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Abstract

Abstract: By applying discharging methods and properties of
critical graphs, we proved that every simple planar graph G with
A > 5 is of class 1, if any 4-cycle is not adjacent to a 5-cycle in G.
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1 Introduction

Only simple graphs are considered in this paper. For a plane graph G, we
denote its vertex set, edge set, face set, and maximum degree by V(G),
E(G), F(G) and A(G) (or simply A), respectively. We use d(z) denote
the degree of z, £ €V(G)UF(G). A k -, k*-vertex (or face) is a vertex (or
face) of degree k, at least k. A k -vertex, k* - vertex adjacent to a vertex
z is called a k- neighbor, k*- neighbor of z. Let di.(z), di+(x) denote the
number of k-neighbors, k- neighbors of . A k-cycle is a cycle of length
k. Two cycles sharing a common edge are said to be adjacent.

An edge k-coloring of a graph G is a function ¢ : E(G) — {1,2,---,k}
such that any two adjacent edges e1,e2 € E(G) have ¢(e1)#¢p(e2). The
chromatic index x’ (G) is the smallest integer k such that G' admits an
edge k -coloring. A graph G is of class 1 if x/(G)= A and of class 2 if
xX'(G)= A + 1, A critical graph G is a connected graph such that G is of
class 2 and X’ (G — e) <x’ (G) for each edge ecE(G). A critical graph of
maximum degree A is called a A-critical graph.

Vizing/"2l proved that every planar graph with A > 8 is of class 1 and
conjectured that this is true for 6 < A < 7, and first presented examples
of planar graphs of class 2 for each A €{2,3,4,5}. The case A = 7 was
confirmed by Zhang [3]|, and Sanders and Zhao [4] independently. Thus,
Vizing’s conjecture remains open only for the case A = 6. References [5,6]
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proved some sufficient conditions for a planar graph of maximum degree
six to be of class 1. References [7,8,9,10] proved some sufficient conditions
for a planar graph of maximum degree five to be of class 1.

In this paper, we shall prove that every simple planar graph G with
A > 5 is of class 1, if any 4-cycle is not adjacent to a 5-cycle in G.

2 Property of critical graphs

Lemma 1. 12| Let G be a A -critical graph, A > 3 andv €V(G), u eVvV(G).
Then (1) v is adjacent to at most one 2-vertez, and at least two A -vertices;
(2) if dx(v) 2 1, k # A, then da(v) 2 A -k +1; (3) if w €E(G), then
d(u) +d(v) > A+2.

Lemma 2. 13 Let G be a A -critical graph, zy €E(G), if d(z) + d(y) =
A +2, then

(1) any v eN({z,y)\{z,y} is A- vertes,

(2) any v eN(N({z,y}))\{z,y} satisfies dv) 2 A -1, and

(3) if d(z) < A, d(y) < A, then any v eN(N({z,y}))\{z, v} is A-
vertez.

Lemma 3. ¥ A graph G is not a critical graph if it has distinct vertices
,y, z such that (1) =y €E(G), zz €E(G), d(z) < 24 —d(z) —d(y) +2;
(2) zz is in at least d(z) +d(y) — A —2 triangles not containing y.

Suppose G is a 5-critical graph, then G is 2-connected, implying that the
boundary of each face forms a cycle and every edge lies on the boundaries
of two faces. Let s(v) denotes the number of all 3-faces incident to vertex
v €V(G). Since any 4-cycle is not adjacent to a 5-cycle in G, hence, we
have follow Lemma 4 and Lemma 5.

Lemma 4. Any 4-vertex v of G is incident to at most two 3-faces, i.e.
s(v) £ 2. When s(v) =2, if two 3-faces are adjacent, then v is incident to
two 6+ -faces; if two 3-faces are not adjacent, then v is incident to two 5%
-faces. When s(v) =1, v is incident to two 6% -faces or three 5t -faces.

