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Abstract

Let P(G, )) be the chromatic polynomial of a graph G. A graph G
is chromatically unique if for any graph H, P(H, A) = P(G, A) implies
H =~ G. Some sufficient conditions guaranteeing that certain com-
plete tripartite graph K(l,n,r) is chromatically unique were obtained
by many scholars. Especxall in 2003, H.W. Zou had given that if
n > {(m*+k3+mk+2vmZ + K2 + mk+m—-k) where n, k and m, are
non-negative integers, then K(n—m,n n+k) is chromatically unique
(or simply x-unique). In this paper, we give that for any positive
integersn,mand k, let G = K(n m, n n+k), wherem > 2and k >
1,ifn > max{[} 2+m+k] [im®+3m+2k— 18], [mk+m—k+11},
then G is x-unique. It is an |mprovement; on h W. Zou’s result in
the case m > 2 and k > 1.
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1 Introduction

We consider only finite, undirected and simple graphs. Notation and
terminology that are not defined here may be found in (1, 2].

Let G be a graph with vertex set V(G) and edge set E(G), order p(G)
and size ¢(G). By G denotes the complement of G. We let O,, = K,,, where
K, denotes the complete graph with n vertices. For disjoint graphs G and
H, G Vv H denotes the graphs whose vertex-set is V(G) U V(H) and whose
edge-set is {wv € V(G)|w € V(G),v € V(H)}UE(G)UE(H). By K(l,n,r)
we denote the complete tripartite graph with three parts of /,n,r vertices.
Let S be a set of s edges of G. By G — S we denote the graph by deleting
all edges in S from G. Let N3(G) denotes the number of triangles in G. [6]

*This work was supported by the National Natural Science Foundation of China
(Grant No. 61163037, 61163054 ) and the Science Research Project of Northwest Normal
University (Grant No. nwnu-kjcxge-03-61)

tThe corresponding author. Email address: chenxe@nwnu.edu.cn(Xiang'en Chen ).

ARS COMBINATORIA 105(2012), pp. 205-211



denotes the smallest integer greater than or equal to 8. N is non-negative
integers set.

Let P(G,)\) be the chromatic polynomial of G. m,(G) denotes the
number of distinct partitions of V(G) into r color classes. Let A,y =
A(A —1)...(A =+ 1), then we have P(G,\) = >-7_, m(G)A() (see [1]).

The notion of chromatic uniqueness was first introduced and studied by
Chao and Whitehead in 1978 (see [5]). Koh and Teo, in their expository
paper (see [7,8]), gave a survey of most of the work done before 1997.
Two graphs H and G are said to be chromatically equivalent (in notation:
H ~ G) if P(H,)) = P(G,}). Let (G) = {H|H ~ G}. A graph G is chro-
matically unique if (G) = {G}. The polynomial o(G,x) = >_%_, mr(G)x”
is called the o—polynomial of G (see [3]). Clearly, P(H,x) = P(G,x) iff
o(G,x) =o(H,x).

It has been shown in [4, 6,9, 11,13] that the following complete tripartite
graphs are x—unique graphs: K(n,n,n+k) forn > 2 and 0 < k£ < 3,
Kmn—kmnn+k)forn>5and0< k<2 (see [6]); K(n1,n2,n3) for
Ini —nj] <1and 1 <4,j <3 (see [4]); K(n—k,n,n) forn>k+22>4
(see [9]); K(n — k,n,n) for n > 3k% +k (see [11,13]); K(n,n,n + k) for
n > 1(k? + k) (see [11]); K(n — k,n,n + k) for n > k2 + 243k (see [11]).

In 2003 H.W.Zou had given the following x-unique graphs (see [12]):
K(n — m,n,n + k) for any non-negative integers n, k and m with n >
L(m? + k2 + mk + 2v/mZ + k2 + mk +m — k).

