Pancyclicity, Panconnectivity, and
Panpositionability for General Graphs
and Bipartite Graphs

Shin-Shin Kao®! Cheng-Kuan Linf,
Hua-Min Huang? and Lih-Hsing Hsu$
“Department of Applied Mathematics,

Chung-Yuan Christian University
TDepartment of Computer Science,
National Chiao Tung University
tDepartment of Mathematics,

National Central University
$Department of Computer Science and Information

Engineering, Providence University

Abstract

A graph G is pancyclic if it contains a cycle of ev-
ery length from 3 to |V(G)| inclusive. A graph G is
panconnected if there exists a path of length [ joining
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any two different vertices z and y with dg(z,y) <1 <
[V(G)| — 1, where dg(z,y) denotes the distance between
z and y in G. A hamiltonian graph G is panpositionable
if for any two different vertices = and y of G and any inte-
ger k with dg(z,y) < k < |V(G)|/2, there exists a hamil-
tonian cycle C of G with de(z,y) = k, where d¢(z,y)
denotes the distance between = and y in a hamiltonian
cycle C of G. It is obvious that panconnected graphs
are pancyclic, and panpositionable graphs are pancyclic.
The above properties can be studied in bipartite graphs
after some modification. A graph H = (VUV}, E) is
bipartite if V(H) = Vo U V; and E(H) is a subset of
{(u,v) | u € Vo,v € 1} . A graph is bipancyclic if it
contains a cycle of every even length from 4 to 2- [Mz,ﬂuj
inclusive. A graph H is bipanconnected if there exists a
path of length [ joining any two different vertices = and y
with dy(z,y) <! < |V(H)| — 1, where dg(z,y) denotes
the distance between = and y in H and ! — dy(z,y) is
even. A hamiltonian graph H is bipanpositionable if for
any two different vertices = and y of H and for any integer
k with dg(z,y) < k < |V(H)|/2, there exists a hamil-
tonian cycle C of H with d¢(z,y) = k, where de(z,y)
denotes the distance between z and y in a hamiltonian
cycle C of H and k — dy(z,y) is even. It can be shown
that bipanconnected graphs are bipancyclic, and bipan-
positionable graphs are bipancyclic. In this paper, we
present some examples of pancyclic graphs that are nei-
ther panconnected nor panpositionable, some examples of
panconnected graphs that are not panpositionable, and
some examples of graphs that are panconnected and pan-
positionable, for nonbipartite graphs. Corresponding ex-
amples for bipartite graphs are discussed. The existence
of panpositionable (or bipanpositionable, resp.) graphs
that are not panconnected (or bipanconnected, resp.) is
still an open problem.
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1 Introduction

In this paper, for the graph definitions and notations we follow
[2]. G = (V,E) is a graph if V is a finite set and FE is a subset of
{(u,v) | (u,v) is an unordered pair of V'}. We say that V is the
vertexr set and F is the edge set of G. Two vertices u and v are
adjacent if (u,v) € E. A path P is represented by (vo, vy, -+, vx).
We use P~! to denote the path (vk,vk_1,U_2, - ,v1,%). We
also write the path (vo,v1,v2, -+ ,v) as (vo,v1, -+ ,v;, Q, v;,
Vj+1,*** ,Uk), where @ is the path (v;,viy1,---,v;). A path is
called a hamiltonian path if its vertices are distinct and span
V. A cycle is a path of at least three vertices such that the
first vertex is the same as the last vertex. A cycle is called a
hamiltonian cycle if its vertices are distinct except for the first
vertex and the last vertex and if they span V. A hamiltonian graph
is a graph with a hamiltonian cycle.

