A Note on Chromatic Uniqueness of Certain Complete Tripartite Graphs*

Xiang'en Chen, Keyi Su, Bing Yao

College of Mathematics and Information Science, Northwest Normal University, Lanzhou, Gansu 730070, P R China

Abstract

Let $P(G,\lambda)$ be the chromatic polynomial of a graph G. A graph G is chromatically unique if for any graph $H,P(H,\lambda)=P(G,\lambda)$ implies $H\cong G$. Some sufficient conditions guaranteeing that certain complete tripartite graph K(l,n,r) is chromatically unique were obtained by many scholars. Especially, in 2003, H.W. Zou had given that if $n>\frac{1}{3}(m^2+k^2+mk+2\sqrt{m^2+k^2+mk}+m-k)$, where n,k and m, are non-negative integers, then K(n-m,n,n+k) is chromatically unique (or simply χ -unique). In this paper, we give that for any positive integers n,m and k, let G=K(n-m,n,n+k), where $m\geq 2$ and $k\geq 1$, if $n\geq \max\{\lceil\frac{1}{4}m^2+m+k\rceil,\lceil\frac{1}{4}m^2+\frac{3}{2}m+2k-\frac{11}{4}\rceil,\lceil mk+m-k+1\rceil\}$, then G is χ -unique. It is an improvement on H.W. Zou's result in the case $m\geq 2$ and $k\geq 1$.

Key Words: Complete tripartite graph; Chromatic polynomial; Chromatic uniqueness; Chromatically unique graph.

AMS(2000) Subject Classification: 05C15; 05C60.

1 Introduction

We consider only finite, undirected and simple graphs. Notation and terminology that are not defined here may be found in [1, 2].

Let G be a graph with vertex set V(G) and edge set E(G), order p(G) and size q(G). By \overline{G} denotes the complement of G. We let $O_n = \overline{K_n}$, where K_n denotes the complete graph with n vertices. For disjoint graphs G and H, $G \vee H$ denotes the graphs whose vertex-set is $V(G) \cup V(H)$ and whose edge-set is $\{wv \in V(G) | w \in V(G), v \in V(H)\} \cup E(G) \cup E(H)$. By K(l, n, r) we denote the complete tripartite graph with three parts of l, n, r vertices. Let S be a set of s edges of G. By G - S we denote the graph by deleting all edges in S from G. Let $N_3(G)$ denotes the number of triangles in G. $[\theta]$

^{*}This work was supported by the National Natural Science Foundation of China (Grant No. 61163037, 61163054) and the Science Research Project of Northwest Normal University (Grant No. nwnu-kjcxgc-03-61)

[†]The corresponding author. Email address: chenxe@nwnu.edu.cn(Xiang'en Chen).

denotes the smallest integer greater than or equal to θ . N is non-negative integers set.

Let $P(G,\lambda)$ be the chromatic polynomial of G. $m_r(G)$ denotes the number of distinct partitions of V(G) into r color classes. Let $\lambda_{(r)} =$ $\lambda(\lambda-1)...(\lambda-r+1)$, then we have $P(G,\lambda)=\sum_{r=1}^p m_r(G)\lambda_{(r)}$ (see [1]).

The notion of chromatic uniqueness was first introduced and studied by Chao and Whitehead in 1978 (see [5]). Koh and Teo, in their expository paper (see [7,8]), gave a survey of most of the work done before 1997. Two graphs H and G are said to be chromatically equivalent (in notation: $H \sim G$) if $P(H, \lambda) = P(G, \lambda)$. Let $\langle G \rangle = \{H | H \sim G\}$. A graph G is chromatically unique if $\langle G \rangle = \{G\}$. The polynomial $\sigma(G,\chi) = \sum_{r=1}^{p} m_r(G) \chi^r$ is called the σ -polynomial of G (see [3]). Clearly, $P(H,\chi) = P(G,\chi)$ iff $\sigma(G,\chi)=\sigma(H,\chi).$

It has been shown in [4, 6, 9, 11, 13] that the following complete tripartite graphs are χ -unique graphs: K(n, n, n + k) for $n \geq 2$ and $0 \leq k \leq 3$, K(n-k,n,n+k) for $n \geq 5$ and $0 \leq k \leq 2$ (see [6]); $K(n_1,n_2,n_3)$ for $|n_i - n_j| \le 1$ and $1 \le i, j \le 3$ (see [4]); K(n-k, n, n) for $n \ge k+2 \ge 4$ (see [9]); K(n-k,n,n) for $n>\frac{1}{2}k^2+k$ (see [11,13]); K(n,n,n+k) for $n > \frac{1}{3}(k^2 + k)$ (see [11]); K(n - k, n, n + k) for $n > k^2 + \frac{2\sqrt{3}}{3}k$ (see [11]).