In this paper, we will show that the following complete tripartite graph
is also —unique: K (n —m,n,n+k) for n > max{[im? + m + k], [gm® +
$m + 2k — W, [mk + m — k + 1]}, where k,m and n are any positive
integers with m > 2 and k£ > 1. It is an improvement on H.W. Zou’s result
inthecasem>2and k> 1.

2 Preliminaries

Lemma 2.1 (C.P. Teo, K.M. Koh (10]) Let G and H be two graphs with
G ~ H. Then [V(G)| = |V(H)|, |E(G)| = |E(H)|, Na(G) = N3(H) and
my(G) = m(H) forr=1,2,---,p(G).

Lemma 2.2 (C.P. Teo, K.M. Koh [10]) Let ¢ > d > 2. Then K(c,d) is
X -unique.

Lemma 2.3 (F. Brenti (3]) Let G and H be two disjoint graphs. Then
a(GvV H,7)=0(G,7)o(H,T).

In particular, o(K(n1,n2,--- ,n¢),T) = 1'[:=1 (On,, 7).

Lemma 2.4 (HW. Zou [13]) Let G = K(n1,n2,n3). Then

(i) ma(G) =1 and my(G) = Yo, 2% = 3;

(i) If H € (G), there exists a complete tripartite graph F = K(m;, mg, m3)
such that H = F — S and m; + mg + m3 = n; + ng + ng, where S is a set
of s edges of F' and s = q(F) — ¢(G).
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Lemma 2.5 (H.W. Zou [13]) Let G = K(ny,ng,n3) withnz > ny > ny >
2and let H =G~ S for a set S of s edges of G. Ifn1>s+1 then
s <my(H) —my(G) <2°—1.

Theorem 2.1 (R.Y. Liu et al. [9]) For any integersr > n > 1 > 2, we
have (K(l,n,7)) C {K(z,y,2)-S|1<z<y<zn<z<rnz+y+z=
l+n+r8 C E(K(z,y, z)) S| = zy+zz+yz—In—Ir—- nr} In particular,
if z =1, then K(I,n,r) = K(z,y, 2).

Theorem 2.2 (HW. Zou [12]) Let G = K(,,n,7),l <n<r anda =
{2[(l—n)2+(l—r)2+(n-—'r)2]}§ Ifl+n+r>a+ ta? then G is
X —unique.

Theorem 2.3 (H.W. Zou [12]) Let K({,n,r) = K(n—m,n,n+k), where m
and k are non-negative integers. If n > 3(m2+k2+mk+2vm? + k2 + mk+
m — k), then K(n —m,n,n + k) is x—unique.

3 Main Results

Theorem 3.1 For any positive integers m, k and n, where m > 2 and
k>1, letG K(n —m,n,n + k), if n > max{[4m? + m + k], [{m? +

3m + 2k — 17, [mk + m — k + 11}, then G is x-unique.

Proof: Let H € (G). Then by Theorem 2.1, H € {K(z,y,z) - S|1 <z <
y<zn<z<n+k|S| =s=zy+yz+zz—(n—-m)n—-(n-m)(n+
k)—n(n+k),z+y+2z=3n+k—m}.

Case 1: If z=n+k, by Theorem 2.1, H & G.

Case 2: For z = n, we distinguish the following two subcases.

Subcase 2.1: t<y=z=n.Let F=Kn+k~mnn), H=F~S§
and B(H) = my(H) — m4(F). By Lemma 2.4, we have

IS|=s=¢q(F)-q(G)=(n+k- m)n+(n+k —m)n+n2 - (n—m)n—
(n—m)(n+k)—n(n+k)=km >0,

m4(F) = 2'n+k—m—-1 + 2n-—-l + 2n— _ 3

7TL4(G) = 2n—m—l + 2n= 1 + 2n+k— —3.

By the conditions of the theorem and the Lemma 2.5, we have

s+l=km+1<n+k—mand km<ﬂ(H) < 2km 1.