Lemma 5. Any 5-vertez v of G is incident to at most three 3-faces, i.e.
s(v) < 3. (a) Let v be adjacent to no 2-vertez, when s(v) = 3, v is incident
to two 6% -faces; when s(v) = 2, if two 3-faces are adjacent, then v is
incident to two 6% -faces, if two 3-faces are not adjacent, then v is incident
to three 5 -faces; when s(v) = 1, v is incident to two 6% -faces or four
5+ _faces. (b) Let v be adjacent to 2-vertex, when s(v) = 3, v is incident
to two 61 -faces; when s(v) = 2, v is incident to at least one 6% -face and
one 5% -face or three 5% -faces; when s(v) =1, v is incident to one 6% -face
and one 5% -face or four 5 -faces.
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3 Main result and its proof

Theorem 6. Every simple planar graph G with A > 5 is of class 1, if any
4-cycle is not adjacent to a 5-cycle in G.

Proof. Suppose on the contrary that G is of class 2. Without loss of gener-
ality, we may assume that G is a k-critical (¥ > 5§). Using Euler’s formula,
we can derive the following identity:

Y (@) -+ Y (d)-4)=-8

z€V(G) zEP(G)

We define an initial charge function ch(x) = d(z) — 4, for each z €
F(G) U V(G). Next, a modified charge function ch’(z) is defined as a
modification of ch(z) by moving some charge locally among vertices and
faces according to the following discharging rules. Since the total sum of
charges is kept fixed when the discharging is in process, therefore,we have
identity (1):

Z ch(z) = Z ch'(z) = -8

ze{VUF} ze{VUF}

For each z e F(G)UV(G), if we can show that ch’(z) > 0, this contra-
dicts identity (1) to prove the Theorem 1.

Case 1 Every simple planar graph G with A > 7 is of class 1, if any
4-cycle is not adjacent to a 5-cycle in G.

The case was proved in references (1,2,3,4], we omit here.

Case 2 Every simple planar graph G with A = 6 is of class 1, if any
4-cycle is not adjacent to a 5-cycle in G.

We define discharging rules as follows.

R1 Let v be a 6-vertex, v sends 1 to adjacent 2- vertex; v sends -_.1; to
each adjacent 3- vertex, and 4-vertex;

R2 Let v be a 5-vertex, v sends 3 to each adjacent 3- vertex;

R3 Let f be a 3-face, z, v, z are distinct vertices of f, and d(z) < d(y) <
d(z).

R3-1If f is (k, 6,6) -face, k = 2, 3, then y and z independently sends %
to f;

R3-2 If f is (3,5, 6)-face, then y sends %, z sends 32- to f;

R3-3 If d(z) > 4, then z,y, z independently sends 3 to f.

R4 Let d(f) > 5, then f sends ﬂd—f(%—“ to each incident vertex.

Suppose f €F(G), then d(f) > 3. If d(f) = 4, then ch(f) = 0,
thus ch/(f) = 0. If d(f) > 5, then ch(f) > 1, thus ch'(f) = d(f) —

4- P4 %d(f) = 0 by R4.
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If d(f) = 3, then ch(f) = —1. Since A = 6, f must be one of the
following 3-faces: (2,6, 6)-face, (3, 5, 6)-face, (4,4, 6)-face, (4%, 5, 5)- face
by Lemma 1, 2, 3. Hence, ch/(f) = —1+1=0 by R3.

Suppose v €V(G), then d(v) > 2. Let d(v) = 2, then ch(v) = —2. v is
adjacent to two 6-vertices by Lemma 1, thus, ch’/(v) = —2+2 =0 by R1.

Let d(v) = 3, then ch(v) = —1. v is adjacent to three 5%-vertices by
Lemma 1. Hence, ch/(v) = —1+ 3 X 3 =0 by R1, R2.

Let d(v) = 4, then ch(v) = 0. v is adjacent to at most one 4-vertex and
at least two 6-vertices by Lemma 1, v receives at least % x 2 by R1. Since
any 4-cycle is not adjacent to a 5-cycle in G, therefore, v is incident to at
most two 3-faces. Hence, ch/(v) > 1 x 2— } x 2 =0 by R3-3.

Let d(v) = 5, then ch(v) = 1. min{d(u)|u EN(v)}= 3, d3(v)< 1 and
dg(v)> 2 by Lemma 1. Since any 4-cycle is not adjacent to a 5-cycle in G,
therefore, v is incident to at most three 3-faces, and when s(v) = 3, v is
incident to two 6%-faces.