In 2003 H.W.Zou had given the following χ -unique graphs (see [12]): K(n-m,n,n+k) for any non-negative integers n,k and m with n > 1 $\frac{1}{2}(m^2+k^2+mk+2\sqrt{m^2+k^2+mk}+m-k).$

In this paper, we will show that the following complete tripartite graph is also χ -unique: K(n-m,n,n+k) for $n \geq \max\{\lceil \frac{1}{4}m^2+m+k \rceil, \lceil \frac{1}{4}m^2+m \rceil \}$ $\frac{3}{2}m+2k-\frac{11}{4}$, $\lceil mk+m-k+1 \rceil$, where k, m and n are any positive integers with $m \ge 2$ and $k \ge 1$. It is an improvement on H.W. Zou's result in the case $m \geq 2$ and $k \geq 1$.

Preliminaries 2

Lemma 2.1 (C.P. Teo, K.M. Koh [10]) Let G and H be two graphs with $G \sim H$. Then |V(G)| = |V(H)|, |E(G)| = |E(H)|, $N_3(G) = N_3(H)$ and $m_r(G) = m_r(H) \text{ for } r = 1, 2, \cdots, p(G).$

Lemma 2.2 (C.P. Teo, K.M. Koh [10]) Let $c \geq d \geq 2$. Then K(c,d) is χ -unique.

Lemma 2.3 (F. Brenti [3]) Let G and H be two disjoint graphs. Then $\sigma(G \vee H, \tau) = \sigma(G, \tau)\sigma(H, \tau)$. In particular, $\sigma(K(n_1, n_2, \dots, n_t), \tau) = \prod_{i=1}^t \sigma(O_{n_i}, \tau)$.

Lemma 2.4 (H.W. Zou [13]) Let $G = K(n_1, n_2, n_3)$. Then (i) $m_3(G) = 1$ and $m_4(G) = \sum_{i=1}^3 2^{n_i-1} - 3$;

(ii) If $H \in \langle G \rangle$, there exists a complete tripartite graph $F = K(m_1, m_2, m_3)$ such that H = F - S and $m_1 + m_2 + m_3 = n_1 + n_2 + n_3$, where S is a set of s edges of F and s = q(F) - q(G).

Lemma 2.5 (H.W. Zou [13]) Let $G = K(n_1, n_2, n_3)$ with $n_3 \ge n_2 \ge n_1 \ge n_3$ 2 and let H = G - S for a set S of s edges of G. If $n_1 \geq s + 1$, then $s \leq m_4(H) - m_4(G) \leq 2^s - 1.$

Theorem 2.1 (R.Y. Liu et al. [9]) For any integers $r \geq n \geq l \geq 2$, we have $\langle K(l,n,r)\rangle \subseteq \{K(x,y,z) - S|1 \le x \le y \le z, n \le z \le r, x+y+z = l+n+r, S \subset E(K(x,y,z)), |S| = xy+xz+yz-ln-lr-nr\}.$ In particular, if z = r, then $K(l, n, r) \cong K(x, y, z)$.

Theorem 2.2 (H.W. Zou [12]) Let $G = K(l, n, r), l \leq n \leq r$ and a = ${2[(l-n)^2+(l-r)^2+(n-r)^2]}^{\frac{1}{2}}$. If $l+n+r>a+\frac{1}{4}a^2$, then G is χ -unique.

Theorem 2.3 (*H.W. Zou* [12]) Let K(l, n, r) = K(n-m, n, n+k), where m and k are non-negative integers. If $n > \frac{1}{3}(m^2+k^2+mk+2\sqrt{m^2+k^2+mk}+$ m-k), then K(n-m,n,n+k) is χ -unique.