Let z,y € V(G). We use dg(z,y) to denote the distance
between z and y in G, and d¢(z,y) the distance between z and
y in a hamiltonian cycle C of G. A graph is pancyclic if it
contains a cycle of every length from 3 to |V(G)| inclusive. The
concept of pancyclic graphs is proposed by Bondy [3]. A graph
G is panconnected if there exists a path of length [ joining any
two different vertices z and y with dg(z,y) < I < |[V(G)| - 1.
The concept of panconnected graphs is proposed by Alavi and
Williamson [1]. A hamiltonian graph G is panpositionable if for
any two different vertices z and y of G and any integer k with
de(z,y) < k < |V(G)|/2, there exists a hamiltonian cycle C of
G with d¢(z,y) = k. The concept of panpositionable graphs is
studied by Kao et. al [4]. Let G be a panconnected graph and
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u, v be two adjacent vertices of G. Then there exists a path
P between u and v such that the length of P, isi for 1 <¢ <
|[V(G)] = 1. 1t is obvious that P, |J P; is a cycle of length 7 + 1
for 2 < i < |V(G)| — 1. Thus, there exists a cycle of length [
with 3 <1 < |V(G)| in G. Therefore, every panconnected graph
is pancyclic. Let G be a panpositionable graph and z, y be two
adjacent vertices of G. Then there exists a hamiltonian cycle of
the form (z, P;,y, @;, ) such that the length of F; is ¢ and the
length of Q; is |V(G)| — i for 1 < i < |V(G)|/2. Obviously,
(z, P,y, P71, ) is a cycle of length i + 1 and (z, P1,y, @i, %) is
a cycle of length |V(G)| —i + 1 for 2 < i < |V(G)|/2. Thus, G
contains a cycle of length ! for 3 < ! < |V(G)|. Therefore, every
panpositionable graph is pancyclic.

The similar concepts can be studied in bipartite graphs. A
graph H = (Vo UW,, E) is bipartite if V(H) = Vo UV} and E(H)
is a subset of {(u,v) | u € Vo,v € V1}. Since there is no odd cy-
cle in any bipartite graph, any bipartite graph is not pancyclic.
For this reason, the concept of bipancyclicity is proposed [6]. A
bipartite graph is bipancyclic if it contains a cycle of every even
length from 4 to |V (H)| inclusive. It is proved that the hypercube
is bipancyclic [5, 7). It is obvious that there exists no path of odd
length between any two distinct vertices of the same partition in a
bipartite graph with at least 3 vertices. Thus any bipartite graph
is not panconnected. For this reason, we say a bipartite graph is
bipanconnected if there exists a path of length ! joining any two
different vertices z and y with dg(z,y) <! < |V(H)| -1 and
(I—dy(z,y)) is even. It is proved that the hypercube is bipancon-
nected [5]. The concept of bipanpositionable graphs is proposed
in [4]. A hamiltonian bipartite graph H is bipanpositionable if for
any two different vertices z and y of H and for any integer k£ with
dy(z,y) < k < |V(H)|/2 and (k — dg(z,y)) is even, there exists
a hamiltonian cycle C of H such that dc(z,y) = k. Obviously,
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the complete bipartite graph K,, with n > 2 is bipanposition-
able. With the argument similar to the previous paragraph, we
know that every bipanconnected graph is bipancyclic, and every
bipanpositionable graph is bipancyclic.

In this paper, we present some examples of pancyclic graphs
that are neither panconnected nor panpositionable, some exam-
ples of panconnected graphs that are not panpositionable, and
some examples of graphs that are panconnected and panposition-
able. Similarly, for bipartite graphs, we present some examples
of bipancyclic graphs that are neither bipanconnected nor bi-
panpositionable, some examples of bipanconnected graphs that
are not bipanpositionable, and some examples of graphs that are
bipanconnected and bipanpositionable. The existence of panpo-
sitionable (or bipanpositionable, resp.) graphs that are not pan-
connected (or bipanconnected, resp.) is still an open problem.

2 General Graphs: Pancyclicity, Pan-
connectivity, and Panpositionability

2.1 Pancyclic graphs that are neither pancon-
nected nor panpositionable

In this section, we show two examples of pancyclic graphs that are
neither panconnected nor panpositionable, namely, the graphs G
as s > 2 and the graph T defined below. The set of {G, | s > 2}
are nonplanar examples, while the graph T is a planar graph.

