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Abstract

This paper generalizes the results of Guiduli [B. Guiduli, On in-
cidence coloring and star arboricity of graphs. Discrete Math. 163
(1997), 275-278] on the incidence coloring of graphs to the frac-
tional incidence coloring. Tight asymptotic bounds analogous to
Guiduli's results are given for the fractional incidence chromatic num-
ber of graphs. The fractional incidence chromatic number of circu-
lant graphs is studied. Relationships between the k-tuple incidence
chromatic number and the incidence chromatic number of the di-
rect products and lexicographic products of graphs are established.
Finally, for planar graphs G, it is shown that if A(G) # 6, then
xi(G) < A(G) + 5; if A(G) = 6, then x;(G) < A(G) + 6; where
xi(G) denotes the incidence chromatic number of G. This improves
the bound x(G) < A(G) + 7 for planar graphs given in [M. Hos-
seini Dolama, E. Sopena, X. Zhu, Incidence coloring of k-degenerated
graphs. Discrete Math. 283 (2004), no. 1-3, 121-128].

1 Introduction
For a finite graph G, we use V(G) and E(G) to denote its vertex set and
cdge set. For a positive integer k, the set {1,...,k} is denoted by [k]. For a
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graph G, a(G) denotes the independence number of G, and |G| = [V(G)|.
A k-edge coloring of a graph G = (V, E) is a mapping ¢ from E(G) to a
color set S with |S| = k, such that adjacent edges are assigned different
colors. The edge chromatic number, or chromatic indez, x'(G) of G is the
smallest k such that G admits a k-edge coloring. For the chromatic index
x'(G), we have the well known Vizing’s theorem:

Theorem 1.1 (Vizing 1964) Every graph G satisfies A < x'(G) < A+ 1.

Vizing’s theorem divides the finite graphs into two classes according to
their chromatic index; graphs satisfying x' = A are called class 1, those
with ¥’ = A + 1 are called class 2.

An incidence in G is a pair (v,e) with v € V(G) and e € E(G), such
that v and e are incident. We denote by I(G) the set of all the incidences
in G. For every vertex v, we denote by I, the set of incidences of the form
(v,vz), and by A, the set of incidences of the form (y,yv). Two incidences
(v,e) and (w, f) are adjacent if one of the following holds: (i) v = w, (i?)
e = f, or (4ii) {v,w} is one of the edges e or f. We note here that for any
incidence (v, vw), the set of all the incidences that are adjacent to (v, vw)
(including itself) is I, U Ay U L.

A k-incidence coloring of a graph G is a mapping o of I(G) to a color set
C with |C| = k, such that adjacent incidences are assigned different colors.
The incidence chromatic number (or incidence coloring number), xi(G) of
G is the smallest & such that G admits a k-incidence coloring. The incidence
graph of a graph G, denoted Inc(G), has vertex set I(G), and two vertices
of Inc(G) are adjacent in Inc(G) if and only if the corresponding two
incidences of G are adjacent in G. Clearly, |V (Inc(G))| = |I(G)| = 2|E(G)|,
and xi(G) = x(Inc(G)).

Incidence colorings were introduced by Brualdi and Massey [4] in 1993.
It is easy to see that for every graph G with at least one edge, x:(G) 2
A(G) + 1. Brualdi and Massey [4] proved the following results:

Theorem 1.2 ([4]) For each n > 2, xi(Kn) =n.

Theorem 1.3 ([4]) Let T be a tree of order > 2 with mazimum degree A,
then x;(T)=A+1.

Theorem 1.4 ([4]) For every graph G, xi(G) < 24(G).

In [9], Guiduli made the following observation: if we think of an inci-
dence pair as a directed edge, directed toward the vertex, we are coloring
the edges of the symmetrically directed graph S(G) (here in S(G) we re-
place each edge of G by both directed edges). Then each color class is a
directed star forest (edges are directed out of the center). Therefore the
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concept of incidence coloring is a particular case of directed star arboricity,
introduced by Algor and Alon [1]. Recall that the star arboricity of a graph
G is the minimum number of star forests in G whose union covers all edges
of G. And a star forest is a forest whose connected components are stars.
Following an example from [1], Guiduli proved that there exist graphs G
with xi(G) > A(G) + Q(log A(G)). He also proved, for every graph G,
xi(G) € A(G) + O(log A(G)), which is the following theorem:

Theorem 1.5 (Guiduli [9]) Let G be a graph with mazimum degree A,
then
xi(G) < A +20logA + 84.

