zero semigroup, and set S = I x G. Define multiplication on S by (i, 9)(5,h) =
(3,gh) for any (4,9), (4,h) € S. Then S is a semigroup which is called a left
group. Correspondingly, if A is a right zero semigroup, we set S = G x A and
define multiplication on S by (g, A)(k, 1) = (gh, p) for any (g,A), (h,pu) € S.
Then S is a semigroup which is called a right group. We set S =Ix G x A, and
define multiplication on S by

(4,9, A) (4, hy ) = (i, gh, p) for any (4,9,2), (4,h,p) €S.

Then S is called a rectangular group. A semigroup S is said to be completely
simple if it has no proper ideals and has a minimal idempotent with respect to
the partial order e < f & e=e¢f = fe.

If (Y,<) is a nonempty partially ordered set such that the meet o A B of o
and @ exists for every a, 8 € Y, we say that (Y, <) is a (lower) semilattice. A
semigroup S is said to be a semilattice of ( disjoint) semigroups (Sa,0q), @ €Y,
if

1. Y is a semilattice,

2. S =Uqey Sas

3. SQSB c Sa/\ﬁa

and a strong semilattice of semigroups, if in addition for all 8 > a in Y
there exists a semigroup homomorphism fzo: Sg — S, called a defining
homomorphism, with

4. forall @ €Y, faa = ids,, the identity mapping,

5. for all @, 8, v € Y with @ < 8 <, we have fg,o © fy,8 = fy,a, Where
multiplication on S = |J ey Sa is defined for z € So and y € Sp by

Ty = fa.al\ﬁ(z)fﬁ.ul\ﬂ(y)-

If a semigroup S is a rectangular band, ie., zyz =z, sz =z forallz, y € S,
then S is isomorphic to a direct product of a left zero semigroup and a right
zero semigroup ([9]). S is called a normal band if it is a strong semilattice of
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rectangular bands ([9]). A semigroup S is called a Clifford semigroup if it is a
strong semilattice of groups.

If C is a nonempty subset of S, then denote by (C) the subsemigroup of S
generated by C. The subsemigroup (C) consists of all elements of S that can
be expressed as finite products of elements of C.

Let X3 x X3 X --- x X,, be a finite cartesian product of sets X;, Xa, ... y X
We denote by p;, i,....i, the usual projections of this product onto X;, x X;, x
oo x X, for any {iy,4g,...,%} € {1,2,...,n}.

Let (W, E1) and (Vz, E3) be graphs. A mapping ¢: Vi — V5 is called a
(graph) homomorphism if (u,v) € E, implies (d(u), ¢(v)) € E,, ie. ¢ preserve
arcs. We write ¢: (V1, E;) — (V2, E2). A graph homomorphism ¢: (V,E) —
(V, E) is called a (graph) endomorphism. If : (Vy, Ey) — (Va, E») is a bijective
graph homomorphism and ¢~! is also a graph homomorphism, then ¢ is called
a (graph) isomorphism. A graph isomorphism ¢: (V, E) — (V,E) is called a
(graph) aeutomorphism.

A graph D = (V,E) is said to be Aut(D)-vertez-transitive if, for any two
vertices z, y € V, there exists an automorphism ¢ € Aut(D) such that o(z) =y.
Now let S be a semigroup and C C S. Denote the automorphism group and
the endomorphism monoid of the Cayley graph Cay(S,C) by Aut(S,C) and
End(S,C), respectively. An element ¢ € End(S,C) will be called a colour-
preserving endomorphism if za = y implies ¢(z)a = ¢(y), for every z, y € C
and a € C. Denote by ColEnd(S,C) and ColAut(S, C) the sets of all colour-
preserving endomorphisms and automorphisms of Cay(S, C), respectively. Ob-
viously, ColAut(S, C) C Aut(S,C).

For terminology and notation not defined in this paper, We refer the reader
to [4] and [9).

We introduce some well known results which will be used extensively in this
paper.

