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Abstract

In this paper, it is proved that a toroidal graph without cycles of
length k for each k € {4, 5, 7,10} is 3-choosable.
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1 Introduction

All graphs considered in this paper are finite, simple toroidal graphs. A
graph G is toroidal (or planar) if G can be drawn on the torus (or on the
plane) so that the edges meet only at the vertices of the graph. A face
[ is called a 2-cell if any simple closed curve inside f can be continuously
contracted to a single point. An embedding of G is called a 2-cell embedding
if all the faces are 2-cell. We assume that all graphs under consideration
admit 2-cell embeddings on the torus.

G = (V,E,F) denotes a toroidal graph, with V,E and F being the
set of vertices, edges and faces of G, respectively. We use b(f) to de-
note the boundary walk of a face f and write b(f) = [rivovs - - - vp] if
V1,V2,v3, - ,Vn are the vertices of b(f) in a cyclic order. A face f is in-
cident with all vertices and edges on b(f). The degree of a face f of G,
denoted also by dg(f), is the number of edges incident with it, where cut
edges are counted twice. A vertex (face) of degree k is called a k-vertex
(k-face). If r < k or 1 < k < r, then a k-vertex (k-face) is called an r+-
or r~-vertex (r*- or r~-face), respectively. A k-cycle is a cycle of length k.
The vertex set of a cycle C will also be denoted by C.
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A color list L = {L(v) : v € V} is a family of color sets assigned to each
vertex of G. An L-coloring of G is an assignment of colors to each vertex
v € V from L(v) such that adjacent vertices receive distinct colors. For a
positive integer k, we say that G is k-choosable if G admits an L-coloring for
an arbitrary color list L = {L(v) : |L(v)| = k,v € V}. The choice number
of G, denoted by x:(G), is the minimum k such that G is k-choosable.

All 2-choosable graphs were characterized completely in [5]. Thomassen
proved that plane graphs are 5-choosable [12] and plane graphs of girth at
least 5 are 3-choosable [13]. Examples of plane graphs which are not 4-
choosable were given by Voigt [14], and by Mirzakhani [8] independently.
Voigt and Writh [15], and Gutner [6] independently, presented some plane
graphs of girth 4 which are not 3-choosable. It is a hard problem to decide
if a plane graph is 3-choosable, even for triangle-free plane graphs.

In 1976 Steinberg (See[11]) conjectured that every planar graph without
4- and 5-cycle is 3-colorable. In 1990, Erdds(See[11]) proposed to relax
Steinberg’s conjecture by asking if there exists an integer k > 5 such that
every planar graph without i-cycle, where 4 < i < k, is 3-colorable. Abbott
and Zhou[1] showed that k = 11 is acceptable. In 1996, Borodin{2] and (3]
improved that to k = 10 and 9 respectively. And to k& < 7 by Borodin et
al. in [4]. Xu[17] showed that every planar graph without 5-, 7-cycles and
adjacent 3-cycles is 3-colorable, which implies that planar graphs without
4-, 5- and 7-cycles are 3-colorable.

However, the smallest value of k for either colorability or choosability
has not yet been determined. Lam et al. [7] proved that for every plane
graph G, if G is of girth 4 and contains no 5- and 6-cycles, then G is 3-
choosable. In [18], Zhang et al. proved that every planar graph with girth
4 contains no cycles with length 8- and 9- is 3-choosable. Zhang et al.
[20, 21] proved that every planar graph without cycles of length 4, 5, 6 and
9or 4,5, 7 and 9 is 3-choosable. Wang et al. [16] obtained a theorem on
3-choosability of planar graphs: planar graphs without cycles of length 4,
i, j, 9 with i < j and 4,5 € {5,6, 7,8} are 3-choosable. In [10], Montassier
et al. proved that every planar graph either without 4- and 5-cycles and
without triangles at distance less than 4, or without 4-, 5- and 6-cycles
and without triangles at distance less than 3 is 3-choosable. Zhang et al.
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[19] proved that every planar graph with neither 5-, 6-, and 7-cycles nor
triangles of distance less than 3, or with neither 5-, 6-, and 8-cycles nor
triangles of distance less than 2 is 3-choosable. In [9] Montassier proposed
a conjecture that every planar graph without cycles of length 4, 5, 6, is
3-choosable.