With respect to the incidence chromatic number of special classes of
graphs, in [6], Chen et al showed: For every Halin graph G with A(G) > 5,
xi(G) = A(G) +1. In [7], Dolama et al showed: (1) If G is a k-degenerated
graph, then x;(G) € A(G) + 2k — 1. (2) If G is a K,4-minor free graph,
then x;(G) < A(G)+2, and this bound is tight. (3) If G is a planar graph,
then x;(G) < A(G) + 7. In [12], Maydanskiy showed that x;(G) < 5 for
all graphs G with A(G) = 3, which was conjectured by Chen et al. in [5].
In (10}, Huang et al showed that square meshes, hexagonal meshes, and
honeycomb meshes admit a (A + 1)-incidence coloring.

This paper is organized as follows. In section 2, we will first introduce
the definitions for the k-tuple coloring and fractional coloring of graphs,
then we will generalize the results of Guiduli [9] on the incidence chromatic
number of graphs to the fractional incidence chromatic number. Tight
asymptotic bounds similar to [9] will be given for the fractional incidence
chromatic number of graphs. Then the fractional incidence chromatic num-
ber of the circulant graph G(n,S), where § = [k], will be studied. In
section 3, we will establish some relationships between the k-tuple inci-
dence chromatic number and the incidence chromatic number of the direct
products and lexicographic products of graphs. This gives us more rea-
sons for studying the k-tuple coloring of the incidence graph, therefore the
fractional incidence chromatic number of graphs. Finally in Section 4, we
establish a relationship between the incidence coloring and star arboricity
of graphs, and use it to show that for planar graphs G, if A(G) # 6, then
xi(G) < A(G) + 5; if A(G) = 6, then x;(G) < A(G) + 6. This improves
the bound x;(G) < A(G) + 7 for planar graphs given in (7).

2 Fractional incidence coloring of graphs
Let G be a graph. One of the most natural generalizations of coloring

consists of assigning cach vertex, instead of one color, a set of & colors,
and requiring that adjacent vertices obtain disjoint sets of colors. Such an
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assignment is called a k-tuple coloring, or a k-tuple n-coloring if a total of
n colors is used. We always assume that 0 < k < n. Obviously, a 1-tuple
n-coloring is just an usual n-coloring. The least n for which G has a k-tuple
coloring is the k-tuple chromatic number of G, denoted by xx(G). Clearly
xx(G) £ kx(G).

The fractional chromatic number of G, denoted xs(G), is the infimum
of the fractions % such that G admits a k-tuple n-coloring. We note that
the infimum in the definition can be replaced by the minimum. Trivially
we have xf(G) < x(G). The fractional chromatic number of graphs has
been studied extensively. For more reading of this subject, the readers are
referred to [14].

We call the k-tuple chromatic number of the incidence graph of G the
k-tuple incidence chromatic number of G, denoted xi(Inc(G)). We call
the fractional chromatic number of the incidence graph of G the fractional
incidence chromatic number of G, denoted xy(Inc(G)). Figure 1 illus-
trates a 3-tuple 10-coloring of the incidence graph of the pentagon Cs.
This fact shows the fractional incidence chromatic number of the penta-
gon xs(Inc(Cs)) < L. By Theorem 2.5 (in the following), we also have
x5 (Ine(Cs)) > > Q Therefore xs(Inc(Cs)) = 32. And it is not hard to see
that x;(Cs) = 4.

Figure 1

Note that from the definition and Theorem 1.5, we immediately have the
following upper bounds of the fractional incidence coloring:

Theorem 2.1 Let G be a graph with mazimum degree A, then
x5 (Inc(G)) < A +20log A + 84.

Next we will show that there exist graphs G with x¢(Inc(G)) = A(G)+
Q(log A(G)), therefore the upper bound of Theorem 2.1 is asymptotically
tight. The proof for this follows an example from Algor and Alon in [1].
We will need the following well known proposition about the fractional
chromatic number of a graph G.
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Proposition 2.2 ({14]) For any greph G, x;(G) > I%g)il

The following example was given in [1]. The Paley graph G is defined as
follows. Let p be a prime with p=1( mod 4). Put V(G) = {0,1,--- ,p—
1}. Two vertices z and y are adjacent in G if and only if z — y is a square
in GF(p). Gisd = (p—1)/2 regular. If p > k2.22%-2 and A C V(G),
|A|l = k, then there is a v € V which is not adjacent to any member of
A. So if § € V is a dominating set (i.e. every vertex of V — S is adjacent
to a vertex of S) then |S| > k. Now we show that the graph G satisfies
xs(Ince(G)) > d + Q(logd). The proof here is analogous to the proof in [1).