So

m4(G) m4(H) (2n—m-—-1 +2n—1 +4ontk-1 _3)_(2n+k-—m—l+2n—l+
2=l 34+ B(H))

2n—m—l + 2n+k 1 2n+k-—m—~ 211- _ 2km +1
2n—m—l + 2n+k— 2n+k-—m 2n— +1.

Since m > 2 and k > 1, we have 1 3+ 2kam-1 _ok _om-15 0 je, (3 +
2kgm—1_gk_gm-1)9-m 5 g, Hence 2n—m=lygntk=1_pntk-m -2"-1 >0,
i.e., my(G) — mq(H) > 1. This contradicts m,(G) = my(H).

Subcase 2.2: z=nandz <y <n-1. Let F = K(z,y,n), H =
F — S. Let 1, V3, V3 be the unique 3-independent partition of K(z,y,n)
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such that |Vi| = z, |Vz| = y, |Va| = n. By Lemma 2.1, 2 +y =2n+k —m,
N3(G) = N3(H). Hence, we shall consider the number of triangles in G
and H. Without loss of generality, let S = {e1,e2,-++ ,es} C E(F). It is
not hard to see that N3(e;) < n. Then

N3(H) > N3(F) —ns (1)

and the equality holds only if N3(e;) =n for all e; € S.
Let 7 = Na(F) — N3(G). It is obvious that N3(F) = zyn, N3(G) =
n(n —m)(n + k) and n = zyn — n(n —m)(n + k). So, we have

N3(G) = N3(F) —n- ()

Since N3(G) = N3(H), from (1) and (2) it follows that < sn.

Let f(z) = n — sn, recalling that s = zy +2zn +yn — n(n—m)—(n—
m)(n+k)-n(n+k), we have f(n) =n—sn = n?[n+k+n—m—(z+y)] =0,
i.e., = sn. From (1) and (2), we have N3(G) = N3(H) = N3(F) —sn and
Ns(e;) = n for all e; € S. Thus for every edge an end-vertex belongs to
V1, whereas the other_end-vertex belongs V2. Hence H contains K, as its
component. Set H = Hi|JK». Then H = H; V O,.. From Lemma 2.3 and
o(H,7) = o(K(n — m,n,n + k),7), we have o(H; V 0n,7) = 6(Opn—m V
OnV Ontk, 7). S0 0(H1,7) = 0(On—m V Ontk, 7) = o(K(n—m,n+ k), ).
Hence, from Lemma 2.2 and the condition of the theorem, we have H, =
K(n+k,n—m). Soy =n+k, which contradicts y < n — 1.

Case 3: Forz=n+k—1,let H=K(n—-k-m+u+1l,n+k—un+
k — 1) — S, where u is integer number. According to n — k-m+u+1<
n+k—u<n+k—1, wehavel <u< -;-(m+2k—1). By Lemma 2.4, we
have

S| = s = q(F) — 4(G)

=—wl4+(m+2%k—-1u—k?—km+m+2k-1

= —[u—3t(m+2k-1- VmZ ¥ 2m+ 4k = 3)|[u — F(m + 2k — 1 +
vm?2 +2m + 4k - 3)].

Letg(u) =n—k-m+u+l-(s+1)=v*+Q2-m-2kju+n+
km + k2 — 3k — 2m + 1, we shall consider sign of g(u), we distinguish the
following cases.

(i) When d(m +2k —1—vVmZ+2m+4k—3) <1, wehavel su <
1(m + 2k — 1) and gmin(u) = glz(m +2k —2)] =n— (m*+m+k). It
follows that n — (3m? + m + k) > 0. So g(u) > 0.

(ii) When 3(m +2k—1—-vVmZ+2m+4k-3) 21, we have

im+2%—1-vm?2+2m+4k-3)<u< l(m+2k-1).
Becauseof m > 2 and k > 1, so
L(m+ 2k — 2) > §(m + 2k — 1 — V/m? + 2m + 4k = 3).
By the condition of the theorem, it follows that
gmin(w) = gli(m+2k —2)] =n— (jm* +m+k) 2 0.