If min{d(u)|u €N(v)}= 3, then, ds(v) = 4 by Lemma 2. When s(v) =
3, v receives at least 2 by R4, v sends at most 1 x 4 to its adjacent 3-vertex
and incident 3-faces by R2, R3-2, R3-3, hence, ch/(v) >1+3—3x4>0;
when s(v) < 2, v sends at most 3 x 3 to its adjacent 3-vertex and incident
3-faces by R2, R3-2, R3-3, hence, ch/(v) >1—3x3=0.

If min{d(u)lu EN(v)}> 4, then, ds(v)< 2 and dg(v)> 3 by Lemma
1. vlsends at most %— x 3 to its incident 3-faces by R3-3, hence, ch’'(v) >
1-5%x3=0.

I?et d(v) = 6, then ch(v) = 2. min{d(u)|u €N(v)}> 2, v is adjacent to
at most one 2-vertex and at least two 6-vertices. Since any 4-cycle is not
adjacent to a 5-cycle in G, therefore, v is incident to at most four 3-faces.
When v is adjacent to 2-vertex, if s(v) = 4, then, v is incident to one 6t-
face and one 7*-face, if s(v) = 3, then, v is incident to two 6%-faces or two
5+.faces and one 6+-face; when v is adjacent to no 2-vertex, and s(v) = 4,
v is incident to two 6%-faces.

If da(v) = 1, then, dg(v) = 5 by Lemma 2. When s(v) = 4, v receives
at least 31; + % by R4, v sends at most 1+ —% +% x 3 to its adjacent 2-vertex
and incident 3-faces by R1, R3-1, R3-3, hence, ch’(v) > 2+ 3+ 3 - (1+
3+ 1 x 3) > 0; when s(v) = 3, v receives at least 3 X 2 by R4, v sends
at most 1+ % + -:1; x 2 to its adjacent 2-vertex and incident 3-faces by R1,
R3-1, R3-3, hence, ch’/(v) > 2+ 3 x 2— (1+ 3 +§ x 2) > 0; when s(v) <2,
we have ch’(v) > 2 — (1+ 3 + 3) > 0 by R1, R3-1, R3-3.

If min{d(u)|u €N(v)} = 3, then dg(v) > 4 by Lemma 1. When d3(v) =
2, or d3(v) = 1 and d4(v) = 1, v is incident to at most two 3-faces by Lemma
3, they are (6,6, 6)-faces, v sends at most % x 4 to its adjacent 3-vertices,
4-vertex and incident 3-faces, by R1,R3-3, hence, ch/(v) > 2— 1 x4 >0.
When d3(v) = 1 and ds+ (v) = 5, if s(v) = 4, v receives at least 3 x2 by R4,
v sends at most 4 + 2 + 4 x 3 to its adjacent 3-vertex, and incident 3-faces
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by R1, R3-1, R3-2, R3-3, hence, ch'(v) > 2+ 3 x2~ (3 +2+1 x3) > 0; if
s(v) < 3, v sends at most 3 + 2+ J x 2 to its adjacent 3-vertex, and incident
3-faces by R1, R3-1, R3-2, R3-3, hence, ch'(v) > 2 — (-;- + % + % x2)>0.

If min{d(u)lu €N(v)} > 4, then, ds(v) > 2, d4(v) < 3. When s(v) = 4,
v receives at least % x2 by R4, v sends at most 4 x7 to its adjacent 4-vertices,
and incident 3-faces by R1,R3-3, hence, ch/(v) > 2+ 3 x2~-1x7>0.
When s(v) < 3, v sends at most 1 x 6 to its adjacent 4-vertices, and
incident 3-faces by R1,R3-3, hence, ch’/(v) > 2 — 4 x 6 = 0. Thus, for each
z €F(G)UV(G), we show that ch’/(z) > 0, this contradiction proves Case
2.

Case 3 Every simple planar graph G with A = 5 is of class 1, if any
4-cycle is not adjacent to a 5-cycle in G.