Main Results 3

Theorem 3.1 For any positive integers m, k and n, where $m \geq 2$ and $k \ge 1$, let G = K(n-m, n, n+k), if $n \ge \max\{\lceil \frac{1}{4}m^2 + m + k \rceil, \lceil \frac{1}{4$ $\frac{3}{2}m + 2k - \frac{11}{4}$, [mk + m - k + 1], then G is χ -unique.

Proof: Let $H \in \langle G \rangle$. Then by Theorem 2.1, $H \in \{K(x,y,z) - S | 1 \le x \le 1\}$ $y \le z, n \le z \le n+k, |S| = s = xy + yz + xz - (n-m)n - (n-m)(n+1)$ (k) - n(n+k), x + y + z = 3n + k - m.

Case 1: If z = n + k, by Theorem 2.1, $H \cong G$.

Case 2: For z = n, we distinguish the following two subcases.

Subcase 2.1: $x \le y = z = n$. Let F = K(n + k - m, n, n), H = F - Sand $\beta(H) = m_4(H) - m_4(F)$. By Lemma 2.4, we have

 $|S| = s = q(F) - q(G) = (n+k-m)n + (n+k-m)n + n^2 - (n-m)n - n^2$ (n-m)(n+k)-n(n+k)=km>0,

 $m_4(F) = 2^{n+k-m-1} + 2^{n-1} + 2^{n-1} - 3,$ $m_4(G) = 2^{n-m-1} + 2^{n-1} + 2^{n+k-1} - 3.$

By the conditions of the theorem and the Lemma 2.5, we have $s + 1 = km + 1 \le n + k - m$ and $km \le \beta(H) \le 2^{km} - 1$.

 $m_4(G) - m_4(H) = (2^{n-m-1} + 2^{n-1} + 2^{n+k-1} - 3) - (2^{n+k-m-1} + 2^{n-1} + 2^{n-1} + 2^{n-1})$ $2^{n-1}-3+\beta(H)$

 $\geq 2^{n-m-1} + 2^{n+k-1} - 2^{n+k-m-1} - 2^{n-1} - 2^{km} + 1$

 $\geq 2^{n-m-1} + 2^{n+k-1} - 2^{n+k-m} - 2^{n-1} + 1.$

Since $m \ge 2$ and $k \ge 1$, we have $\frac{1}{2} + 2^k 2^{m-1} - 2^k - 2^{m-1} > 0$, i.e., $(\frac{1}{2} + 2^k 2^{m-1} - 2^k - 2^{m-1}) > 0$, i.e., $2^{k}2^{m-1}-2^{k}-2^{m-1}$) $2^{-m}>0$. Hence $2^{n-m-1}+2^{n+k-1}-2^{n+k-m}-2^{n-1}>0$, i.e., $m_4(G) - m_4(H) > 1$. This contradicts $m_4(G) = m_4(H)$.

Subcase 2.2: z = n and $x \le y \le n - 1$. Let F = K(x, y, n), $H = \sum_{i=1}^{n} f(x_i, y_i, n)$ F-S. Let V_1, V_2, V_3 be the unique 3-independent partition of K(x, y, n) such that $|V_1|=x$, $|V_2|=y$, $|V_3|=n$. By Lemma 2.1, x+y=2n+k-m, $N_3(G)=N_3(H)$. Hence, we shall consider the number of triangles in G and H. Without loss of generality, let $S=\{e_1,e_2,\cdots,e_s\}\subset E(F)$. It is not hard to see that $N_3(e_i)\leq n$. Then

$$N_3(H) \ge N_3(F) - ns \tag{1}$$

and the equality holds only if $N_3(e_i) = n$ for all $e_i \in S$.

Let $\eta=N_3(F)-N_3(G)$. It is obvious that $N_3(F)=xyn$, $N_3(G)=n(n-m)(n+k)$ and $\eta=xyn-n(n-m)(n+k)$. So, we have

$$N_3(G) = N_3(F) - \eta.$$
 (2)

Since $N_3(G) = N_3(H)$, from (1) and (2) it follows that $\eta \leq sn$.