Let H be a star forest in G and let S = {v € V : degy(v) =0, or v is
the center of a star in H}. Clearly S is a dominating set so |S| > k. But
|E(H)| = p—|S| < p—k. Note that by the observation that, in the incidence
coloring, each color class is a directed star forest, we have a(Inc(G)) < p—k.
By Proposition 2.2 and & > (- —0(1)) log p, we have

[VUne(G) _ _2|E(G)|
a(Inc(G)) a(Ine(GY)
S5 AE@G) _pp—1)
p ko 2p—k)
> 2+ (5~ (1)) logp) > d+ (5 = o(1)) logd.

xs(Ine(G)) 2

In the following, we will study the fractional incidence chromatic number
of the circulant graph G(n,S), where § = [k]. Given a positive intcger
n and a set § C {1,---,|n/2]}, the circulant graph G(n,S) of order n
with generating set S is deﬁned as follows: G(n,S) has vertex set V(G) =
{0.1,---,n — 1} and edge set E(G) = {wv : |u — v|, € S}, where |z|, :=
min{|z|,n—|z|} is the circular distance modulo n. We will use the following
lemmas.

Lemma 2.3 ([8, 11]) If k' < n/2, then x;(G(n,[k'])) = n/| w51l more-
over, a(G(n, [k'])) = | zA5)-

The square of a graph G, denoted by G2, has the same vertex set as G,
and uv € E(G?) if and only if distg(u,v) < 2, where distg (u,v) denol:es
the distance between u and v in G. The following lemma can be proved
straightforward.

Lemma 2.4 For any graph G, xs(Inc(G)) < x;(G?).

b

Theorem 2.5 If k < n/4, then %—T < xs(Inc(G(n, [K])) <
i.e. TEET < Xs(Inc(G(n, [K])) < <

'mJ

%kl )”
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Proof. Obviously G2(n, [k]) = G(n, [2k]). Then applying Lemma 2.4 and
Lemma 2.3, we have x;(Inc(G(n, [k])) < x7(G%(n,[k]) = xs(G(n, [2k]) =
)

On the other hand, each color class in the incidence coloring is a (di-
rected) star forest, and note that G(n, [k]) is 2k regular, so each color class
has at least [5Z7] components, therefore at most n — [527] edges. Ap-

plying Proposition 2.2, we have x(Inc(G(n, [k]) > ;ﬁ:—"_‘:.T—IT n

3 Incidence coloring of the direct and lexico-
graphic products of graphs

Let G and H be graphs. Let G x H and G[H| be the direct product and the
lezicographic product of G and H respectively. The vertex set of G x H and
G[H) is V(G) x V(H) = {(v,v) : u € V(G) A v €& V(H)}. Vertices (u,v)
and (v/,v') are adjacent in G x H ie. (u,v)(«',v') € E(G x H) whenever
wu’ € E(G) and v’ € E(H). Vertices (u,v) and (u',v’) are adjacent in
G[H] ie. (u,v)(x',v') € E(G[H]) whenever uu’ € E(G), or u = u’' and
v’ € E(H). In this section, we will first establish a relationship between
xi(G x H) and xax)(Inc(G)). In the second part of this section, we will
establish a relationship between x;(G[H]) and x;#(Inc(G))-

3.1 Incidence coloring of the direct products of graphs
Theorem 3.1 x;(G x H) < min{xa ) (Inc(G)), xae)(Inc(H))}.

Proof. It is sufficient to show x:(G x H) < xa)(Inc(G)). Suppose
A(H) = k, xx(Inc(G)) = s. Suppose mapping f : I(G) — Sk (k-elements
subsets of S) with |S| = s witnesses xx(Inc(G)) = s. We will use color set
S to properly color all the incidences of G x H.

Let 7 = ((v,w), {(v,w), (v1,w1)}) be an incidence of G x H, then vv, €
E(G) and ww, € E(H), therefore i = (v,vv;) € I(G). Note that f(¢) is
a k-color set of S. And for a given w € V(H), |[N(w)| < k. Therefore by
using First-Fit, we can give a color assignment h : I(G x H) — S such
that A(3) € f(i), and if a,b € N(w) and a # b, then h(ig) # h(ip), where
ta = ((v,w), {('v,'w), (v1,4)}), W= ((v,w), {(v,w), (v1,0)}).