We define discharging rules as follows.

R1 Let v be a 5-vertex, we do the following:

R1-1 v sends 1 to each adjacent 2- vertex;

R1-2 If v is adjacent to 3-vertex z, = is adjacent to 4-vertex, then v
sends } to x; otherwise, v sends § to z;

R1-3 If v is adjacent to 5-vertex u, u is adjacent to 2-vertex x, but v is
adjacent to no z, then v sends % to u.

R1-4 If v is adjacent to 4-vertex y, y is incident to (3,4, 5)-face f, but
v is incident to no f, then v sends by y to 5-vertex of f.

R1-5 Suppose v is adjacent to 4-vertex y, y is incident to two no adjacent
32-faces. If edge yv is incident to 5-face and no (3, 4, 5)-face, then v sends
= toy.
® R1-6 Suppose v is adjacent to 4-vertex y, y is incident to two no adjacent
(4,4, 5)-faces, and one 5-face fy, one 6%-face f. If two 4-neighbors of y is
incident to f, then v sends {% to y.

R2 Let f be a 3-face, , y, z are distinct vertices of f, and d(z) < d(y) <
d(z).

R2-1If f is (k,5,5) -face, k = 2,3, then y and z independently sends -;-
to f;

R2-2 If f is (3,4, 5)-face, then y sends §, z sends % to f;

R2-3 If d(x) > 4, then z,y, z independently sends % to f.

R3 Let d(f) > 5, then f sends 5%‘% to each incident vertex. When

2-vertex z is incident to f (d(f) > 5), z receives ﬂ‘ﬁ%‘! from f. Then, z

sends % to its each adjacent 5-vertex.

Claim Suppose G is a 5-critical graph, and any 4-cycle is not adjacent
to a 5-cycle in G. For any 4-vertex v€G, v receives at least %—, if v is incident
to two 3-faces according to the previous discharging rules.

Proof For any 4-vertex v€G, v is adjacent to at least two 5-vertices by
Lemma 1, s(v) £ 2 by Lemma 4.
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When s(v) = 2 and v is incident to two adjacent 3-faces, v receives at
least 1 x 2 by Lemma 4 and R3.

When s(v) = 2 and v is incident to two no adjacent 3-faces, v is incident
to two 5%-faces fi, fo by Lemma 4. (1) If d(f1) = 6, d(f2) > 6, then v
receives at least 2 by R3. (2)If d(f1) = 5, d(f2) = 5, then there is at
least two 5-neighbors of v, we denote them by u, so that uv is incident
to 5-face, and no (3,4,5)-face. Thus, v receives at least 135- x 2 by R1-5,
v receives 1 x 2 by Lemma 4 and R3. Hence, % x 24+3 x 2 =3. (3) If
d(f1) = 5, d(f2) > 6, then v receives i+ 1 by R3. When v is adjacent to
two 4-vertices u;,ug, and u; (i=1,2) is incident to f;, then two 5-neighbors
of v are incident to f2, now, v is incident to two no adjacent (4, 4, 5)-faces,
one 5-face and one 6%-face, thus, v receives Tlg x 2 by R1-6, therefore, v
receives -é + §+% X 2=~2§; when v is adjacent to at most one 4-vertex, or
v is adjacent to two 4-vertices u; (i=1,2), but u; is incident to f1, ug is
incident to f2, then, there is at least one 5-neighbors u of v, so that uv is
incident to 5-face, and no (3, 4, 5)-face, thus, v receives at least 1—25- by R1-5,
therefore, v receives 1 + 3+ = 3. This completes the proof of Claim.

Suppose f €F(G), then d(f) > 3. If d(f) = 4, then ch(f) = 0,
thus ch/(f) = 0. If d(f) > 5, then ch(f) 2 1, thus ch/(f) = d(f) —
4~4f)=2 xd(f) =0 by R3.

If d(f) = 3, then ch(f) = —1. Since A =5, f must be one of the
following 3-faces: (2%,5,5)-face, (3,4,5)-face, (4,4,4)-face,(4,4,5)- face by
Lemma 1, 2, 3. Hence, ch/(f) = —1+1=0by R2.