Let G be the bipartite graph K, for s > 2. More specifi-
cally, Gs = (BU W, E), where B = {0,1,2,---,(s - 1)}, W =
{0,1,2,--- ,(s— 1)} and E = {(3,5') | 0 < 4,j < s — 1}. De-
fine G, = G, U {(0,1)}. Obviously, G, is a nonbipartite graph.
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Figure 1: G_4 = K4,4 U {(0, 1)}

Figure 1 is an illustration of G4

Theorem 1. G, is a pancyclic graph that is neither panconnected
nor panpositionable.

Proof. To show that G is a pancyclic graph, we show that G,
contains a cycle of length I, denoted by C; below, for 3 < I < 2s.

Case 1. [ is odd.

] C,in G,

3 {0,1,1,0)

5 (0,1,2,2,1,0)
7<1<25-11(0,1,2,2,---, 5% (5),1,0)

Case 2. [ is even.

l Cz in Gs
4 {0,0,1,1,0)
6 (0,0/,1,1,2,2,0)
8<1<2s (0,0’,1,1’,2,2’,~--,5-1,(-;-—1)',0)

Let u = 2 and v = 2’ of G,. Obviously, dg,(u.v) = 1. Since
N(u) N N(v) = 0, it is impossible to have a path with length

2 between u and v. Thus G, is not panconnected. For the
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Figure 2: The graph T.

same reason, G, is not panpositionable. This proves the theo-
rem. a

Let T be the graph shown in Figure 2. More precisey, V(T') =
{i10<i<8}and E(T) ={(0,1),(0,2),(1,2),(3,4),(3,5), (4,5),
(6,7),(6,8),(7,8),(0,3),(2,4), (4,6),(5,8),(1,7),(2,6)}. We have
the following theorem.

Theorem 2. The graph T is pancyclic, but neither panconnected
nor panpositionable.

Proof. To show that T is a pancyclic graph, we prove that T
contains cycles with length ! for 3 <! < 9. The corresponding
cycles are listed in the following.

237



the cycle Cin T
(0,1,2,0)

(0,3,4,2,0)
(0,3,4,2,1,0)
(0,3,5,4,2,1,0)
(0,3,5,8,6,4,2,0)
{0,3,5,8,7,6,4,2,0)
(0,3,5,8,7,6,4,2,1,0)

O 00| | O] O x| LO| o~

Let © = 0 and v = 3 of T. Obviously, dr(u,v) = 1. Since
N(u) N N(v) = @, it is impossible to have a path with length 2
between u and v. Thus, T is not panconnected. For the same
reason, T' cannot be panpositionable. This proves the theorem.

]

2.2 Panconnected graphs
Assume that n, sy, 8,--, 8, are integers with 1 < s < 59 <
-+ < 8 < %. The circulant graph G(n;s1, 82, ,8r) is the

graph with the vertex set {0,1,---,n — 1}. Two vertices 7 and j
are adjacent if and only if i — j = +s; (mod n) for some k where
1<k

Theorem 3. Let n be an integer with n > 5. G(n;1,2) is a
panconnected graph.

Proof. Let G = G(n;1,2). To show that G is panconnected, we
prove that there exists a path of length { for dg(z,y) <I<n—-1
between any two distinct vertices z, y of G. Without loss of
generality, let z = 0 and y < |5]. We define some paths in the
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following:
I(3,7) = (Gi+1,i+2,---,5-1,j5)
S(iE) = (i,1+2);
SHi) = (G,i+2,i+4, - ,i+2(t—1),i+ 2t);
S7Hi) = (4,i—2,i—4,---,i—2(t—1),i—2t).
There are two cases.

Case 1. | < y. Let k = 2({ — d¢(0,y)). The corresponding path
is (0, (0, k), SUT°1 k), 9)-

Case 2. | > y. Let k = [’;23] The corresponding path is
constructed below.