Next we will show that h is a proper incidence coloring of Gx H, and thus
prove the theorem. Note that for any incidence ¢ = ((v, w), {(v, w), (v1,w1)}),
the set of all the incidences that are adjacent to 7 (including itself) is
I(,,'w) UA(u,w) U I(vl,wx) inGx H.

Case 1 First suppose 73 = ((v,w), {(v,w), (v2,w2)}) € I,y € I(G x H)
and ip # i. We show next k(i) # h(i). Note that since ,i2 €
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I{(G x H), we have i = (v,vv1),i2 = (v,vve) € I, C I(G), and
wwy,wwy € E(H). If v; # ve, then i # i3 and 4,42 € I, in G. Since
f : I(G) — S* is a proper k-tuple coloring for the incidence graph
of G, we have f(i) N f(i2) = 0. Note that since h(i) € _f(i) and
h(i2) € f(i2), we have h(3) # h(i2). Now if v; = vy, since i3 # %, we
have w; # wy. Note that since ww;,wwy € E(H), we have w),ws €
N(w). Therefore by the definition of h, we have h(3), h(s2) € f(i) and
h(i) # h(E2).

Case 2 Suppose ¢3 = ((vs, wa), {(v3, ws), (v,w)}) ) € Aww) C I(G x H),
we show next h(i3) # h(i). Note that since 1,43 € I(G x H), we have
i = (v,vvy) € I, C I(G), and i3 = (v3,v3v) € A, C I(G). Therefore
i and i3 are two adjacent incidences of G. Since f : I(G) — S*
is a proper k-tuple coloring for the incidence graph of G, we have
F(E) 0 f(iz) = 0. Since h(3) € f(i) and h(i3) € f(i3), we have h(Z) #
h(is).

Case 3 Finally suppose iy = ((v1,w1), {(v1,w1), (va,wa)}) € Ly,.,) C
I(G x H), we show next h(i4) # h(z). Since 7,14 € I(G x H), we have
i=(v,on) € I, C I(G), and i4 = (v1,v1v4) € I, C I(G). Therefore
i and i4 are two adjacent incidences of G. Since f : [(G) — Sk
is a proper k-tuple coloring for the incidence graph of G, we have
f(@E) N f(i4) = 0. Since h(z) € f(i) and h(i4) € f(ia), we have h(z) #
h(is).

This finishes the proof of this theorem. Il

Since for any graph G, we have xx(G) < kx(G), immediately we have
the following corollary:

Corollary 3.2 x;(G x H) < min{x:(G)A(H), A(G)x:(H)}.

By applying Corollary 3.2, we have the following corollaries about the
incidence chromatic number of the direct products of some special graphs.

Corollary 3.3 For alln 2> 2, xi(G x Ky) < xi(G)(n —1). For allm >
n 22 xi(Kmx K;)<m(n-1).

Proof. Note that by Theorem 1.2, for all n > 2, x;(K,) = A(K,)+1=n.
|

In Corollary 3.3, let n = 2, then for m > 2, we have x;(K,, x K3) <
m. Obviously this is best possible. For a complete bipartite graph X mny
where m > n > 2, Brualdi and Massey [4] proved xi(Kn) = m + 2.
Since K;m = (Km x K2) UM, where M is a perfect matching in K m,
immediately we have x;(Km m) < m+ 2. Note that this implies the upper
bound of x;(Km,n).
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Corollary 3.4 Let Ty, T» be trees of order > 2 with mazimum degrees
Ay < Ay, then xi(Ty x To) < A1A2 + Ay

Proof. By Theorem 1.3, we have xi(T1) = A; + 1. By Corollary 3.2,
X:‘(Tl x To) < (A1 + 1A, = AAs + A [ |

3.2 Incidence coloring of the lexicographic products of
graphs

In this part, we will prove the following theorem on the incidence coloring
of the lexicographic products of graphs.

Theorem 3.5 x:(G[H]) < x))(Inc(G)) + xi(H).

Proof. Suppose x|u|(Inc(G)) = s, xi(H) = t. Suppose mappings I
I(G) — S| (|H|-elements subsets of §) with |S| = s and g : I(H) = T
with |T| = t witness x)g(Inc(G)) = s and x;(H) = t. Without loss of
generality, we suppose SNT = . We will use color set SUT = {c:ce€
S or ¢ € T} to properly color all the incidences of G[H].