Suppose v €V(G), then d(v) > 2. Let d(v) = 2, then ch(v) = -2. vis
adjacent to two 5-vertices by Lemma 1, thus, ch'(v) = -2+2 =0by R1-1.

Let d(v) = 3, then ch(v) = —1. v is adjacent to at least two 5-vertices
and at most one 4- vertex by Lemma 1. By R1-2, if dy(v) = 1, then v
receives 1 x2; if ds(v) = 3, then v receives 3x3. Hence, ch'(v) = —-1+1=0

Let d(v) = 4, then ch(v) = 0. v is adjacent to at most one 3-vertex and
at least two 5-vertices by Lemma 1. s(v) < 2 by Lemmad. When s(v) = 2,
v receives at least % by Claim, v sends at most % x 2 to incident 3-faces by
R2-2,R2-3, thus, ch'(v) 2%—-};x2 = 0. When s(v) = 1, v receives at least
2 by Lemma 4 and R3, v sends at most 1 to incident 3-faces by R2-2,R2-3,
thus, ch’(v) >2—3> 0. When s(v) =0, thus ch/(v) = 0.

Let d(v) = 5, then ch(v) = 1. min{d(u)|lu EN(v)}= 2, da(v)< 1 and
ds(v)> 2 by Lemma 1. s(v) < 3 by Lemma 5.

Suppose v sends charges by R1-5, since any 4-cycle is not adjacent to a
5-cycle in G, then v satisfies 1 <s(v) < 2, and min{d(u)|u €N (v)}= 3 by
Lemma2. Suppose v sends charges by R1-6, then, v satisfies 1 <s(v) < 3,
and min{d(u)|u €N (v)}> 4 by Lemma 1 and 2.

First, let v sends charges to no adjacent 5-vertex of v by R1-4, then
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min{d(u)ju €N(v)}= 4 and ds(v) = 4 by Lemma 2. When s(v) =0, v
sends at most 1 x 4 to four 5-neighbors of v by Lemma2 and R1-3, v sends
at most 2 5 X 2 to its no adjacent 5-vertices by R1-4, thus, ch/(v) >1 —
(3 X2+ % x4) > 0. When 1 <s(v) < 3, we discuss it as follows.(1) If
4-neighbor y of v is incident to two (3,4, 5)-faces, then v is incident to at
most two 3-faces by Lemma 4 and condition of Theorem 1, this time, edge
vy is incident to two 6%-faces, so, v does not send charge according to
R1-5. Therefore, when 1 <s('u) < 2, v receives at least § by Lemma 5(a)
and R3, v sends at most 7 x 3 to three 5-neighbors of v by Lemma?2 and
R1-3, v sends out at most & X 2+ 3 x 2 by R1-4,R2-3, thus, ch'(v) >1 +
3_(3x2 +3x2+3x3) > 0. (2) If 4-neighbor y of v is incident to one
(3,4, 5) face. Let s(v) 3, then, v sends at most 1 x 2 to two 5-neighbors
of v by Lemma2 and R1-3, v sends 1 § to its no adjacent 5-vertex by R1-
4, v sends 2 3 X 3 to its incident 3-faces by R2-3, v recelves at least 2 3 by
Lemma 5(a) and R3, thus, ch/(v) 21 + 2-(Ix2 +3+3x3)>0. Let
1 <s(v) < 2, then, v sends at most ., X 3 to three 5- elghbors of v by
Lemma?2 and Rl 3, v sends out at most } + x 2 by R1-4,R2-3, v sends = A
to its incident 4-vertex by R1- 5 v recexves at least 2 £ by Lemma 5(a) and
R3, thus, ch’'(v) 21+ 3—(3 + 31 x2+ 34 x3+ &) > 0

Therefore, we suppose v sends charges only to its adjacent vertices and
incident 3-faces, as the following discuss.

