Graph Eigenvalues Under a Graph Transformation *

Hua Zou and Jixiang Meng[†]
College of Mathematics and System Sciences, Xinjiang University
Urumqi, Xinjiang 830046, P.R.China

Abstract: For a graph X and a digraph D, we define the β transformation of X and the α transformation of D denoted by X^{β} and D^{α} respectively. D^{α} is defined as the bipartite graph with vertex set $V(D) \times \{0,1\}$ and edge set $\{\{(v_i,0),(v_j,1)\}|v_iv_j\in A(D)\}$. X^{β} is defined as the bipartite graph with vertex set $V(X)\times\{0,1\}$ and edge set $\{\{(v_i,0),(v_j,1)\}|v_iv_j\in A(\overrightarrow{X})\}$ where \overrightarrow{X} is the associated digraph of X. In this paper, we give the relation between the eigenvalues of the digraph D and the graph D^{α} when the adjacency matrix of D is normal. Especially, we obtain the eigenvalues of D^{α} when D is some special Cayley digraph.

Keywords:: digraph; eigenvalue; normal matrix.

1 Preliminaries

For a graph X without loops and multiple edges, let X = (V(X), E(X)). The adjacency matrix of X is the integer matrix with rows and columus indexed by the vertices of X, such that the uv-entry of A(X) is equal to the number of edges joining u and v. A(x) is obvious symmetric 01-matrix. For a digraph D without loops and multiple arcs, let D = (V(D), A(D)). The adjacency matrix A(D) of digraph D is the integer matrix with rows and columns indexed by the vertices of D, such that uv-entry of A(D) is equal to the number of arcs from u to v. In general A(D) is not symmetric.

we define a graph transformation α of D as follows.

$$\alpha: D \longrightarrow D^{\alpha}$$

 D^{α} is defined as the bipartite graph with vertex set $V(D) \times \{0, 1\}$ and edge set $\{\{(v_i, 0), (v_j, 1)\} | v_i v_j \in A(D)\}$.

^{*}The research is supported by NSFC, FUKT and TRAPOYT.

 $^{^\}dagger Corresponding auther.$ E-mail: mjx@xju.edu.cn (J.Meng); zouhua@126.com (H.Zou).

To illustrate the definition, we give an example(Show below).

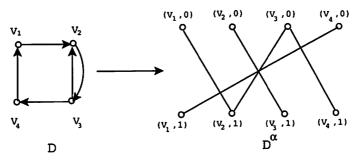


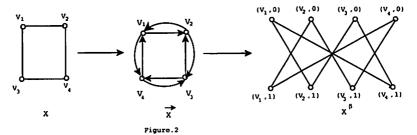
Figure.1

we define transformation β of X.

$$\beta: X \longrightarrow X^{\beta}$$

 X^{β} is defined as the bipartite graph with vertex set $V(X) \times \{0, 1\}$ and edge set $\{\{(v_i, 0), (v_j, 1)\} | v_i v_j \in A(\overrightarrow{X})\}$ where \overrightarrow{X} is the associated digraph[2] of X.

To illustrate the definition, we give an example (Show below).



For a finite group G and a subset T of G, the Cayley digraph D(G,T) is a directed graph with vertex set G and arc set $\{(x,tx)|x\in G,t\in T\}$. When $T=T^{-1}$, D(G,T) corresponds to an undirected graph C(G,T), which is called a Cayley graph. To study semi-symmetric graphs, Xu defined the Bi-Cayley graph[5]. For a finite group G and a subset T of G, the Bi-Cayley graph X=BC(G,T) of G with respect to T is defined as the bipartite graph with vertex set $G\times\{0,1\}$ and edge set $\{\{(g,0),(tg,1)\}|g\in G,t\in T\}$. It is easy to see that Bi-Cayley graph BC(G,T) is $D^{\alpha}(G,T)(or\ C^{\beta}(G,T))$ of the Cayley digraph D(G,T) (or graph C(G,T)). Let A be the adjacency matrix of the digraph D(or graph X). Then the adjacency matrix B of $D^{\alpha}(orX^{\beta})$ is

$$\left(\begin{array}{cc} 0 & A \\ A^T & 0 \end{array}\right)$$

Lemma 1.1. [4] Suppose M, N, P, Q are $n \times n$ matrices and $|M| \neq 0$, MP = PM, then

$$\left| \begin{array}{cc} M & N \\ P & Q \end{array} \right| = |MQ - PN|$$

Thus $|\lambda I - B| = \begin{vmatrix} \lambda I & -A \\ -A^T & \lambda I \end{vmatrix} = |\lambda^2 I - A^T A|$ according to Lemma 1.1.

In this paper, we consider the relation between the eigenvalues of the digraph (or graph X) and the graph $D^{\alpha}(orX^{\beta})$. By the above formula, it suffices to consider the relation between the eigenvalues of A and $A^{T}A$. In the following, we cite some known results which will be used in the next section.