Let i = ((v, w), {(v,w), (v1,w1)}) be an incidence of G[H], then
{(v,w), (v1,w1)} € E(G[H]), then vv; € E(G), or v = v; and ww, € E(H),
therefore i = (v,vv1) € I(G), or v = v; and j = (w,ww,) € I(H). Note
that f(3) is a |H|-color set of S. Define h : I(G[H]) — SUT by h(3) € f(i) if
v, € E(G), h(i) = g(j) if v = v; and ww, € E(H). Moreover, for a given
(v,w), suppose vv; € E(G), and there are incidences ia,2, € Inc(G[H])
of the form iz = ((v,w), {(v,w),(v1,0)}), % = ((v,w), {(v,w),(v1,b)}),
and a # b. Since f(i) is a |H|-color set of S, by using First-Fit, we let
color assignment h : I(G[H]) — S satisfies that h(ia),h(i) € f(i), and
h(ia) # h(%).

Next we will show that h is a proper incidence coloring for G[H], and
thus proves the theorem. Note that for any incidence
i = ((v,w), {(v,w), (v1,w1)}), the set of all the incidences that are adjacent
to 7 (including itself) is Iy w) U A(w,w) Y L(vy wy) in G[H].

Case 1 First suppose i3 = ((v,w), {(v,w), (v2,w2)}) € Iww) © I(G[H])
and 42 # 7, we show next h(i2) # h(%).

Subcase 1.1 If both i = (v,vv;),i2 = (v,vv2) € I(G), then i =
(v,vv1),i2 = (v,vv2) € I, in G. If vy # vg, then i # i3 and
i,ia € I,. Since f : I(G) — Sl is a proper |H|-tuple coloring
for the incidence graph of G, we have f(i) N f(i2) = @. Since
k(i) € f(i) and h(t2) € f(i2), we have h(F) # h(i). If v = vg,
since i3 # i, we have w; # ws. By the definition of h, we have
h(3), h(i2) € f(3) and h(3) # h(i2).
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Subcase 1.2 If v = v; and j = (w,ww,) € I(H), v = vz and j, =
(w, wwq) € I(H), then j = (w,ww,),jo = (w,wws) € I, in H.
Since g : I(H) — T is a proper incidence coloring for H, we
have g(j) # g(j2). By the definition of k, we have h(z) = g(j) #
9(j2) = h(z2)-

Subcase 1.3 Suppose i = (v,vv;) € I(G), v = ve and jo = (w, wws)
€ I(H) (the case will be similar for v = v, and j = (w,ww;) €
I(H), ia = (v,vv) € I(G).) By the definition of h, we have
k(i) € f(i) € S and h(i2) = g(j2) € T. Since SNT = @, we have
h() # hi).

Case 2 Suppose i3 = ((v3, ws), {(v3, ws), (v,w)}) € A,y C I(G[H]), we
show next h(i3) # h(i).

Subcase 2.1 If both i = (v,vv1),i3 = (vs3,vsv) € I(G), then i =
(v,vv1) € I, and i3 = (v3, v3v) € A, in G. Since f : I{G) — SIHI
is a proper |H|-tuple coloring for the incidence graph of G, we
have f(i) N f(is) = 0. Since h(7) € f(i) and h(i3) € f(is), we
have h(7) # h(i3).

Subcase 2.2 If v = v; and j = (w,ww,) € I(H), v = v3 and j3 =
(w3, w3w) € I(H), then j = (w,ww1) € Iy, js = (w3, wsw) €
A, in H. Since g : I(H) — T is a proper incidence coloring
for H, we have g(j) # g(j3). By the definition of h, we have
h(3) = g(5) # g(j3) = h(i3).

Subcase 2.3 Suppose i = (v,vv1) € I(G), v3 = v and j3 = (w3, waw)
€ I(H) (the case will be similar for v = v; and j = (w,ww,)
€ I(H), i3 = (v3,v3v) € I(G).) By the definition of h, we have
h(i) € f(i) C S and h(i3) = g(j3) € T. Since SNT = §), we have
h(z) # h(i3).

Case 3 Finally suppose iy = (o1, w1), {(v1, w1), (va, wa)}) € Juy 1) C
I(G[H]), we show next h(ig) # h(3).

Subcase 3.1 If both i = (v,vv1),%4 = (v1,vv4) € I(G), then i =
(v,vv1) € I, and iy = (v1,v1v4) € I, in G. Since f : I(G) —
SIH1 is a proper |H|-tuple coloring for the incidence graph of G,
we have f(i) N f(i4) = 0. Since h(Z) € f(3) and h(iq) € f(ia), we
have h(7) # h(is).