208



From (i) and (ii) it follows that s+1 <n—k—m+u+1. So g(u) > 0.
From Lemma 2.5, we have s < my(H) — my(F) = S(H) < 2°* —1 and
m4(G)—m4(H) = (2n—m—l+2n—l +2n+k-—1_3)_(2n—k—m+u+2n+k—-u—l+

ontk-2 _ 3 + ﬁ(H))
> 2n—m—1+2n—-l+2n+k—l_zn-k——m+u_2u+k—u—-1_2n+k—2_2n—k—m+u+1

= gn-m-1 + on—1 + 2n+k—2 _ 2n+k—u—1 _ 2n—k—m+u.+1 +1.

Because of u < %(m + 2k — 1), we have 2F 4 2ktm > gu+2 o
ok+u 4 gktmtu _ 92ut2 > () Since 2mt2k+u—1 _ 9m+2k > 0 we have
2k+u + 2m+k+u + 2m+2k+u—l _ 2m+2k _ 22u+2 > 0’ i.e.’zn—m—l + 211—-1 +
ontk=2 _ gnik-u—1_ gn—k-m+tutl > 0. Hence m4(G) —mq(H) > 1, this is
impossible.

If1 £ k<2, from Case 1, Case 2 and Case 3 it shows that process
of the proof has been completed. If £ > 3, we shall consider the following
Case 4.

Case 4: Let z2=n+k—-t(k>3and2<t<k-1),F=Kn-k-
m+u+t,n+k—un+k—t)and H=F — S, we can easily obtain that
t <u < 3(m+ 2k —t). By lemma 2.4, we have

S| = s = ¢(F) - ¢(G)

=(n—k-m+u+t)2n+2k—-uv—-t)+(n+k—-u)(n+k—-t)—(n-—
m)(2n + k) — n(n + k)

= —u? +u(m + 2k — t) + 2kt + mt — km — k? — £2.

Because of 2 <t < k — 1, we have m? — 3t2 + 4kt + 2mt > 0. So

s=—[u—3(m+2k—t—vm?—3t2 + 4kt + 2mt)|[u— L(m + 2k -t +
vm? — 3t2 + 4kt + 2mt))|.

Let h(u) =n—k-m+u+t—(s+1)=v?+ult —m—2k+1)+t>+
k? + km — 2kt — mt +n — k —m +t — 1, we shall consider sign of h(u), we
distinguish the following cases.

(i) When 3(m+2k —t — vVm? — 3t + 4kt + 2mi) < t, we have t < u <
3(m+2k—t). Because of m > 2 and k > 3, we have 3(m+2k—t—1) > t.So
hpmin(u) = h[-;-(m+2k—t—l)] = %(3t2—m2+2t~2mt—4kt+4n—2m-—5).
Because of 2 < t < k-1, we have §(3t>—m?+2t—2mt—4kt+4n—2m-5) >
1(4n—m? —6m — 8k +11). By the condition of the theorem, it follows that
$(4n —m? — 6m — 8k + 11) > 0. So A(u) > 0.

(ii) When 3(m + 2k — t — vm? — 3t? + 4kt + 2mt) > t, we have

g(m+2k —t—/m? -3t + 4kt +2mt) <u < 2(m+ 2k —t).
Becauseof m > 2,k > 3and 2 <t < k—1, we have vm?2 — 3t2 + 4kt + 2mt
> 1. So 3(m+2k —t —1) > 3(m + 2k — t — vVm?2 — 3¢ + 4kt + 2mt). By
the condition of the theorem, it follows that hpn(u) = h{3(m+2k—t —1))
= 1(3t2-m?+2t—2mt—4kt+4n—2m—5) > }(dn—m2—6m—8k+11) > 0.
So h(u) > 0.

From (i) and (ii) it follows that s +1<n—-k —m+u+t¢.

