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Abstract. In [2] Stefano Innamorati and Mauro Zannetti gave a characterization
of the planes secant to a non-singular quadric in PG(4, g). Their result is based
on a particular hypothesis (we call it “polynomial”) that, as the same authors
wrote at the end of the paper, could not exclude possible sporadic cases. In this
paper we improve their result by giving a characterization without the
“polynomial” hypothesis. So possible sporadic cases are definitely excluded.
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1. Introduction and motivation.

Let PG(4, g) be the projective space of dimension 4 and order ¢, with g =p" a
prime power. In [1] D.K. Butler proved the following:

Result 1. Let K be a set of planes in PG(4, g) such that:

- every point lies on ¢ or g*+¢? planes of K;

- every line lies on O or g° planes of K;

- every 3-space contains at least one plane of K.

Then K is the set of planes meeting a non—singular quadric in a conic.

As usual, a star (resp. hyperstar) of planes is the set of all the planes through a
same line (resp. through a same point). If we denote by m and n two integers,
with 0 s m < n, then a set K of planes of PG(4, q) is said to be of type (m, n)
with respect to stars (resp. hyperstars) of planes, if each star (resp. hyperstar)
contains either m or n planes of K and all such stars (resp. hyperstar) do exist
(see [4] and [5]). A set K of type (m, n) is also called a two character set.

In [2] S. Innamorati and M. Zannetti said that X is a two polynomial character
set if both m =m(q) and n = n(q) are polynomial function of ¢. Furthermore,
under this hypothesis, they proved (by Result 1) the following:
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Result 2. Let K be a set of planes in PG(4, ¢) such that:

- 1K1 = g%g*+1);

- K has exactly ¢°(q* + 1)(¢° - g + 1)/2 pairs of planes which meet in exactly one
point;

- K is a two polynomial character set with respect to stars of planes;

- K is a two polynomial character set with respect to hyperstars of planes;

- K is an intersection-set (i.e. every 3—space contains at least one plane of K).

Then K is the set of planes meeting a non-singular quadric in a conic.

The motivation of this paper lies in the polynomial character set “hypothesis”.

Indeed the authors firstly suppose that K is a set of type (m, n) with respect to
stars of planes (resp. to hyperstars of planes). By the standard equations they
obtain that n = N/D, where N = N(m, q) and D = D(m, q) are integers depending
on m and g. By supposing that m = m(g) is polynomial functions of g, they have
that both N = N(m(q), ) and D = D(m(qg), q) are polynomial functions of g too.
So n = N(m(q), g)/D(m(q), g). Finally, by supposing that the integer n is also a
polynomial function of g, they need that R(m(g), g)/D(m(g), q) is an integer for
any g, where R(m(q), q) is the remainder of the division N(m(q), 4)/D(m(q). 9).
So the authors have to require that R(m(g), q) = 0 for any g, i.e. R(m(q), q) = 0.
Let us note that, by supposing that both m and n are polynomial function of g,
the authors do not consider all the possible cases where R(m, g)/D(m, g) could
be an integer different from zero. As a matter of fact, the autors themselves
realize it and, at the end of their paper, they write: “By requiring the existence of
an appropriate set of planes enjoying the same properties for all q, sporadic
cases are not considered”.

In this paper we improve Result 2. Indeed we prove (by Result 1) the following:

Theorem. Let K be a set of planes in PG(4, q) such that:

-IKl =k =q(g+1);

- K has exactly T= q’(q2 +1 )(q’ - q + 1)/2 pairs of planes which meet in
exactly one point;

- K is of type (m, n) with respect to stars of planes;

- K is of type (a, b) with respect to hyperstars of planes;

- every 3-space contains at least one plane of K.

Then K is the set of planes meeting a non-singular quadric in a conic.

Let us note that we eliminate the polynomial character set “hypothesis” from
the statement. In such a way we can definitely exclude possible sporadic cases.

226



2. The proof of the Theorem

Firstly, let us suppose that X is of type (m, n) with respect to stars of planes. If
we denote by 4> 0 the number of stars of planes meeting K in exactly j planes,
then by counting in double way the total number of stars, the total number of
incident planes-stars pairs (a, ) with a€KNS, and the total number of triples
(a, B, S) with a,FEKNS, we have the following standard equations (see [3]):
Q11 |1y, +1, =(g* +D(g* + 3> +q +q+1)
2.1.2){mt,, +nt, =k(g® +q+1) = g*(q? +1(q% +q+1)
(2.1.3) [ m(m =Dt +n(n =11, = k(k=1) -2t =g* (g% +1)(g> -1)(g? +q +1)
From (2.1.1) and (2.1.2), we get
(22.1) |(n-m)t,, = (% +1)(nA-Bg*)
(222) |(n-mt,, = (g% +1)(Bg* -mA)
where A =g*+¢’+g*+q+1 and B =g’+g+l.
Since (n-m)>0, 1,,>0 and 1,>0, equations (2.2) imply that m < g*B/A < n. So
(2.3) O0smsqg~-1<qg’snsqgirg+l
By the following combination [n2(2.l.l) =(2.1.2) - (2.1.3)] we obtain

(n + m)(n - m)t, = (¢° + 1)(An® - Bg®).
Furthermore, in view of (2.2.1), we have
2.4 mnA=qg"(m+n-g)B

So nm = 0 (mod ¢*). Since m < n < ¢*, both m = 0 (mod p) and n = 0 (mod p).
If m > 0, then there are four positive integers a, b, s and ¢ such that

-m=ap’ witha = 0 (mod p) and s = 2h-1;

-n=bp' with b = 0 (mod p) and (¢ + s) = 4h.