Let $f(z) = \eta - sn$, recalling that s = xy + xn + yn - n(n-m) - (n-m)(n+k) - n(n+k), we have $f(n) = \eta - sn = n^2[n+k+n-m-(x+y)] = 0$, i.e., $\eta = sn$. From (1) and (2), we have $N_3(G) = N_3(H) = N_3(F) - sn$ and $N_3(e_i) = n$ for all $e_i \in S$. Thus for every edge an end-vertex belongs to V_1 , whereas the other end-vertex belongs V_2 . Hence \overline{H} contains K_n as its component. Set $\overline{H} = \overline{H_1} \bigcup K_n$. Then $H = H_1 \vee O_n$. From Lemma 2.3 and $\sigma(H,\tau) = \sigma(K(n-m,n,n+k),\tau)$, we have $\sigma(H_1 \vee O_n,\tau) = \sigma(O_{n-m} \vee O_n \vee O_{n+k},\tau)$. So $\sigma(H_1,\tau) = \sigma(O_{n-m} \vee O_{n+k},\tau) = \sigma(K(n-m,n+k),\tau)$. Hence, from Lemma 2.2 and the condition of the theorem, we have $H_1 = K(n+k,n-m)$. So y = n+k, which contradicts $y \leq n-1$.

Case 3: For z=n+k-1, let H=K(n-k-m+u+1,n+k-u,n+k-1)-S, where u is integer number. According to $n-k-m+u+1\leq n+k-u\leq n+k-1$, we have $1\leq u\leq \frac{1}{2}(m+2k-1)$. By Lemma 2.4, we have

|S| = s = q(F) - q(G) $= -u^{2} + (m+2k-1)u - k^{2} - km + m + 2k - 1$ $= -[u - \frac{1}{2}(m+2k-1 - \sqrt{m^{2} + 2m + 4k - 3})][u - \frac{1}{2}(m+2k-1 + \sqrt{m^{2} + 2m + 4k - 3})].$

Let $g(u) = n - k - m + u + 1 - (s + 1) = u^2 + (2 - m - 2k)u + n + km + k^2 - 3k - 2m + 1$, we shall consider sign of g(u), we distinguish the following cases.

- (i) When $\frac{1}{2}(m+2k-1-\sqrt{m^2+2m+4k-3})<1$, we have $1\leq u\leq \frac{1}{2}(m+2k-1)$ and $g_{min}(u)=g[\frac{1}{2}(m+2k-2)]=n-(\frac{1}{4}m^2+m+k)$. It follows that $n-(\frac{1}{4}m^2+m+k)\geq 0$. So $g(u)\geq 0$.
- (ii) When $\frac{1}{2}(m+2k-1-\sqrt{m^2+2m+4k-3}) \ge 1$, we have $\frac{1}{2}(m+2k-1-\sqrt{m^2+2m+4k-3}) \le u \le \frac{1}{2}(m+2k-1)$. Because of $m \ge 2$ and $k \ge 1$, so

 $\frac{1}{2}(m+2k-2) > \frac{1}{2}(m+2k-1-\sqrt{m^2+2m+4k-3}).$

By the condition of the theorem, it follows that

 $g_{min}(u) = g[\frac{1}{2}(m+2k-2)] = n - (\frac{1}{4}m^2 + m + k) \ge 0.$

From (i) and (ii) it follows that $s+1 \le n-k-m+u+1$. So $g(u) \ge 0$. From Lemma 2.5, we have $s \le m_4(H) - m_4(F) = \beta(H) \le 2^s - 1$ and $m_4(G) - m_4(H) = (2^{n-m-1} + 2^{n+k-1} - 3) - (2^{n-k-m+u} + 2^{n+k-u-1} + 2^{n+k-2} - 3 + \beta(H))$

 $\geq 2^{n-m-1} + 2^{n-1} + 2^{n+k-1} - 2^{n-k-m+u} - 2^{n+k-u-1} - 2^{n+k-2} - 2^{n-k-m+u} + 1$ $= 2^{n-m-1} + 2^{n-1} + 2^{n+k-2} - 2^{n+k-u-1} - 2^{n-k-m+u+1} + 1.$

Because of $u \leq \frac{1}{2}(m+2k-1)$, we have $2^k+2^{k+m} \geq 2^{u+2}$, i.e., $2^{k+u}+2^{k+m+u}-2^{2u+2} \geq 0$. Since $2^{m+2k+u-1}-2^{m+2k} \geq 0$, we have $2^{k+u}+2^{m+k+u}+2^{m+2k+u-1}-2^{m+2k}-2^{2u+2} \geq 0$, i.e., $2^{n-m-1}+2^{n-1}+2^{n+k-2}-2^{n+k-u-1}-2^{n-k-m+u+1} \geq 0$. Hence $m_4(G)-m_4(H) \geq 1$, this is impossible.