By Lemma 2.5, we have s < my(H) — my(F) = B(H) <2° —1 and

209



m4(G) — mq(H)

- (2n—m—l + gn-1 + 2n+k—-1 _ 3) - (2n—k—m+u+t—1 + 2n+k—u—l +
an+k=t=1 _ 3+ B(H))

> on—-m—1 + gn—1 +2n+k -1 _gn—k-m+u+tt-1 _2n+k—u—1 - 2n+k—t—1 —
2n—k—m+u+t—l +1

= 2n—m-l + 2n-1 + 2n+k—l _ 2n—k—m+u+t - 2n+k—u—l _ 2n+k—t—1 +1

> 2n—m—l + on—1 + 2n+k—1 - 2n+k—u—l _ 2n+k—t—1 - 2n+k-u +1

> 2n—m—1 + 2n—l + 2n+k—1 — 2n+k—t+l +1.
Because of n+k—1 > n+k—1t+ 1, we have my(G) — my(H) > 1, this is
impossible. The proof is completed. O

Theorem 3.2 Let Q = {(m,k)jm > 2,k > 1,m,k € N}, £ = 3(m? + k% +
mk+2VmZ ¥ B2 ¥ mk+m—k), A=im?+m+k B=im?+3m+2k -
L},C=mk+m k + 1. Suppose

R = {(m,k)lm > 2,k > 1, [£] = max{[A], [B], [C]},

T = {(m, k)|m > 2,k > 1,[€] > max{[A], [B], [C]}.
Then R#0,T # 0, RﬂT 0 and R UT Q.

Proof: Since § — A = tm? + 1k? + tmk + 3VkZ + m? + km — §k - 3m,
\/k2+m§+km>%k+m,and §k2+%mk—k20,wehave
ﬁm2+§k2+-};mk+% K2+ m? +km—$k—2m
> &m?+ 3k% + 3mk+1k+3m—5k—§m
—im?e k4 Imk—k> Lm? >0,

So we have the following fact

Fact 1: £ > A, ze [§]>[A]

Since £ — B = 5m? + 3k% + 3 Imk+2VEZ+m? +km—~fm—Tk+ 4,
and VEZ +m +Icm> 1k+m, wehave

2m 241k 41 mk+2\/M—gm—- +4

> 12m +1k2 imk+3k+ 2 Zm-Im-%k+4

l(m - 3)2+4(k 3)2+4mk—12]
Ifmk>3 we have & [(m—3)2+4(k— 3)2 +4mk — 12]>OIfmk 2,ie.,
m =2 and k = 1, we get & [(m — 3)% +4(k — 3)® + 4mk — 12) = £ >0. S0
we have

Fact 2: ¢ > B,i.e.,[¢] > [B].

Because of { —C = 3m? +1k2 2k+2 k2 +m +km—3km—§m 1
= 3(m—k)2+ 2k+2\/k2+m2+km——m 1, and\/k2+m2+km>m+2,
therefore (m — k:)2 2I<:+2\/I<:§+m2+km—--m 1> im-k)?+2k+
%(m+—12-)—§m—1>0 Sowehave

Fact 3: £ > C,i.e,[£] 2 [C].

From Fact 1, Fact 2 and Fact 3, we have thatJ{] > max{[A], [B] [C’]}

Thus Q = RUT Obviously we have RNOT Since (2,1) € R
(2,2) € T, we have R,T # 0. This completes the proof. [
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Remark. The condition of Theorem 2.3 is that n > ¢, i.e., n > [€]
(when £ is an integer) or n > [£] + 1 (when £ is not an integer). Theoremn
3.1 is an improvement for Theorem 2.3 when (m,k) € T or (m,k) € R
and £ is an integer. For example, for graph K(2,4,5), we have [£] =
14, max{[A], [B],[C]} = max{4,4,4} = 4. From Theorem 3. 1, we know
that K(2,4,5) is x—unique. But we "did not deduce that by Theorem 2.3.
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