Theorem 1.1. ([12]) Let S be a semigroup, and let C be a subset of S which
generates a subsemigroup (C) such that all principal right ideals of (C) are finite.
Then, the Cayley graph Cay(S,C) is Col Aut(S, C)-vertez-transitive if and only
if the following conditions hold:

(1) Sc=S, forallce C;

(2) (C) is a left group;

(3) |s(C})| is independent of the choice of s € S. O

Theorem 1.2. ([12]) Let S be a semigroup, and let C be a subset of S which
generates a subsemigroup (C) such that all principal right ideals of {C) are finite.
Then, the Cayley graph Cay(S,C) is Aut(S, C)-vertez-transitive if and only if
the following conditions hold:

(1) sCc=5;

(2) (C) is a completely simple semigroup;

(3) the Cayley graph Cay((C),C) is Aut({C), C)-vertez-transitive;

(4) 18(C)| is independent of the choice of s € S. a
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Lemma 1.8. ([12]) Let S be a finite rectangular band, and C a subset of S.
Then the Cayley graph Cay(S,C) is Aut(S, C)-vertez-transitive if and only if
CNsS#0 foralls€ S. ]

Lemma 1.4. ([18]) Let Y be a finite semilattice, S = ,cy Sa a strong semi-
lattice of finite semigroups, C a nonempty subset of S, and let Cay(S,C) be
Aut(S, C)-vertez-transitive. Then

(1) Y has a mazimum m, and

(2) C C Sm. 0

Lemma 1.5. Let S = I x G x A be a finite rectangular group, where G is a
group, I and A are left zero semigroup and right zero semigroup, respectively,
and let A be a subset of S. Then (A) = I’ x (G') x N’ is a subsemigroup of S.
In particular, (A) is a rectangular group, where I' C I, G'CG,NCA.

Proof. Let I' = py(A), G’ = pa(A) and A’ = p3(A). Take any z, y € I' x (G') x
N, where = (i,9192 -+ 95, \), ¥ = (', 9193 --- 9, '), 93, 9 € G54, 7' € I'; A,
X € A'. Since

Ty = (1,092 9s9195 - -9, X') € I' x (G') x A,

then I’ x (G') x A’ is a rectangular group which is included in S. It is obvious
that A C I’ x (G') x A', thus (A) C I' x (G') x A'.

On the other hand, for any z € I' x (G') x A, let z = (i,q192 - - - 91, A). We
may choose ' € I', g € G’ and X' € A’, such that (i,g,)’), (¥'g, A) € A. Since G
is a finite group, there exists ¢ € N*, such that g? = e, where e is the identity
of G. Then

z=(i,9192" "9t A)
= (i,9192 " - - g€, A)
= (i, 0192 - 99%, })
= (4, g1, A1) (%2, 92, Ag)- -+ (i, gt At)(4, 9, X)(i’ 9, X) < (4,9, X)(il» g,2) € (4)

where ia,...,i € I', A1,..., At € A’. Therefore, I' x (G') x A’ C (A). 0

2 Strong semilattice of rectangular groups

In this section, we investigate the Aut(S, C)-vertex-transitive Cayley graphs of
strong semilattices of rectangular groups. We give the first main result in the
following.

Theorem 2.1. Let Y be a finite semilattice, S = |J ey Sa a strong semilattice
of rectangular groups such that Sq = In X Ga X Aq where G, are groups, I,
and A, are left zero semigroups and right zero semigroups, respectively, and let
C be a nonempty subset of S, p3 and pa,3 are the third projection and {2,3}-
projection, respectively. Then the Cayley graph Cay(S, C) is Aut(S, C)-vertez-
transitive if and only if the following conditions hold:
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(a) Y has a marimum m;

(b) CC Sp;

(c) Jor alla € Y, |p3(fm,a(C))| = |Aal| and

(d) Cay((C),C) is Aut({C), C)-vertez-transitive;

(e) for any a, B €Y, [p2,3(fm,a({C))] = [P2,3(fm,6({C)).

Proof. Sufficiency. We prove the conditions (1)~(4) of Theorem 1.2 for S, then
the results follow.
(1) Since C C S,,, we get

5aC = (Ia X Ga X Aa) fma(C) = In X Ga x Aa (by (c) = Sa for all a € Y.