A matrix $A \in \mathbb{C}^{n \times n}$ is said to be normal if $A^*A = AA^*$, where A^* denotes the complex conjugate of the transpose of A.

Lemma 1.2. [4] Let A be a normal matrix and $\lambda_1, \lambda_2, \dots, \lambda_n$ be its eigenvalues. Then there exists an unitary matrix U such that

$$U^*AU = \left(\begin{array}{ccc} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{array}\right).$$

Lemma 1.3. [7] Let G be a finite group and and T be the union of a family of conjugacy classes of G. Let further $\{\chi_1, \dots, \chi_s\}$ be the set of all irreducible complex characters of G and define

$$\lambda_j := \frac{1}{\chi_j(1)} \sum_{t \in T} \chi_j(t)$$

for all $j \in \{1, \dots, s\}$.

Then $\{\lambda_1, \dots, \lambda_s\}$ is the set of all values of the spectrum of the Cayley digraph D(G,T). Moreover, if m_j is the multiplicity of λ_j , then

$$m_j = \sum_{\substack{\lambda_k = \lambda_j \\ 1 \le k \le s}} \chi_k(1)^2$$

2 Main Results

Theorem 2.1. Let D be a digraph of order n and let A be the adjacency matrix of D. Let $\{\lambda_1, \dots, \lambda_n\}$ be the eigenvalues of A. If A is normal, then the eigenvalues of the adjacency matrix of D^{α} are $\pm |\lambda_1|, \pm |\lambda_2|, \dots, \pm |\lambda_n|$.

Proof. Let B be the adjacency matrix of D^{α} . Then $B = \begin{pmatrix} 0 & A \\ A^T & 0 \end{pmatrix}$, thus

$$|\lambda I - B| = \begin{vmatrix} \lambda I & -A \\ -A^T & \lambda I \end{vmatrix} = |\lambda^2 I - A^T A|. \tag{1}$$

Since A is normal, by Lemma 1.2, there exists an unitary matrix U satisfying

$$U^*AU = \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix}. \tag{2}$$

Taking transpose of the two sides of (2) gives the following

$$U^*A^TU = \left(\begin{array}{ccc} \overline{\lambda_1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \overline{\lambda_n} \end{array} \right).$$

Thus

$$U^*A^TAU = U^*A^TUU^*AU = \begin{pmatrix} \overline{\lambda_1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \overline{\lambda_n} \end{pmatrix} \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix}.$$

$$= \begin{pmatrix} |\lambda_1|^2 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & |\lambda_n|^2 \end{pmatrix}.$$

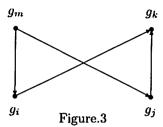
Therefore the eigenvalues of A^TA are $|\lambda_1|^2$, ..., $|\lambda_n|^2$. By (1) we see that the eigenvalues of B are $\pm |\lambda_1|$, $\pm |\lambda_2|$, ..., $\pm |\lambda_n|$.

By Theorem 2.1, we can obtain the following result.

Corollary 2.2. Let X be a graph of order n. Let $\{\lambda_1, \dots, \lambda_n\}$ be the eigenvalues of the adjacency matrix of X. Then the eigenvalues of the adjacency matrix of X^{β} are $\pm \lambda_1, \pm \lambda_2, \dots, \pm \lambda_n$.

Lemma 2.3. Let G be a finite group and T be the union of a family of conjugacy classes of G. Then the adjacency matrix of the Cayley digraph D(G,T) is normal.

Proof. Let $A = (a_{ij})_{n \times n}$ be the adjacency matrix of D(G,T). Then $A^* = A^T$, where A^T denotes the transpose of A. Consider $(AA^T)_{ij}$ and $(A^TA)_{ij}$:



$$(A^T A)_{ij} = \sum_{k=1}^n a_{ki} a_{kj}$$
 (3)

$$(AA^{T})_{ij} = \sum_{k=1}^{n} a_{ik} a_{jk} \tag{4}$$

If $a_{ik}a_{jk} = 1$, then there exist two arcs from g_i and g_j to g_k in D(G,T), respectively (Figure.3). Thus, there exist $t_i, t_j \in T$ such that

$$\begin{cases} g_k = t_i g_i \\ g_k = t_j g_j \end{cases}$$

Then $t_i g_i = t_j g_j$. $g_j g_i^{-1} = t_j^{-1} t_i = t_j^{-1} t_i t_j t_j^{-1}$. Let $t' = t_j^{-1} t_i t_j$, then

$$g_{j}g_{i}^{-1}=t^{'}t_{j}^{-1}$$

If $a_{mi}a_{mj}=1$, then there exist two arcs from g_m to g_i and g_j in D(G,T), respectively. Thus, there exist $t_i',t_j'\in T$ such that

$$\begin{cases}
g_i = t_i' g_m \\
g_j = t_j' g_m
\end{cases}$$
(5)