[ —y | the path between 0 and y with length [

even | (0,1(0,y —1),S*(y — 1),y + 2k — 1,y + 2k, S~ *(y + 2k),
y)

odd [ (0,I(0,y—1),S*(y—1),y+2k—1,y+2k -2,
S~*-D(y + 2k — 2),7)

The theorem is proved. O

The following theorem is proved in [4].

Theorem 4. G(n; 1, 2) is panpositionable hamiltonian if and only
ifne{56,7,8,9,11}.

With Theorem 3 and Theorem 4, we have the following re-
sults.
Theorem 5. G(n;1,2) is panconnected but not panpositionable
if and only if n =10 orn > 12.

Theorem 6. G(n;1,2) is panconnected and panpositionable if
and only if n € {5,6,7,8,9,11}.
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Figure 3: The graph B.

3 Bipartite Graphs: Bipancyclicity, Bi-
panconnectivity, and Bipanposition-
ability

3.1 Bipancyclic graphs that are neither bipan-

connected nor bipanpositionable

Let B be the graph shown in Figure 3. More precisely, V(B) =
(i]0<i<2}and E(B) = {(45+1)|0<i<24<i<
14,20 < i < 22}U{(0, 3), (4, 15), (20,23), (0,4), (1, 7), (2, 10), (3,13),
(5,16), (15, 16), (6,17), (8, 17), (9, 18), (11, 18), (12, 19), (14, 19),
(16,20), (17, 21), (18, 22), (19, 23)}.
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We have the following theorem.

Theorem 7. The graph B is bipancyclic that is neither bipan-
connected nor bipanpositionable.

Proof. To show that B is bipancyclic, we prove that B contains
cycles of length [ for any even integer | with 4 < | < 24. The
corresponding cycles are listed below.

! | the cycle with length [

4 |(6,7,8,17,6)

6 |(0,1,7,6,5,4,0)

8 |(6,7,8,17,21, 20, 16, 5, 6)

10 | (6,7,8,17,21,20, 16, 15, 4, 5, 6)

12 | (6,7,8,9,10,11,12, 13, 14,15,4, 5,6)

14 | (6,17, 21,20,23,22,18,11, 12,13,14, 15,4, 5, 6)

16 | {6,7,8,17,21,20,23,22,18,11,12,13, 14, 15,4, 5, 6)

18 | {6,7,8,17,21,20,23,22,18,9,10,11, 12,13, 14,15, 4, 5, 6)
20 | (6,7,8,17,21,22,18,9,10, 11, 12,13, 14, 19, 23, 20, 16, 15, 4,

5,6)

22| (0,1,7,6,17,8,9, 10, 11, 18, 22, 21, 20, 23, 19, 12, 13, 14, 15,
16,5, 4, 0)

24[1(0,1,2,3,13,12, 11, 10,9, 18, 22, 23,19, 14, 15, 16, 20, 21, 17,
8,7,6,5,4,0)

Let u =1 and v = 7 of B. Obviously, dg(u,v) =1, N(u) =
{0,2,7} and N(v) = {1,6,8}. Let Ag = N(O)UN(2)UN(7) and
A; = N(1) UN(6) U N(8). If there exists a path P between u
and v such that the length of P is 3, then AgN A, # 0. However,
Ao = {1,3,4,6,8,10}, A; = {0,2,5,7,9,17}, and Ao N A; = 0.
Therefore, B is not bipanconnected. For the same reason, B is
not bipanpositionable. This proves the theorem. O
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3.2 Bipanconnected graphs that is not bipan-
positionable

Theorem 8. Let m be an integer with m > 2. Com X Kp is a
bipanconnected graph.