In this paper, we consider the 3-choosability of graphs without cycles of
length in {4,5,7,10}.

Let G denote the set of toroidal graphs without 4-, 5-, 7- and 10-cycles.
Following is our main theorem.

Theorem 1 Every toroidal graph without 4-, 5-,7- and 10-cycles is 3-

choosable.

Two adjacent faces are normally adjacent if they have only two vertices
in common (clearly, the two common vertices are adjacent), or is abnormally
adjacent (that is, they have at least three vertices in common). A 3-face is
often called a triangle.

For z € V(G)U F(G), we use Fi(z) to denote the set of all k-faces that
are incident or adjacent to z, and Vi(z) to denote the set of all k-vertices
that are incident or adjacent to z. If |F3(v)] = 1 and |d(v)| = k for any
v € V(G), then v is called a light k-vertex, and it is called a non-light
k-vertex otherwise.

For convenience, we use N(f) and V(f) to denote the set of faces adja-
cent to a face f and vertices incident with f respectively, and use E(v) to
denote the set of edges incident with a vertex v.

2 Preliminary Lemmas

Following lemmas will be needed for proving the main theorem. A graph G
is called minimal non-3-choosable if G itself is not 3-choosable, but G — v

is 3-choosable for each vertex v of G.

Lemma 1 [5] Every cycle of even length is 2-choosable.

195



Lemma 2 Let G be a minimal non-3-choosable graph. Then G does not
contain any vertices of degree less than 8. That is §(G) = 3.

Proof: Assume to the contrary that G contains a vertex v of degree less
than 3. By the minimality of G, G — v admits an Lo—coloring ¢o. In G, we
can color v with a color in L(v) different from the colors of its neighbours
to extend ¢p to an L-coloring of G. |
Lemma 38 Let G = (V, E) be a cycle vivavs - - - v, v; with exactly one chord
g (3 <k <n-1). If|L(w1)|=IL(ve)|= 3 and |L(v;)|= 2 where i #1, k,
then G is L-colorable.

Proof: First we choose a color c(v;) for v; such that c(v;) € L(v1) \ L(vn),
and choose colors for vy, v3, * -+, v, successively, such that c(v;) € L(v;:) \
{c(vi-1)} if i # k, and c(v;) € L(v;) \ {c(vk-1),c(v1)} otherwise. i

Vp=1Un V1 Y2 U3,

13k'+'2"UE‘+_01 % Uk—1Uk- 2
Figure 1

Lemma 4 Let G be a minimal non-3-choosable graph. Then any 2n-cycle
C with at most one chord in G contains at least one 41 -vertex.

Proof: Suppose dg(v) = 3 for all v € C by Lemma 2, and L is a color-list of
G with |L(v)|= 3 for all v € V(G). If C has no chord. By assumption, there
exists ¢o, an Lo-coloring of Gp = G — C, where Ly is the restriction of L to
V(Go). Let L' = {L'(v;) : 1 < i < 2n} where L'(v;) = L(v;) \ {¢o(u) : u €
Ng(v;) \ C}. 1t is clear that |L’(v;)|> 2. Since even cycles are 2-choosable
by Lemma 1, for examples, the cycle v3v; - - - van v is 2-choosable. So there
exists an L’-coloring ¢’ on C. An L-coloring of G immediately follows by
combining ¢p and ¢'. This contradiction implies that C contains at least
one 4*-vertex. If C has a chord, applying the similar method and combining
it with Lemma 3, we get it. |
Lemma 5 If G € G and 6(G) > 3, then all the followings hold.

(I) No a 3-face is adjacent to a 3-face.

(II) No a 3-face is adjacent to a 6-face.

(III) No a 3-face is adjacent to a 9-face.

(IV) No a 6-face is adjacent to a 6-face.
(V) No a 8-face is adjacent to two 3-faces.