Subcase 3.2 If v = v; and j = (w,ww,) € I(H), v; = v4 and j; =
(w1, w1wy) € I(H), then j = (w,ww) € I, ja = (w1, w1wq) €
I,, in H. Since g : I(H) — T is a proper incidence coloring
for H, we have g(j) # g_(j4). By the definition of h, we have
h(z) = g(4) # 9(Ja) = h(za).
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Subcase 3.3 Supposei = (v,vv1) € I(G), v1 = v4 and j4 = (w1, wrwy)
€ I(H) (the case will be similar for v = v; and j = (w,ww,) €
I(H), iy = (v1,v1v4) € I(G).) By the definition of h, we have
h(3) € f(i) C S and h(i4) = g(js) € T. Since SNT = B, we have
h(3) # hia).

This finishes the proof of this theorem. Hl

We have the following corollaries about the incidence chromatic number
of the lexicographic products of some special graphs.

Corollary 3.6 For all n > 2, xi(G[Kn]) < xn(Inc(G)) + n. For allm 2>
n > 2, Xi(Km[Kn]) < xa(Inc(Km)) +n < mn+n.

Corollary 3.7 Let Th, T> be trees of order > 2 with mazimum degrees
Ay, Az, then x:(TA[T2]) < x1(Ine(Th)) + xi(T2) < (A1 +1)|T2|+ A2 + 1.

4 Incidence coloring and star arboricity of
graphs

In this section, we will establish a seemingly obvious relationship between
the incidence coloring and the star arboricity of graphs, and use it to get
the best known general upper bounds of the incidence chromatic number of
planar graphs. For an undirected graph G = (V, E), we use st(G) to denote
the star arboricity of G. An acyclic coloring of G is a proper coloring of
the vertices of G in which there are no two-colored cycles. The acyclic
chromatic number, xo(G) of G is the smallest k such that G admits an
acyclic k-coloring. For the relationship between st(G) and xa(G), we have
the following theorem (for a simple and interesting proof of this, refer to

(2]
Theorem 4.1 For any graph G, st(G) < xa(G).

Borodin [3] proved that every planar graph admits an acyclic 5-coloring.
Thus we have:

Theorem 4.2 If G is a planar graph, then st(G) < 5.
Theorem 4.3 For any graph G, xi(G) < st(G) + X'(G).

Proof. Replace each edge of G by both directed edges, we get the sym-
metrically directed graph S(G). Then based on Guiduli’s observation (refer
to [9] or Theorem 1.5 of this paper) that each color class of the incidence
graph of G is a directed star forest of G, we can use s¢(G) colors to color

222



one direction of the two directed edges that comes with any edge of G, i.e.
we can use st(G) colors to color a “copy” of E(G) in S(G). Then we can
use at most x'(G) colors to color the left “copy” E(G) in S(G) (note that
the left copy of E(G) is actually directed in S(G)). This finished the proof
of this theorem. Il

Corollary 4.4 If a graph G is of class 1, then x;(G) < st(G) + A(G);
otherwise x;(G) < st(G) + A(G) + 1.

Proof. This comes directly from Theorem 4.3 and Vizing’s theorem 1.1.

For the edge chromatic number of planar graphs, Vizing [15] showed if
A > 8, then a planar graph is always Class 1. Zhang [16] and Sanders and
Zhao [13] independently showed if A = 7, then a planar graph is always
Class 1. Now we can use the above results to get the best known general
upper bounds of the incidence chromatic number of planar graphs.

Theorem 4.5 If G is a planar graph and A(G) # 6, then x:(G) < A(G)+
5; if A(G) = 6, then x;(G) < A(G) + 6.

Proof. If A(G) > 7, applying Theorem 4.2, Corollary 4.4 and the known
results about the edge chromatic number of planar graphs, we have x;(G) <
A(G) + 5.

If A(G) < 6, since x/(G) < A(G) + 1, we have x;(G) < A(G) + 6.
Mo;aover if A(G) < 5, by Theorem 1.4, we have x;(G) < 2A(G) < A(G) +
5.

The following seems to be an interesting open question to the author:
if A(G) =6, will we have x;(G) < A(G) + 5?
Acknowledgement The author would like to thank Professor H. A. Kier-
stead and Professor Xuding Zhu for some stimulating discussions on this
topic.
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