Then $t_i^{'-1}g_i = t_j^{'-1}g_j$. Therefore

$$t_{i}'t_{i}'^{-1} = g_{j}g_{i}^{-1}$$

Let

$$\begin{cases}
 t_{i}^{'} = t_{j} \\
 t_{j}^{'} = t_{j}^{-1} t_{i} t_{j}
\end{cases}$$
(6)

If $a_{il}a_{jl} = 1$ for $l \neq k$, then there exist $t_i'', t_j'' \in T$ such that

$$\begin{cases} t_i''g_i = g_l \\ t_i''g_j = g_l \end{cases}$$

Since $l \neq k$, we have $g_l \neq g_k$, and hence $t_i'' \neq t_i$ and $t_j'' \neq t_j$. Therefore $t_j'' \neq t_i'$. By (5) we know there exists $g \in G$ such that there exists two arcs from g to g_i and g_j . By (5) and (6) we have $g_i = t_i''g$. Then $g = t_i''^{-1}g_i$. Because $t_j'' \neq t_i'$, $g_m \neq g$. We have thus proved that different non-zero terms in the right hand side of (3) correspond to different non-zero terms in that of (4). The result follows.

Theorem 2.4. Let G be a group and T be the union of a family of conjugacy classes of G. Let $\lambda_1, \lambda_2, \dots, \lambda_n$ be the eigenvalues of the adjacency matrix of the Cayley digraph D(G,T). Then the eigenvalues of the adjacency matrix of BC(G,T) are $\pm |\lambda_1|, \pm |\lambda_2|, \dots, \pm |\lambda_n|$.

Proof. The result follows directly from Theorem 2.1 and Lemma 2.3.

Corollary 2.5. Let G be a finite group and T be the union of a family of conjugacy classes of G. Let further $\{\chi_1, \dots, \chi_s\}$ be the set of all irreducible complex characters of G and define

$$\lambda_j := |\frac{1}{\chi_j(1)} \sum_{t \in T} \chi_j(t)|, \quad \lambda_{s+j} := -|\frac{1}{\chi_j(1)} \sum_{t \in T} \chi_j(t)|$$

for all $j \in \{1, \dots, s\}$.

Then $\{\lambda_1, \dots, \lambda_{2s}\}$ is the set of all values of the spectrum of BC(G,T). Moreover, if m_j is the mulplicity of λ_j, λ_{j+s} , then

$$m_j = \sum_{\substack{\lambda_k = \lambda_j \\ 1 \le k \le s}} \chi_k(1)^2$$

Proof. The result follows directly from Lemma 1.3 and Theorem 2.4.

3 Examples

In this section, we apply the results in section 2 to give some interesting examples.

Example 1: The Kneser graph $K_{v:r}$ is the graph with the r-subsets of a fixed v-set as its vertices with twor-subsets adjacent if they are disjoint. It is known that the eigenvalues of the Kneser graph $K_{v:r}$ are the integers $(-1)^i \binom{v-r-i}{r-i}$ (see[1]), $i=0,1,\cdots,r$. By Corollary 2.2 we can get

the eigenvalues of graph
$$K_{v:r}^{\beta}$$
 are $\pm (-1)^i \binom{v-r-i}{r-i}$, $i=0,1,\cdots,r$.

Example 2: Recall the character tables of circulant group C_3 (see [2]):

$$egin{array}{c|ccccc} & 1 & {
m r} & r^2 \\ \hline \chi_1 & 1 & 1 & 1 \\ \chi_2 & 1 & {
m w} & w^2 \\ \chi_3 & 1 & w^2 & {
m w} \\ \hline \end{array}$$

where $w = e^{2\pi i/n}$

Because every conjugacy class of C_3 contains exactly one element, let $T = \{r\}$. By Lemma 1.3 we can get the eigenvalues of $C(C_3, T)$:

$$\begin{cases} \lambda_1 = 1 \\ \lambda_2 = w \\ \lambda_3 = w^2 \end{cases}$$

The multiplicities are $\{1,1,1\}$. Therefore by Theorem 2.4 the eigenvalues of Bi-Cayley graphs $BC(C_3,T)$ are 1 and -1, but the multiplicity is $\{3,3\}$ respectively.

References

- N. Biggs, Algebraic Graph Theory, Amsterdam: North-Holland, 1985.
- [2] J.A. Bondy, U.S.R. Murty, Graph Theorey With Applications, 1976.
- [3] L. Babai, Spectra of Cayley Graphs, J.Combinatorial Theory, Series B, 27(1979)180-189.
- [4] R.A. Horn, R.Johnson, Matrix Analysis, Cambridge University Press, 1985.
- [5] J.P. Serre, Linear Representation of Finite Groups, Springer-verlag, New York, 1977.
- [6] M.Y. Xu, Introduction of Finite Groups II, Science Press, Beijing, 1999. 118(1988)447-454.
- [7] P. Zieschang, Cayley Graph of Finite Group, J.Algebra.