Therefore, SC = (Upey Sa)C = Uaey (SaC) = U,cy Sa = S, since S, are
distinct.

(2) Since C C Sy, we obtain that {C) is a rectangular group and a subsemi-
group of S,, by Lemma 1.5, in particular, a completely simple semigroup.

(3) This is (d).

(4) Let s, s’ € S where s = (i,9,)) and §' = (j, h, u). Suppose that s € S,
and s’ € Sy for some o, B € Y. Then

[$(ON = |(2, 9, ) fm,a ({CN)] = [{i} X P2,3(fm,a({C)))]
= {7} X P23(fm,s((CH)] (by (&) = (4, by 1) fm,8({C))| = |5'(C})|.

Therefore, the Cayley graph Cay(S,C) is Aut(S, C)-vertex-transitive.

Necessity. From Lemma 1.4 it is clear that (a) and (b) are necessary. We
will prove, by contradiction, that the Cayle graph Cay(S,C) is not Aut(S, C)-
vertex-transitive, if

(1) there exists 8 € Y such that |ps(fm,s(C))| < |Ag], or

(2) there exist 8, v € Y such that |p2,3(fm,s({C)))| = |p2,3(fm~((C))], or

(3) the Cayley graph Cay({C),C) is not Aut({C), C)-vertex-transitive.

(1) Suppose that there exists 8 € Y such that |p3(fms(C))| < |Ag|. Hence
S5sC = (Ig x Gg x Ag)fmp(C) = Ig x Gg x p3(fms(C)) # Sp, and thus
SC = (Uaey Sa)C = Uaey(SaC) # Usey Sa = S. By Theorem 1.2, we
obtain that the Cayley graph Cay({C), C) is not Aut((C), C)-vertex-transitive.

(2) Let |p3(fm,a(C))| = |Aal, for all @ € Y, and suppose that there exist 3,
7 € Y such that |y 3(fm,s((C)))| # Ip2,3(fm,((C)))|. We take s = (i,9,)) € Sp
and s’ = (j,h,p) € S,. It follows that

[$(C)] = 1(2, 9, A fam,8({C))] = {3} X P2,3(fun,6({C)))]
# {3} X p2,a(fmx (O] = (G, by ) fen v ({C))] = [8(C))].
From Theorem 1.2, we have that the Cayley graph Cay((C), C) is not Aut((C), C)-
vertex-transitive.

(8) It is obvious by Theorem 1.2.
Now the proof is complete. (]

Let |Y| = 1 in Theorem 2.1, we have a description of the Aut(S, C)-vertex-
transitive of Cayley graphs of rectangular groups, which is introduced in [15].
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Corollary 2.2. ([15]) Let S =I x G x A be a finite rectangular group, and C
a subset of S, and let ps be the third projection. Then Cay(S,C) is Aut(S, C)-
vertez-transitive if and only if the following conditions hold:

(1) ps(C) = A;

(2) the Cayley graph Cay((C),C) is Aut((C), C)-vertez-transitive. O

Taking |I| = 1 for all @ € Y, we have the description of Aut(S,C)-vertex-
transitive Cayley graphs of the strong semilattice of right groups in [18].

Corollary 2.3. ((18]) Let Y be a finite semilattice, $ = U,cy Sa @ strong
semilattice of right groups such that Sq = Ga X Ao where Go and A, are groups
and right zero semigroups, respectively, and let C be a nonempty subset of S, p2
is the second projection. Then the Cayley graph Cay(S,C) is Aut(S, C)-vertez-
transitive if and only if the following conditions hold:

(a) Y has a mazimum m;

(b) CC Snj;

(c) for alla €Y, |p2(fm,a(C))| = |Aa| and

(d) Cay({C),C) is Aut({C), C)-vertez-transitive;

(e) for alia, B €Y, | fma({O)| = | fm,8((CO))|- o

In the following, we give the second main result of this paper, which is
a complete description of Col Aut(S, C)-vertex-transitive Cayley graphs of the
strong semilattices of rectangular groups.