If $1 \le k \le 2$, from Case 1, Case 2 and Case 3 it shows that process of the proof has been completed. If $k \ge 3$, we shall consider the following Case 4.

Case 4: Let z = n + k - t $(k \ge 3 \text{ and } 2 \le t \le k - 1)$, F = K(n - k - m + u + t, n + k - u, n + k - t) and H = F - S, we can easily obtain that $t \le u \le \frac{1}{2}(m + 2k - t)$. By lemma 2.4, we have

|S| = s = q(F) - q(G)

= (n-k-m+u+t)(2n+2k-u-t) + (n+k-u)(n+k-t) - (n-m)(2n+k) - n(n+k)

 $=-u^2+u(m+2k-t)+2kt+mt-km-k^2-t^2.$

Because of $2 \le t \le k-1$, we have $m^2 - 3t^2 + 4kt + 2mt > 0$. So

 $s = -\left[u - \frac{1}{2}(m + 2k - t - \sqrt{m^2 - 3t^2 + 4kt + 2mt})\right]\left[u - \frac{1}{2}(m + 2k - t + \sqrt{m^2 - 3t^2 + 4kt + 2mt})\right].$

Let $h(u) = n - k - m + u + t - (s + 1) = u^2 + u(t - m - 2k + 1) + t^2 + k^2 + km - 2kt - mt + n - k - m + t - 1$, we shall consider sign of h(u), we distinguish the following cases.

- (i) When $\frac{1}{2}(m+2k-t-\sqrt{m^2-3t^2+4kt+2mt}) < t$, we have $t \le u \le \frac{1}{2}(m+2k-t)$. Because of $m \ge 2$ and $k \ge 3$, we have $\frac{1}{2}(m+2k-t-1) > t$. So $h_{min}(u) = h[\frac{1}{2}(m+2k-t-1)] = \frac{1}{4}(3t^2-m^2+2t-2mt-4kt+4n-2m-5)$. Because of $2 \le t \le k-1$, we have $\frac{1}{4}(3t^2-m^2+2t-2mt-4kt+4n-2m-5) \ge \frac{1}{4}(4n-m^2-6m-8k+11)$. By the condition of the theorem, it follows that $\frac{1}{4}(4n-m^2-6m-8k+11) \ge 0$. So $h(u) \ge 0$.
 - (ii) When $\frac{1}{2}(m+2k-t-\sqrt{m^2-3t^2+4kt+2mt}) \ge t$, we have $\frac{1}{2}(m+2k-t-\sqrt{m^2-3t^2+4kt+2mt}) \le u \le \frac{1}{2}(m+2k-t)$.

Because of $m \ge 2$, $k \ge 3$ and $2 \le t \le k-1$, we have $\sqrt{m^2-3t^2+4kt+2mt} > 1$. So $\frac{1}{2}(m+2k-t-1) > \frac{1}{2}(m+2k-t-\sqrt{m^2-3t^2+4kt+2mt})$. By the condition of the theorem, it follows that $h_{min}(u) = h[\frac{1}{2}(m+2k-t-1)] = \frac{1}{4}(3t^2-m^2+2t-2mt-4kt+4n-2m-5) \ge \frac{1}{4}(4n-m^2-6m-8k+11) \ge 0$. So $h(u) \ge 0$.

From (i) and (ii) it follows that $s+1 \le n-k-m+u+t$. By Lemma 2.5, we have $s \le m_4(H)-m_4(F)=\beta(H)\le 2^s-1$ and