Let do(v) = 1, then ds(v) = 4 by Lemma 2, v receives at least 1 >< 3 from
three 5-neighbors of v by R1-3. If s(v) = 3, then, v receives at least 2+ 3 by
Lemma 5(b) and R3, v sends at most 1+ 3 + § x 2 to its adjacent 2—vertex
and mcxdent3 faces by R1-1, R2-1, R2-3, thus ch’(v) >l+ ><3+ +§—(1+
$+3x2)>0 If1 <s(v) <2, then, v receives at least 1 i +3 by Lemma
5(b) and R3, v sends at most 1+ 3 + 3 to its adjacent 2-vertex and incident
3-faces by R1-1, R2-1, R2-3, thus, ch’(v) >1+3x3+4+3-(1+3+3)>0.
If s(v) = 0, then, v sends 1 to its adjacent 2-vertex, thus, ch/(v)=1-1=0.

Let min{d(u)lu €N(v)}= 3, then v is adjacent to at least three 5-
vertices and at most two 3- vertices by Lemma 1, and any z e N(N(v))\{v}
satisfies d(z) > 3 by Lemma 2.

If s(v) = 0, v sends out at most § x2 by R1-2, hence, ch’(v) >1—3x2 =
0. If 1 <s(v) < 3, we discuss it as follows:

Suppose d3(v) = 2, then ds(v) = 3. v is incident to at most two 3-
faces by Lemma 3, if s(v) = 2, then two 3-faces are adjacent. Thus, when
1 <s(v) < 2, v receives at least 3 x 2 by Lemma 5(a) and R3, v sends at
most § X2+ % x2 by R1-2, R2-3, hence, ch’(v) >1+1x2—(3x2+1x2) =

Suppose d3z(v) = 1, d4(v) =1, then ds(v) = 3 by Lemma 2. (1) When
8(v) = 3, v receives at least 3 x 2 by Lemma 5(a) and R3. If v is incident
to (3,4, 5) face and (3,5,5)-face, then, v receives } x 2 by R1-4, v sends
3 X2+ 3+ 2 to its adjacent 3—vertex and incident 3-faces by R1-2, R2-1,
R2—2 R2—3 hence, ch'(v) 21+ 4 x2+5x2-(3x2+3+2)=0;ifvis
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incident to (3,4, 5)-face and no (3, 5, 5)-face, then, v receives at least 5 by
R1-4, v sends £ + 1 x 2 + 2 to its adjacent 3-vertex and incident 3-faces
by R1-2, R2-2, R2-3, hence, ch/(v) >1 + % x 2+ -é- -+ % X2+ %) =
0; if v is incident to no (3,4, 5)-face, v sends at most ?% x 2+ % x 2 to
its adjacent 3-vertex and incident 3-faces by R1-2. R2-1. R2-3, hence,
ch'(v) 21+ 3 x2-(3x2+ 1% 2)=0. (2) When 1 <s(v) < 2, v receives
at least  x 3 by Lemma 5(a) and R3. If v is incident to no (3,4, 5)-face, v
sends at most 4 x2+3+Z to its adjacent 3-vertex, 4-vertex and incident 3-
faces by R1-2, R2-1, R2-3, R1-5, hence, ch’(v) 21+%—(% X2+ % + %) > 0;
if v is incident to (3,4, 5)-face and (3,5, 5)-face, then, v receives % X 2 by
R1-4, v sends at most % X 2+§ to its adjacent 3-vertex and incident 3-faces
by R1-2, R2-1, R2-2, R2-3, hence, ch’(v) 21+ + 3 x2- (3 x2+3) > 0;
if v is incident to (3, 4,5)-face and no (3,5, 5)-face, then, v sends at most
;+3+ 2 by R1-2. R2-2. R2-3, hence, ch’(v) 21+ -t+3+%>0

Suppose ds(v) = 1, ds(v) = 4. (1)When s(v) = 3, v receives at least3
by Lemma 5(a) and R3. If v is incident to two (3,5, 5)-faces, then, v sends
1 to its adjacent 3-vertex by R1-2, v sends 1 x 2+ 1 to its incident 3-faces
by R2-1, R2-3, thus, ch’(v) >1+ 2 — (3 x 2+ § x 2) = 0; if v is incident to
at most one (3,5, 5)-face, then, v sends at most % to its adjacent 3-vertex
by R1-2, v sends 3 + % x 2 to its incident 3-faces by R2-1, R2-3, thus,
ch'(v) >1+ % - (g x 2+ 1x2)=0. (2) When 1 <s(v) < 2, v receives
at least? by Lemma 5(a) and R3, v sends at most 1 to its adjacent 3-
vertex by R1-2, v sends -;- x 2 to its incident 3-faces by R2-1, R2-3, hence,
ch'(v) 21+ 3 - (3 x3) >0.