Theorem 2.4. Let Y be a finite semilattice, S = |J,cy Sa a strong semilattice
of rectangular groups such that Sq = I X Ga X As where G, are groups, I,
and A, are left zero semigroups and right zero semigroups, respectively, and
C be a nonempty subset of S, py is the second projection. Then the Cayley
graph Cay(S,C) is Col Aut(S, C)-vertez-transitive if and only if the following
conditions hold:

(a) Y hes a mazimum m;

(b) C C Smj

(c) |Aa] =1 foralla€Y;

(d) for any &, BE€ Y, |p2(fm,a({C))] = [P2(fm,s (CH)I-
Proof. Sufficiency. We prove the conditions (1)~(3) of Theorem 1.1 for S, then

the results follow.
(1) Foranyce C,a €Y,

Sac = (Ia X Ga X Ax)frmal€) = Ia X Ga X p3(fm,al€)) = Ia X Ga X Aa by ().
Therefore, S¢ = Upey Sa€ = Uaey (52€) = Uaey Sa = S.
(2) Since C C Si, and |ps(C)| = 1, then (C) = I, x G, where I, C I,

and G, is a subgroup of Gm. Therefore (C) is a left group by Lemma 1.5.
(3) For any s, ' € S, we suppose that s = (4,9, ), ' = (G, h, 1), and s € Sa,
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s’ € S, for some a, B €Y. Then

() = 1(7, 9, A fom,a({C)] = {&} X gP2(fm,a({C))) X P3(fm,a ({CH)]
= [p2(fm,a({C))] (by (¢)) = IP2(fm s({C)))| (by (d))
= {7} % hp2(fm,6((C)) X P3(fm,s((CI)] = |(J, b, 1) fm,6((C))
= |s"(C)I.

Necessity. From Lemma 1.4, we conclude that (a) and (b) are necessary. We
suppose to the contrary that (1) jAg| > 1 for some 3 € Y, or (2) for some 3,

Y €Y, Ip2(frn,a ({O))) # [P2(fm,6({C)I-
(1) Force C,

Sge = Spfm,p(c) = Ig X Gg X p3(fm,p(c))
# Iz x Gg x Ag (by the hypothesis) = Sg.

Hence Cay(S, C) is not Col Aut(S, C)-vertex-transitive by (1) of Theorem 1.1.

(2) If [Ax] = 1 for all @« € Y, and there exist a, 8 € Y, such that
[P2(frn,a({CY)] # Ip2(fm,s({C)))]. We take s, s’ € S, and suppose that s =
(i,9,2) € Sa, ' = (4, h, ) € Sg. Then

[$(CH = 1(5, 9, A) fon,a ({C))] = |P2(frn,a ({CN)]
# 1P2(fm s ((C = (G, B, ) ((C))] = |$'(C)].

Hence Cay(S, C) is not Col Aut(S, C)-vertex-transitive by (3) of Theorem 1.1.00

From Theorem 2.4, we immediately have a characterization of Col Aut(S, C)-
vertex-transitive Cayley graphs of rectangular groups.

Corollary 2.5. Let S = I x G x A be a finite rectangular group, and let C be a
subset of S, p3 be the third projection. Then Cay(S,C) is Col Aut(S, C)-vertez-
transitive if and only if the |A] = 1. 0

Combining Theorem 2.1 and Theorem 2.4, and taking |[Aa]=1foralla €Y,
we obtain the following result which is a description of vertex transitivity of
Cayley graphs of left groups in [18].

Corollary 2.6. ([18]) Let Y be a finite semilattice, S = {J,cy Sa a strong
semilattice of left groups such that Sq = I X G, where G, and I, are groups
and left zero semigroups, respectively, end C be a nonempty subset of S, po is
the second projection. Then the following conditions are equivalent.