 $\begin{array}{l} m_4(G) - m_4(H) \\ = (2^{n-m-1} + 2^{n-1} + 2^{n+k-1} - 3) - (2^{n-k-m+u+t-1} + 2^{n+k-u-1} + 2^{n+k-u-1} + 2^{n+k-t-1} - 3 + \beta(H)) \\ \geq 2^{n-m-1} + 2^{n-1} + 2^{n+k-1} - 2^{n-k-m+u+t-1} - 2^{n+k-u-1} - 2^{n+k-t-1} - 2^{n-k-m+u+t-1} + 1 \\ = 2^{n-m-1} + 2^{n-1} + 2^{n+k-1} - 2^{n-k-m+u+t} - 2^{n+k-u-1} - 2^{n+k-t-1} + 1 \\ \geq 2^{n-m-1} + 2^{n-1} + 2^{n+k-1} - 2^{n+k-u-1} - 2^{n+k-t-1} - 2^{n+k-u-1} + 1 \\ \geq 2^{n-m-1} + 2^{n-1} + 2^{n+k-1} - 2^{n+k-t+1} + 1. \end{array}$

Because of $n+k-1 \ge n+k-t+1$, we have $m_4(G)-m_4(H) \ge 1$, this is impossible. The proof is completed. \square

Theorem 3.2 Let $\Omega = \{(m,k)|m \geq 2, k \geq 1, m, k \in \mathbb{N}\}, \xi = \frac{1}{3}(m^2 + k^2 + mk + 2\sqrt{m^2 + k^2 + mk} + m - k), A = \frac{1}{4}m^2 + m + k, B = \frac{1}{4}m^2 + \frac{3}{2}m + 2k - \frac{11}{4}, C = mk + m - k + 1.$ Suppose

 $R = \{(m,k)|m \geq 2, k \geq 1, \lceil \xi \rceil = \max\{\lceil A \rceil, \lceil B \rceil, \lceil C \rceil\}, T = \{(m,k)|m \geq 2, k \geq 1, \lceil \xi \rceil > \max\{\lceil A \rceil, \lceil B \rceil, \lceil C \rceil\}.$

Then $R \neq \emptyset, T \neq \emptyset, R \cap T = \emptyset$ and $R \cup T = \Omega$.

Proof: Since $\xi - A = \frac{1}{12}m^2 + \frac{1}{3}k^2 + \frac{1}{3}mk + \frac{2}{3}\sqrt{k^2 + m^2 + km} - \frac{4}{3}k - \frac{2}{3}m$, $\sqrt{k^2 + m^2 + km} > \frac{1}{2}k + m$, and $\frac{1}{3}k^2 + \frac{1}{3}mk - k \ge 0$, we have

$$\frac{1}{12}m^2 + \frac{1}{3}k^2 + \frac{1}{3}mk + \frac{2}{3}\sqrt{k^2 + m^2 + km} - \frac{4}{3}k - \frac{2}{3}m$$

$$> \frac{1}{12}m^2 + \frac{1}{3}k^2 + \frac{1}{3}mk + \frac{1}{3}k + \frac{2}{3}m - \frac{4}{3}k - \frac{2}{3}m$$

 $=\frac{1}{12}m^2+\frac{3}{3}k^2+\frac{3}{3}mk-k\geq \frac{1}{12}m^2>0.$

So we have the following fact

Fact 1: $\xi > A, i.e., \lceil \xi \rceil \geq \lceil A \rceil$.

Since $\xi - B = \frac{1}{12}m^2 + \frac{1}{3}k^2 + \frac{1}{3}mk + \frac{2}{3}\sqrt{k^2 + m^2 + km} - \frac{7}{6}m - \frac{7}{3}k + \frac{11}{4}$, and $\sqrt{k^2 + m^2 + km} > \frac{1}{2}k + m$, we have

$$\frac{1}{12}m^2 + \frac{1}{3}k^2 + \frac{1}{3}mk + \frac{2}{3}\sqrt{k^2 + m^2 + km} - \frac{7}{6}m - \frac{7}{3}k + \frac{11}{4}$$

$$> \frac{1}{12}m^2 + \frac{1}{3}k^2 + \frac{1}{3}mk + \frac{1}{3}k + \frac{2}{3}m - \frac{7}{6}m - \frac{7}{3}k + \frac{11}{4}$$

$$= \frac{1}{12}[(m-3)^2 + 4(k-3)^2 + 4mk - 12].$$

If $mk \ge 3$, we have $\frac{1}{12}[(m-3)^2 + 4(k-3)^2 + 4mk - 12] > 0$. If mk = 2, i.e., m = 2 and k = 1, we get $\frac{1}{12}[(m-3)^2 + 4(k-3)^2 + 4mk - 12] = \frac{13}{12} > 0$. So we have

Fact 2: $\xi > B, i.e., \lceil \xi \rceil \geq \lceil B \rceil$.