Proof. Let G = Com X Ko. Then V(G) = {i,7' | 0 < i < 2m}
and E(G) = {(i,i + 1 (mod 2m)) | 0 < ¢ < 2m} U {(¢,(i +
1 (mod 2m))’) | 0 < i < 2m} U {(3,#) | 0 < i < 2m}. To show
that G is bipanconnected, we prove that there exists a path of
length  for dg(u,v) < 1 < 2m—1and l—dg(u,v) is even between
any two distinct vertices u, v of G. Since G is symmetric, we only
consider two cases: (1)u=0,v=ywithy <m; (2QJu=0,v=y¢
with y < m. We define some paths in the following:

I(,7) = (,i+1,i+2,...,5—1,7);

I7'(6,7) = (G,i—-14i—-2,...,5+1,3)
I(,5) = @,@+1),@+2),...,(0—1).5)
IV,g) = @,6-1,6-2),...,G+1),5)
QG{) = (,7,GE+1),i+1,i+2);

QG = (1,Q(),i+2,Q(E+2),i+4,...,i+2t—2,
Qi + 2t — 2), + 2¢).

Case 1. u=0,v =y with y < m.
(1.1) I = y. The corresponding path is (0, 1(0,y), ).

12)y<l<4d4m —y. Let k = l—';—u The corresponding path
is (OsI(O)y_ 1),'!}_ 1,('!/— 1)',[((1/"‘ 1),1 (y+k_ l)l)r (y+k—
1),’y +k- li I_l(y + k- 1)y)’y)

(13)dm—y<li<4m-—1 Letk= ';‘-"2"—'”!. The corresponding
path is (0, Q*(0, 2k), 2k, (2k)’,
I((zk),a (2m - 1),), (2m - 1)" 2m — 11 I—.l(zm - 1: y)a y)
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Case 2. u=0,v=¢ withy <m.

21)y<!l<4m-—y. Let k= 5-2&1 The corresponding path is
(0, I(0,k),k, &', I"Y(K,v'), ).

(2.2) 4m—y <! < 4m-1. Let k = [=4244]. The corresponding
path is (0, Q%(0, 2k), 2k,
I(2k,2m - 1),2m —1,(2m — 1), I7}((2m - 1), 9), ¥').

This proves the theorem. O

Theorem 9. Let m be an integer with m > 3. Con X Ky is
bipanconnected but not bipanpositionable.

Proof. Let G = Co, X K3. V(G) and E(G) is the same as in
Theorem 8. With Theorem 8, G is bipanconnected. To prove
that G is not bipanpositionable, we show that there is no hamil-
tonian cycle, C, such that do(0,2) = 2m. Suppose that G has
a hamiltonian cycle C' with d¢(0,2) = 2m, then only one of the
following cases holds: (1){(2m—1,0,1) € C, (2){2m—1,0,0') € C
or (3)(0,0,1) e C.

Case 1. If (2m — 1,0,1) € C, then (1,2) ¢ C. Otherwise,
dc(0,2) = 2 < 2m. Thus (1,1') € C and (3,2,2') € C. Then
(1',2') ¢ C, otherwise dc(0,2) = 4 < 2m. Hence Q = (3,2,2,
3’) € C. Thus C contains the path P, = (2m—1,0,1,1,0, (2m—
1)"). Now (2m—1,(2m—1)’) ¢ C, otherwise P,U(2m—1, (2m —
1)) is a cycle. Thus C contains a path P, = (2m — 2, Py, (2m —
2)'). With the similar argument, (2m — k, (2m — k)’) ¢ C for
1 <k <2m — 3, otherwise P,_, U (2m — k, (2m — k)’) is a cycle
of G. Then C contains a path P,,,_4. Therefore, C = P,,,_4UQ
is a hamiltonian cycle of G and d¢(0,2) = 2m — 2 However,
2m — 2 < 2m. This is a contradiction.