Let min{d(u)|u €N(v)}= 4, then, ds(v) > 2, ds(v) < 3.

If s(v) = 0, then, v sends at most % x 4 to its adjacent 5-vertices by
R1-3, hence, ch/(v) >1—1 x4 > 0. If 1 <s(v) < 3, we discuss it as follows:

Suppose d4(v) = 3, then, ds(v) = 2. When s(v) = 3, v receives at
least 1x2 by Lemma 5(a) and R3, v sends at most 1 to its adjacent 5-
vertex by R1-3, v sends at most TIE x 3 to its adjacent 4-vertices by R1-6,
v sends at most 4 x 3 to its incident 3-faces by R2-3, hence, ch/(v) 21 +
Ix2-(3+% x 341 x3) > 0; when 1 <s(v) < 2, v receives at
least $x3 by Lemma 5(a) and R3, v sends at most 2 X 2 to its adjacent
5-vertices by R1-3, v sends at most -1% x 3 to its adjacent 4-vertices by
R1-5, R1-6, v sends at most %zx 2 to its incident 3-faces by R2-3, hence,
ch'(w) 21+ 1 x3— (2 x2+F x3+5x2)>0.

Suppose ds(v) = 2, then, ds(v) = 3. When s(v) = 3, v receives at
least 1x2 by Lemma 5(a) and R3, v sends at most Ix2+&x2+3x3
to its adjacent 5-vertices, 4-vertices and incident 3-faces by R1-3, R1-6,
R2-3, hence, ch'(v) 21+ 3 x2-(3 x2+ 5% x 2+ 3 x 3) > 0; when
1 <s(v) < 2, v receives at least § x3 by Lemma 5(a) and R3, v sends at most
1 x3+% x2+1} x2 to its adjacent 5-vertices, 4-vertices and incident 3-faces

by R1-3, R1-5, R1-6, R2-3, hence, ch'(v) 21+3 x3—(3x3+% x2+3x2) >
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Suppose d4(v) = 1, then, ds(v) = 4. When s(v) = 3, v recelves at
least 4x2 by Lemma 5(a) and R3, v sends at most 1 $X2+{5+3x3to
its adjacent 5- vertlces, 4-vertex and incident 3-faces by R1- 3 Rl 6 R2-3,
hence, ch’(v) 2143 %x2—($x2+7+3%3) > 0; when 1 <s(v) < 2 vrecelves
at least §x3 by Lemma 5(a) and R3, v sends at most £ x 3+ Z + 1 x 2 to
its adjacent 5-vertices, 4-vertex and incident 3-faces by R1-3, Rl 5 R1-6,
R2-3, hence, ch’(v) _>_1+~;— x3-(3x3+&+3x2)>0

Let min{d(u)|u e N(v)}=5, then, ds(v) = 5. When s(v) =0, vsends at
most 3 x 5 to its adjacent 5-vertices by R1-3, hence, ch'(v) >1~ 1x5>0.
When 1 <s('u) <2 v receives at least $x3 by Lemma 5(a) and R3, v
sends at most 1 7 x4 + 1 3 X 2 toits adjacent 5-vertices, and incident 3-faces
by R1-3, R2-3, hence, ch’(v) >1+3x3—(3x4+}x2) >0 When
s(v) = 3 v receives at least 3 x2 by Lemma. 5(a) and R3 v sends at most
1x3 + x 3 to its adJacent 5-vert1ces and incident 3-faces by R1-3, R2-3,
hence ch'(v) >14+1x2—(3 x3+3 x3) > 0. Thus, for each z €eF(G)UV(G),
we show that ch’ (:1:) > 0, this contradiction proves Case 3.

Therefore, we complete the proof of the Theorem according to Case 1,

2,3. O
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