(a) Y has a mazimum m;

(b) C C S,;

(c) for any a, BEY, [pa(fmaliC)] = Ip2(fms((CY);

(d) Cay(S,C) is Col Aut(S, C)-vertex-transitive;

(e) Cay(S,C) is Aut(S, C)-vertez-transitive. ]

From Theorem 2.4, we also have a description of Col Aut(S, C)-vertex-transitive
Cayley graphs of the strong semilattice of right groups, by letting [I4] = 1 for
alaeY.
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Corollary 2.7. Let Y be a finite semilattice, S = J ey Sa a strong semilattice
of right groups such that S, = Ga X A, where G, and A, are groups and right
zero semigroups, respectively, and let C be a nonempty subset of S. Then Cayley
graph Cay(S,C) is Col Aut(S, C)-vertez-transitive if and only if the following
conditions hold,

(8) Y has a mazimum m;

(b) C C Sm;

(c) S is a Clifford semigroup;

(d) for all @, BE€ Y, |fmal(CN] = Ifms((O)]. O

3 Normal bands

In this section, we give a description of the Aut(S,C)-vertex-transitive and
Col Aut(S, C)-vertex-transitive Caley graphs of normal bands, (i.e., the strong
semilattice of rectangular groups)respectively. Theorem 3.2 and Theorem 3.4
are direct consequences of the Theorem 2.1 and Theorem 2.4, respectively, when
we take G, to be trivial groups for alla € Y.

Lemma 3.1. Let S = I x A be a finite rectangular band, where I and A are left
zero semigroup and right zero semigroup, respectively, and let C be a subset of
S. Then the Cayley graph Cay({C),C) is Aut(S, C)-vertez-transitive.

Proof. For any s = (i,5) € (C), s{(C) = {i} x p2({C)). Since I is a left zero
semigroup, then p; ({(C)) = p1(C). It follows that i € p;(C). Hence we can find
s € C, such that ' = (4,1) € {i} x p2({C)). Therefore, the set C N s(C) is not
empty, for all s € (C). It follows that Cay((C), C) is Aut(S, C)-vertex-transitive
by Lemma 1.3. ]

Combining with Theorem 2.1 and Lemma 3.1, we have the following result,
which characterizes the Aut(S,C)-vertex-transitive Cayley graphs of normal
bands.

Theorem 3.2. Let Y be a finite semilattice, S = |J,cy Sa a strong semilattice
of rectangular bands such that So = In X Ao where I, and A, are left zero
semigroups and right zero semigroups, respectively, and let C be a nonemply
subset of S, py the second projection. Then the Cayley graph Cay(S,C) is
Aut(S, C)-vertex-transitive if and only if the following conditions hold:

(8) Y has a mazimum m;

(b) C C Sm;
(c) for all a €Y, |p2(fm,a(C))| = |Aal;
(d) for any @, B €Y, |p2(fm,a({CI)] = IP2(Fm s((C)))]- 0

If [Y| = 1, as a direct consequence of Theorem 3.2, we have the following
result which was obtained in [2].

Corollary 3.3. ([2]) Let S = I x A be a rectangular band where I and A are left
zero semigroup and right zero semigroup, respectively, and let C be a subset of
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S. Then the Cayley graph Cay(S,C) is Aut(S, C)-vertez-transitive if and only
¥ |p2(C)| = |A|. 0

From Theorem 2.4, we have a characterization of the ColAut(S, C)-vertex-
transitive Cayley graph of normal bands in the following.

Theorem 3.4. Let Y be a finite semilattice, S = Uaey So @ strong semilattice
of rectangular bands such that S, = I, x A, where Io and A, are left zero
semigroups and right zero semigroups, respectively, and let C be a nonempty
subset of S. Then the Cayley graph Cay(S,C) is Col Aut(S, C)-vertez-transitive
if and only if the following conditions hold: ’

(a) Y has the mazimum m;

(b) C C Sn;

(¢) |Aa| =1 forallaeY. 0

Let |Y| = 1, a description of Col Aut(S, C)-vertex-transitive Cayley graphs
of rectangular bands follows from Theorem 3.4 immediately.

Corollary 3.5. Let .S = I x A be a rectangular band where I and A are left zero
semigroup and right zero semigroup, respectively, and C a subset of S. Then
the Cayley graph Cay(S,C) is Col Aut(S, C)-vertez-transitive if and only if S
is a left zero semigroup. O
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