Case 2. If (2m —1,0,0) € C, then (0,1) ¢ C and (2,1,1') €
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C. Thus (0,1') ¢ C. Otherwise, d¢(0,2) = 4 < 2m. Then
C contains the paths Py = (2m — 1,0,0',(2m — 1)) and Q =
(2,1,1',2). With the same argument as in Case 1, (4,%') ¢ C for
2 < i < 2m — 1. Therefore, C = (2m — 1,0,0, (2m — 1), (2m —
2y, (2m-3),...,1',1,2,3...,2m—1). However, dc(0,2) = 2m—
2 < 2m. This is a contradiction.

Case 3. If ((/,0,1) € C, then (1,2) ¢ C. Otherwise, dc(0,2) =
2 < 2m. Then (1,1) € C and (2,2,3) € C. Now (1',0') ¢ C,
otherwise (1',0/,0,1,1’) is a cycle. Thus (1',2) € C. Then C
contains a path (0,1,1,2',2), and hence d¢(0,2) = 4 < 2m for
m > 3. This is a contradiction.

The theorem is proved. O

3.3 Bipanconnected graphs that is bipanposi-
tionable

Theorem 10. Let n be an even integer withn > 6. G(n;1,3) is
a bipanconnected graph.

Proof. Let G = G(n;1,3). To show that G is bipanconnected,
we prove that there exists a path of length [ for d¢(z, y) 1L
n — 1 and [ — dg(x,y) is even between any two distinct vertices
z,y of G. Without loss of generality, let z=0and y < 5] We
define some paths in the following:

I1G,5) = (6,i+1,i+2,...,5—1,5);
IY6,5) = (@,i—-14i—2,...,5+1,5);

SGE) = (i,i+3);

St@) = (i,i+3,i+6,...,i+3(t—1),i+3¢t);
S7t@) = (i,i—3,i—6,...,5—3(t—1),i— 3t).

There are two cases.
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Case 1. [ < y. Let k = [¥] x 3. The corresponding path is
=~
(07 I(O:k - %(y - l))7 Syz_(k - %(y - l))v-[(k) y),y)

Case 2. [>y. Let k= ’—;y

(2.1) k< ﬁg—:ﬂ The corresponding path is (0, 1(0,y—1), S*(y—
D,y+3k—1,y+3k—2,5"¢ Dy +3k—-2),y+1,y).

(2.2) k> "—*;—'2 The corresponding path is constructed below.

y (mod 3) l the path between 0 and y with length [
0 n—3 (0,1,2,n—1,I‘l(n—1,y+3),y+3,y)
n—1 (0,1,2,n—1,1‘1(n—1,y+1),y+1,y)

1 n—20(0,1,2,n—-1,I"Yn-1,y+1),y+1,9)

2 n—-3[(0,1,2,n-1,I""(n-1,y+1),y+1,9)
n—-1](0,1,2,n-1,I7"(n—-1,y+ 1),y + 1,y—

2,y—1L9)
The theorem is proved O

It is proved in [4] that G(n;1,3) is bipanpositionable if and
only if n is an even integer and n > 6. Therefore, with Theo-
rem 10, we have the following result.

Theorem 11. G(n; 1, 3) is bipanconnected and bipanpositionable
if and only if n is an even integer and n > 6.

4 Conclusion

In this paper, we clarify the relationship among the set of pan-
cyclic graphs, the set of panconnected graphs, and the set of pan-
positionable graphs. It is obvious that panconnected graphs are
pancyclic, and panpositionable graphs are pancyclic. We present
some examples of pancyclic graphs that are neither panconnected
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nor panpositionable, some examples of panconnected graphs that
are not panpositionable, and some examples of graphs that are
panconnected and panpositionable. The existence of panposi-
tionable graphs that are not panconnected is still an open prob-
lem. Similarly, for bipartite graphs, we show that bipanconnected
graphs are bipancyclic and bipanpositionable graphs are bipan-
cyclic. We present some examples of bipancyclic graphs that are
neither bipanconnected nor bipanpositionable, some examples of
bipanconnected graphs that are not bipanpositionable, and some
examples of graphs that are bipanconnected and bipanposition-
able. The existence of bipanpositionable graphs that are not
bipanconnected remains an open problem.
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