196



Figure 2

Proof of (I). Combine §(G) > 3 with the fact that G is a graph without
4-cycles, no a 3-face is adjacent to a 3-face.

Proof of (II). Let f be a 3-face with b(f) = [vivovs), and let f, be a
6-face with b(f) = [vvoujugugug]. Suppose to the contrary that G has a
3-face f adjacent to a 6-face f,. See Figure 2 (a). If f is normally adjacent
to fy, then G has a 7-cycle. So a 3-face must be abnormally adjacent to a
6-face. We claim that a 3-face can not be abnormally adjacent to a 6-face.
To show this ,we need to prove that vs ¢ V(f,). Clearly, v3 # u; and u4
since otherwise (G) < 2. Next, va # u2 and us since otherwise G would
have a 4-cycle vav v3(v3 = uz)u v or vivous(vs = uz)uqv;. Statement (II)

is proved.

Proof of (I1I). Let f be a 3-face with b(f) = [vi1vavs], and let f; be a 9-
face with b(f) = [vyvou uguzugusugur]. Suppose to the contrary that G has
a 3-face f adjacent to a 9-face f;. See Figure 2 (b). If f is normal adjacent
to fi, then G has a 10-cycle. So a 3-face must be abnormally adjacent to a
6-face. We claim that a 3-face can not be abnormally adjacent to a 9-face.
To show this ,we need to prove that v3 ¢ V(f;). Clearly, v3 # u;, or we
will get that §(G) < 2. Next, vz # ug, us and u4 since G contains no 4-, 5-
and 7-cycles. By symmetry, we also can get that v ¢ {5,6,7}. Statement
(III) is proved.

Proof of (IV). Let f, with b(f) = [v1v2v3vqv5v6] be an arbitrary 6-face
that is adjacent to a 6-face fo with b(f) = [viveujuguqus] as shown in
Figure 2 (c). If f, is normally adjacent to f,, then G has a 10-cycle.
So two 6-faces must be abnormally adjacent. Next we will show that
{v3,v4,v5,v6} N {1, u2, uz, uq} = ¢ to complete this proof. First, v # v,
or there will be a vertex vy of degree 2. Second, v3 # ug, vz # us and
v3 # u4 since G has no 4-, 5-cycles. So vz ¢ {u1,u2,u3,uq}. Simi-
larly, v4 # w1, vs # u2, v4 # uz and vs # ug since G has no 4-, 5-
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cycles. So vy ¢ {u1,u2,us,us}. By symmetry, we also can conclude that
vs & {u1,u2,u3,uq} and ve ¢ {u1,u2,us, us}. Statement (IV) is proved.

Proof of (V). No two non-consecutive vertices on the boundary of a 8-
face is adjacent, otherwise there will appear a cycle of length in {4,5,7}.
So a 3-face must be normal adjacent to a 8-face. Statement (V) is proved
because G contains no 10-cycles. 1

3 Proof of Theorem 1

Proof: Suppose that the theorem is false. Then there exists a toroidal
graph G in G such that G is minimal non-3-choosable.

We define a weight w on V U F by letting w(z) = dg(z) —6ifz € V
and w(z) = 2d¢(z) — 6 if £ € F. By Euler’s formula for toroidal graphs,
V| + |F| — |E| = 0, we have ) .y pw(z) = 0. If we obtain a new
nonnegative weight w*(z) for all z € V U F and some positive weight for
some z € V U F by transferring weights from one element to another, then
we have 0 = 3 .y rw(z) = 2 cyurw*(z) > 0. This contradiction will
complete the proof.

During a discharging procedure, 7(z — y) denotes the charge discharged
from an element z to another element y.

Our transferring rules are as follows, in which, f is a 6%-face incident
with a vertex v to be charged to.

" (Rq) (a) Every 6*-face f gives 1 to each incident non-light 3-vertex.
(b) Every 8*-face f gives g- to each incident light 3-vertex.