From ¢ = 4h-s = 2h+1 we get n = p?*' = pg° = 2¢°> ¢*+¢+1, an absurd.
Hence m = 0 necessarily. By equation (2.4) we immediately get n = g%

* So we proved than X is of type (0, g°) with respect to stars of planes.

Now let us suppose that X is of type (a, b) with respect to hyperstars of planes.
If we denote by #;> 0 the number of hyperstars of planes meeting X in exactly j
planes, then by counting in double way the total number of hyperstars and the
total number of incident plane-hyperstar pairs (s, h) with #£KN#h, we have the
following standard equations (see [3]):

{ta +1, =q4+q3+q2+q+l

2.5)
aty +bty = k(g +q+1) =q* (g2 + 1)@ +q+1)
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As in [2], we call a—point (resp. b-point) the centre of a hyperstar intersecting K
in a (resp. b) planes. Since X is a set of type (0, qz) with respect to stars of
planes, we call 0-line (resp. q*-line) the centre of a star which intersects K in 0
(resp. ¢°) planes. Moreover, if P is a point of PG(4, g), then by x(P) we denote
that the number of g°-lines through P. By counting in double way the number of
pairs (r, m) where PErCa, r is a g’-line and x is a plane belonging to X, we
have g*x(P) = (g+1)a if P is an a—point, while g*x(P) = (g+1)b if P is a b—point.
Since GCD(g’, g+1) =1, let us note that a =0 (mod g°) and b =0 (mod .
Putting a = ag® and b = fq* we have that x(P) = a{g+1) (resp. x(P) = flg+1)) is
the number of g’-lines through P where P is an a—point (resp. P is a b-point).
Furthermore, since b =< (q2+1)(q2+q+1) we have that S= q2+q+2.

Again as in [2], by counting the number © = 4°(q* + 1)(g° - g + 1)/2 of pairs of
planes which meet in exactly one point we obtain:

PO [ P (| X e O

By (2.6) and the second equation of (2.5) we obtain

@7 it + =g + 1)@ +q+2)

Since a=ag’and b= qu from (2.5) and (2.7) we get the following equations
Q8D [t +1=A

2.8) 2.8.2){at, +Bty =g (g2 +1)B
©2.8.3) |a2t, +B%, =g*(@> +D(B+D)

From the first two equations of (2.8), we obtain

9.1 {(B —a), =BA-g%(g* +DB

(2.92) |(B-o)t, = g% (g% +DB-0A

Since (8~2)>0, ¢,>0 and #,>0, equations (2.9) imply a< g (g*+1)BIA < . So

2.9

(2.10) 0s as g’ <g+l s fsqi+g2

By the following combination [,62(2.8.1) - (2.8.3)] we obtain
B+ A)(B- A= FA-q%q" + B,

Furthermore, in view of (2.9.1), we have

@2.11) afA =g (" + 1)[eB + B - (B + 1)¢]

So af=0 (mod qz). If a=0 (mod qz) and 8= 0 (mod 4", then there are four
positive integers m, n, s and ¢ such that:

- a=mp’ with m = 0 (mod p) and 1 =5 = (2h-1)

- B=np' with n = 0 (mod p) and (2h-s) s ¢ s (2h-1)

Denoting by r the minimum integer between s and 1, then from (2.11) we get
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mnApsvl = p2h+r(q2+l)[me1-l' + anl-r - (B+l)p2h-r]

Since mnA = 0 (mod p) we have that s+ tz2h +r.

If r = s then ¢t = 2h, while if r = ¢ then s = 2h. In each case we have an absurd.

So a= 0 (mod g% or 8= 0 (mod ¢). If 8= 0 (mod g°), then, since 8= ¢g°+1, we
have that = 2qz. By (2.10) we obtain (g+1)(¢—2) <0 which is an absurd for
each g =z 3. For ¢ =2 we get 8= 8 and so, by (2.10), = 8. Then, by (2.11), we
have that 9a=40 which is an absurd. So @=0 (mod ¢%). If a=0, then, by
(2.11), we get B=g*(B+1)/B which is not an integer, an absurd. So a>0. In
view of (2.10) we have that a = ¢* necessarily. By (2.11), we get = (g*+1).
Hence,a= ag’ = ¢* and b = g’ = ¢*(g*+1).

* So we proved that K is of type (¢°, g*+¢%) with respect to hyperstars of planes.

Finally, we proved that K is of type (0, 4°) with respect to stars and of type
(¢°, ¢*+¢®) with respect to hyperstars. Hence, by Result 1, K is the set of the
planes meeting a non-singular quadric in a conic. So the proof is completed. B
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