Because of $\xi - C = \frac{1}{3}m^2 + \frac{1}{3}k^2 + \frac{2}{3}k + \frac{2}{3}\sqrt{k^2 + m^2 + km} - \frac{2}{3}km - \frac{2}{3}m - 1$ $= \frac{1}{3}(m-k)^2 + \frac{2}{3}k + \frac{2}{3}\sqrt{k^2 + m^2 + km} - \frac{2}{3}m - 1$, and $\sqrt{k^2 + m^2 + km} > m + \frac{1}{2}$, therefore $\frac{1}{3}(m-k)^2 + \frac{2}{3}k + \frac{2}{3}\sqrt{k^2 + m^2 + km} - \frac{2}{3}m - 1 > \frac{1}{3}(m-k)^2 + \frac{2}{3}k + \frac{2}{3}(m + \frac{1}{2}) - \frac{2}{3}m - 1 > 0$. So we have

Fact 3: $\xi > C, i.e., [\xi] \geq [C]$.

From Fact 1, Fact 2 and Fact 3, we have that $[\xi] \ge \max\{[A], [B], [C]\}$. Thus $\Omega = R \cup T$. Obviously we have $R \cap T = \emptyset$. Since $(2,1) \in R$ and $(2,2) \in T$, we have $R, T \ne \emptyset$. This completes the proof. \square

Remark. The condition of Theorem 2.3 is that $n > \xi$, i.e., $n \ge \lceil \xi \rceil$ (when ξ is an integer) or $n \ge \lceil \xi \rceil + 1$ (when ξ is not an integer). Theorem 3.1 is an improvement for Theorem 2.3 when $(m,k) \in T$ or $(m,k) \in R$ and ξ is an integer. For example, for graph K(2,4,5), we have $\lceil \xi \rceil = 14, \max\{\lceil A \rceil, \lceil B \rceil, \lceil C \rceil\} = \max\{4,4,4\} = 4$. From Theorem 3.1, we know that K(2,4,5) is χ -unique. But we did not deduce that by Theorem 2.3.

References

- [1] N.L. Biggs, Algebraic Graph Theory, Cambridge University Press, Cambridge, 1974
- [2] J.A. Bondy, U.S.R. Murty, Graphy Theory with Applications, Macmillan, New York, 1976.
- [3] F. Brenti, Expansions of chromatic polynomial and log-loncavity, Trans. Amer. Math. Soc., 332 (1992), 729–756.
- [4] C.Y. Chao, G.A. Novacky Jr., On maximally saturated graphs, Discrete Math., 41 (1982),139-143.
- [5] C.Y. Chao, E.G. Whitehead Jr., On chromatic equivalence of graphs, Theory and Applications of Graphs, Springer Lecture Notes in Mathematics, Vol. 642, Springer, Berlin, pp. 121-131.
- [6] G.L. Chia, B.H. Goh, K.M. Koh, The chromaticity of some families of complete tripartite graphs, SCIENTITA, Ser. A: Math. Sci., 2 (1998),27-37.
- [7] K.M. Koh, K.L. Teo, The search for chromatically unique graphs, Graphs Combin., 6 (1990),259–285.
- [8] K.M. Koh, K.L. Teo, The search for chromatically unique graphs-II, Discrete Math., 172 (1997),59-78.
- [9] R.Y. Liu, H.X. Zhao, C.F. Ye, A complete solution to a conjecture on chromatic uniqueness of complete tripartite graphs, Discrete Math., 289 (2004),175-179.
- [10] C.P. Teo, K.M. Koh, The chromaticity of complete bipartite graphs with at most one edge deleted, J. Graph Theory, 14 (1990),89-99.
- [11] H.W. Zou, On the chromatic uniqueness of complete tripartite graphs $K(n_1, n_2, n_3)$, J. Sys. Sci. & Math. Scis.(PRC), 20 (2) (2000),181-186.
- [12] H.W. Zou, The chromatic uniqueness of certain complete tripartite graphs K(m, n, r), J. of Math. (PRC), 23(3)(2003), 307-314.
- [13] H.W. Zou, The chromatic uniqueness of certain complete t-partite graphs, Discrete Math., 275(2004), 375-383.