(Rz2) (a) Every 6%-face f gives } to each incident non-light 4-vertex.
(b) If v is incident with one 3-face and three 6%-face, then, 7(f —
v)=1 if f is not adjacent to the 3-face; %, otherwise.
(c) If v is incident with two 3-faces, then the two 3-faces must be not
adjacent, then, 7(f — v) = 1.

(R3) Every 6%-face f gives é— to each incident 5-vertex.
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The rules are illustrated in Figure 3. Note that our discharging rules
are designed to insure w*(v) > 0 for all v € V(G).

Now let f be a face with d(f) = h. Then k € {3,6,8,9,11%}.
If h = 3, then w*(f) = w(f) = 0 since no charge is discharged from or
to f.

If h = 6, then by Lemma 4, V(f) contains at least one 4*-vertex. And
by Lemma 5 (II), f is not incident to any light 3-vertices. And combining
the discharging rules into consideration, the weight from a 6-face to any
vertices is at most 1 and it appears only while the vertices in V(f) are
either light 4-vertices or non-light 3-vertices. For convenience, we denote p
the number of non-light 3-vertices and g the number of light 4-vertices. It
is easy to see that the worst case happens whilep < 5,¢g>1landp+qg=6
So by R, (a) and Ry (b),

Ww(f)2w(f)—p*1—gx1=0, (1)
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Note that the worst case happens while the 6-f must contains a light 4-
vertex v as shown in Figure 4.

. « W . .
. —f7 .
- 8or11t-f 3,0 8or11*-fo -«

...... u 6-f trenan,

Figure 4

If h = 8, by Lemma 4, V(f) contains at least one 4+-vertex. And f
is adjacent to at most one 3-face by Lemma 5 (V). So consider the worst
case, we have two light 3-vertices and at least one light 4-vertex. So

w‘(f)2w(f)—2*?2-—5*1—1*1=1>0. 2)

If h =9, by Lemma 4 (III), f is not adjacent to any 3-faces, so f is not
incident to light 3-vertices. even if we transfer 1 to each incident vertex,

we still have:
w'(f) Z2w(f)-9%1>0. (3)

If A = 11, then consider the worst case and no two adjacent triangles,
there must be a vertex which is not light. So by (R;) and (R2) we have:

() 2 w(f) =108 3 ~1=0. @)

If h = 12, then by Lemma 4, f is incident to at least one 4t-vertex, so
even if it is incident to eleven light 3-vertices, we have:

w‘(f)zw(f)—ll*%—l=%>0. (5)

If h > 13, then even all the vertices on b(f) are light 3-vertices. We
have:
3 h-12

w(f)2zw(f)—hrg=—7—2>0. (6)
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Now, we get that w*(z) > 0 for each z € V(G) U F(G). If follows that
0= zxevup w(z) = erVUF w*(z) 2 0. If w'(ic)zeV(G)uF(c) > 0, we are
done. Assume that w*(z)zev(G)ur(c) = 0.

Claim 1 FEach face in G has degree 3, or 6, or 11.

Proof: By (2), (3), (5), (6), G contains no faces of length in {8,9,12+}.
Combine with the fact that G is a graph in G. G only has faces of degree
in {3,6,11}.

Claim 2 G contains no i-face for i in {6,11}.

Proof: If G contains a 6-face, then by (1) we must have the configuration as
shown in Figure 4, that is, the 6-face is incident to at least one light 4-vertex
v. Moreover, the two faces f; and f> incident to the light 4-vertex v and
adjacent to the only triangle f’ must be 8- or 11*-faces. By Claim 1 it must
be two 11-faces. But in this case, we must have another configuration, that
is, a 11-face is adjacent to a 6-face and a 3-face on its consecutive edges and
the two faces have the common light 4-vertex, without loss of generality,
we consider the 11-face f;, because of Lemma 5 (1T}, the incident vertex u
must be a non-light 3-vertex on b(f;). Therefore the light 3-vertex incident
to the 11-face is at most 9. So we have w*(f) 2 w(f) —9x3 -2=1>0.

Claim 1 and Claim 2 ensure that G contain only 3-faces. Then G=Kj.
A contradiction. [ |
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